
Supplementary data

Supplementary figure 1

Cloning of LdOASS gene and affinity purification of the protein. (A) DNA ladder was run in lane1.Double digest of pET21c containing LdOASS construct with NdeI and NotI was run in lane 2. The fallout corresponds to 976 base pairs. (B) Lane M: molecular weight markers (kDa), lane 1 : flow through, lane 2 : wash, lanes 3-7: Ni-NTA purified fractions

Supplementary figure 2.

LdOASS	MAAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVL <mark>K</mark> MECEN <mark>PMASVKDR</mark> 53
EhOASS	MEQISISSPRKRIYHNILETIGGTPLVELHGVTEHPRIKKGTRILV <mark>K</mark> LEYFN <mark>PMSSVKDR</mark> 60
TmOASS	SRIFLKLEKNN <mark>PGGSVKDR</mark> 37
Mtboass	AVADIVAKLEFFN <mark>PANSVKDR</mark> 46
Atoass	CVGRVAA <mark>KLEMMEPCSSVKDR</mark> 48
Stoass	REIYEDNSLTIGHTPLVRLNRIGNGRILAKVESRN <mark>PSFSVKCR</mark> 43
HIOASS	NGNVVV <mark>K</mark> IEGRN <mark>PSYS</mark> IGNTPLVRLKHFGHNGNVVV <mark>K</mark> IEGRN <mark>PSYSVKCR</mark> 44
	** ** : * . : *:* :* *** *
LdOASS	LGFAIYDKAE <mark>K</mark> EGKLI <mark>PGKSIVVESSSGNTG</mark> VSLAHLGAIRGYKVIITMPESMSLERRCL 113
EhOASS	VGFNIVYQAI <mark>K</mark> DGRLK <mark>PGM-EIIESTSGNTG</mark> IALCQAGAVFGYRVNIAMPSTMSVERQMI 119
TmOASS	PALFMILDAE <mark>K</mark> RGLLK <mark>NGIVEPTSGNMG</mark> IAIAMIGAKRGHRVILTMPETMSVERRKV 94
Mtboass	IGVAMLQAAE <mark>Q</mark> AGLIK <mark>PDT-IILEPTSGNTG</mark> IALAMVCAARGYRCVLTMPETMSLERRML 105
Atoass	IGFSMISDAE <mark>K</mark> KGLIK <mark>PGESVLIEPTSGNTG</mark> VGLAFTAAAKGYKLIITMPASMSTERRII 108
StOASS	IGANMIWDAE <mark>K</mark> RGVLK <mark>PGV-ELVEPTNGNTG</mark> IALAYVAAARGYKLTLTMPETMSIERRKL 102
HIOASS	IGANMVWQAE <mark>K</mark> DGTLT <mark>KGK-EIVDATSGNTG</mark> IALAYVAAARGYKITLTMPETMSLERKRL 103
	. : * : * : . :::.:** *:.:. * *:: ::** :**
LdOASS	LRIFGAEVILTPAALGMKGAVAMAKKIVAANPN-AVLADQFATKYNALIHEETTGPEIWE 172
EhOASS	MKAFGAELILTEGKKGMPGAIEEVNKMIKENPGKYFVANQFGNPDNTAAHHYTAN-EIWE 178
TmOASS	LKMLGAELVLTPGELGMKGAVEKALEISRETGAHMLNQFENPYNVYSHQFTTGPEILK 152
Mtboass	LRAYGAELILTPGADGMSGAIAKAEELAKTDQR-YFVPQQFENPANPAIHRVTTAEEVWR 164
Atoass	LLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGY-MLQQFENPANPKIHYETTGPEIWK 167
StOASS	LKALGANLVLTEGAKGMKGAIQKAEEIVASDPQKYLLLQQFSNPANPEIHEKTTGPEIWE 162
HIOASS	LCGLGVNLVLTEGAKGMKGAIAKAEEIVASDPSRYVMLKQFENPANPQIHRETTGPEIWK 163
	: *.:::** ** **: .:: :.** . * * *: *:.
LdOASS	QTNHNVDCFIAGV <mark>GTGG</mark> TLTGVARALKK-KMGS-HARIVAVEPTESPVLSGGKPG 224
EhOASS	DTDGEVDIVVSAV <mark>GTSG</mark> TVIGVAEKL <mark>K</mark> EKKK <mark>GIKIIAVEPEESAVLEGK<mark>A</mark>KG 230</mark>
TmOASS	QMDYQIDAFVAGV <mark>GTGG</mark> TISGVGRVL <mark>K</mark> GFFGN-GVKIVAVEPAKSPVLSGGQPG 205
Mtboass	DTDGKVDIVVAGV <mark>GTGG</mark> TITGVAQVI <mark>K</mark> ERKES-ARFVAVEPAASPVLSGGQKG 216
Atoass	GTGGKIDGFVSGI <mark>GTGG</mark> TITGAGKYL <mark>K</mark> EQNANVKLYGVEPVESAILSGG <mark>K</mark> PG 219
Stoass	DTDGQVDVFISGV <mark>GTGG</mark> TLTGVTRYI <mark>K</mark> GTKGKTDLITVAVEPTDSPVIAQALAGEEI <mark>K</mark> PG 222
HIOASS	DTDGKVDVVVAGV <mark>GTGG</mark> SITGISRAI <mark>K</mark> LDFGK-QITSVAVEPVESPVISQTLAGEEV <mark>K</mark> PG 222
	. : : * . : * * . : * * . : * * * * * *
LdOASS	PHKIQGIGPGFVPIVLDRSLIDEVLCVAGDDAIETALKLTRSDGVFCGFSGGANVYAALK 284
EhOASS	P <mark>H</mark> GIQGIGAGFIP <mark>D</mark> IYKKEFVDEIIPIKTQDAWKMARAVVKYDGIMCGMSSGAAILAGLK 290
TmOASS	KHAIQGIGAGFVPRILDRSVIDEVITVEDEEAYEMARYLAKKEGLLVGISSGANVAAALK 265
Mtboass	PHPIQGIGAGFVPPVLDQDLVDEIITVGNEDALNVARRLAREEGLLVGISSGAATVAALQ 276
Atoass	P <mark>HK</mark> IQGIGAGFIPSVLNVDL <mark>IDEVVQVSSDESIDMARQLALKEGLLVGISSGAAAAAAIK</mark> 279
Stoass	P <mark>HK</mark> IQGIGAGFIP G NLDLKL <mark>IDKVVGITNEEAISTARRLMEEEGILAGISSGAAVAAALK</mark> 282
HIOASS	PHKIQGIGAGFIPHNLDLSIIDRVETVDSDTALATARRLMAEEGILAGISSGAAVAAADR 282
	* *****.**:*:*.: : : : * : :*:: *:*.** *. :
LdOASS	IAERPEMEGKTIVTVIPSFGERYLSTTLYRSVRDEVSSLP 324
EhOASS	EAEKPENEGKTIVIIVPSCGERYLSTDLYKIKDEGTKIQILDSLLNE 337
TmOASS	VAQKLGPDAR-VVTVAPDHAERYLSIL 291
Mtboass	VARPENAGKLIVVVLPDFGERYLSTPLFADVAD 310
Atoass	LAQRPENAGKLFVAIFPSFGERYLSTVLFDATRKEAEAMTFEA 322
StOASS	LQEDESFTNKNIVVILPSSGERYLSTALFADLFTEKELQQ 322
HIOASS	LAKLPEFADKLIVVILPSASERYLSTALFEGIEG 316
	· · · · · · · · · · · · · · · · · · ·

