Supplementary Figures Proline: Mother Nature's Cryoprotectant Applied to Protein Crystallography Travis A. Pemberton^a, Brady R. Still^a, Emily M. Christensen^a, Harkewal Singh^a, Dhiraj Srivastava^a, and John J. Tanner^{a,b,*} ^aDepartment of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA ^bDepartment of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA *Corresponding author: Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA; email: tannerjj@missouri.edu; phone: 573-884-1280; fax: 573-882-2754 ## **Table of Contents** | Figure S1. Electron density for proline bound to HEWL. | S-3 | |---|-----| | Figure S2. Electron density for proline bound to XI-1. | S-4 | ## Figure S1 Electron density for proline bound to HEWL. The cage represents a simulated annealing σ_A -weighted F_o - F_c omit map contoured at 3.0 σ . The protein in the asymmetric unit is colored gray. The protein related by the crystallographic symmetry operation (y-1/2, -x+1/2, z+1/4) is colored cyan. Figure S2 Electron density for proline bound to XI-1. The cage represents a simulated annealing σ_A -weighted F_o - F_c omit map contoured at 3.0 σ .