Amino acid alignment of OASS from *L. donovani* with those of *E. histolytica* (Eh), *T. maritima*(Tm), *A. thaliana*(At), *M. tuberculosis* (Mtb), *S. typhimurium* (St) and *H. influenza*(Hi). Sequences highlighted in green indicate the consensus amino acid residues of the pyridoxal phosphate-binding motif and active site lining aminoacids known to be important for binding the co-factor, PLP and substrates. The lysines important for sulfhydrylase activity are highlighted in orange. The red boxes indicate $\beta 8-\beta 9$ loop at the entrance of the active site. The positively charged residues involved in binding with SAT are highlighted in blue. The sequence highlighted in pink corresponds to the N-terminal variable loop from where maximum structural differences start.

Supplementary figure 3

Arabidopsis thaliana	-DYVI	471.1Ų
Mycobacterium tuberculos	is -DFSI	449.0Å ²
Hemophilus influenzae	-NLNI	452.3Å ²
Escherichia coli	-DYII	488.0Ų
Entamoeba histolytica	-SPSI	381.9Ų
Leishmania donovani	-GSGI	328.0Ų
Brucella abortus	-GDGI	341.9Ų
Designed	∫DWSI	480.8Å ²
peptides	DYSI	453.1Ų

C-terminal ends of SATs from various organisms and their corresponding surface area The last two peptides were designed and showed strong binding with LdOASS

Supplementary table 1

S.NO:	PEPTIDES	GLIDE_SCORE	GOLD_SCORE	CVDW
1	DWSI	-12.61	86.33	-68.1
2	DYSI	-12.23	80.8	-64.2
3	DFSI	-11.62	94.76	-63.7
4	DTTI	-10.96	73.41	-66.5
5	DPTI	-10.9	75.15	-62

Ranking of peptides mimicking C-terminal sequence of SAT on the basis of different binding energies and interactions with LdOASS structure

Supplementary table 2

Peptide	% inhibition
1) DPTI	45.7±3
2) DTTI	37.3±2
3) DFSI	48.8±2
4) DYSI	52.9±2
5) DWSI	54.6±1
6) LERDGSGI(derived from LdSAT)	48.8±4

Inhibition of EhOASS with peptides mimicking the SAT C-terminal sequences.

Supplementary table 3

atom NZ OG OG C N N N N N N 20		2407 2409 2409 2399 2410	CG2 O OG OXT	atom ILE ILE ILE SER	444	distance 3.93 4.37	Pro LLP SER		in a 51	tom NZ	~		-	atom		distance
O OG C N N N NH2		2409 2409 2399 2410 2410	0 0 OG OXT	ILE ILE SER	4 4	4.37	0.0000066	A	51	M77	~	0100				
OG OG C N N N NH2		2409 2399 2410 2410	O OG OXT	ILE SER	4		OPD		~ -	IN Zi	$\langle \rangle$	2406	OXT	ILE	5	3.69
OG C N N N NH2		2399 2410 2410	OG OXT	SER	-	0.00	710	A	78	0	\diamond	2405	0	ILE	5	4.66
C N N N NH2	\diamond	2410 2410	OXT		1.00	2.69	SER	A	79	OG	$\langle \rangle$	2405	0	ILE	5	2.79
N N N NH2	\diamond	2410		TIP	3	3.08	SER	А	80	OG	\diamond	2394	N	GLY	4	3.04
N N NH2	\diamond		OXT	THE	4	3.55	GLY		81	C	\diamond	2406	OXT		5	3.56
N NH2		2410		ILE	4	3.17			2.5						5	
NH2	1			ILE	4	2.95	ASN		82	N	\diamond	2406	OXT			3.10
		2410		ILE	4	4.78	THR		83	Ν	\diamond	2406		ILE	5	2.86
0	200 - 203	2399	OG	SER	3	3.04	GLY	A	84	Ν	\diamond	2406	OXT	ILE	5	4.88
		2379		ASP	1	4.98	MET	A	106	CE	$\langle \rangle$	2385	CA	GLY	2	4.40
CA		2379		ASP	1	3.38	MET	А	130	CG	\diamond	2390	CB	SER	3	3.16
N		2379		ASP	1	2.94	GLN	A	152	NE2	\diamond	2405	0	ILE	5	2.99
N		2379		ASP	1	4.69	PHE	A	153	CZ	\diamond	2403	CG2	ILE	5	3.92
CG2		2393		TRP	2	4.37 2.97	GLY	A	186	CA	\diamond	2402	CD1	ILE	5	3.99
NE2 CZ		2409 2391	0	ILE TRP	4	3.78	THR			CG2	0	2403		ILE	5	4.06
CA	70 10700	2391		ILE	4	3.83	GLY			0	0	2381	OD2		1	4.03
CG2	22 200	2400	CG2		4	4.10	PRO		2013	CA	\sim	2381	OD2		1	3.14
CB		2374	N 0.02	ASP	1	4.74	1.551,500,000				1.26					0.0400.045
NE2		2384	CB	TRP	2	4.45	HIS		226	N	\diamond	2381	OD2		1	2.93
C		2401	0	SER	3	3.82	LYS			0	\diamond	2383	0	ASP	1	4.52
					- 23	100 M (100 100 100 100 100 100 100 100 100 10	ILE	A	228	0	\diamond	2376	N	ASP	1	4.43
			and the second		4		GLN	A	229	CG	$\langle \rangle$	2397	0	GLY	4	3.70
0		2384	CB	TRP	2	3.47	GLY	A	230	Ν	$\langle \rangle$	2397	0	GLY	4	3.14
0	$\langle \rangle$		NE1	TRP	2	3.19	ILE	A	231	0	$\langle \rangle$	2402	CD1	ILE	5	3.90
N	<>	2386	CD1	TRP	2	4.89	GLY	A	232	С	$\langle \rangle$	2402	CD1	ILE	5	4.34
	E2 <>	2393	CZ2	TRP	2	4.36	PRO	A	233	CA	\diamond	2402			5	3.84
	C 0 0 N	N ↔ C ↔ O ↔	N <> 2401 C <> 2406 O <> 2384 O <> 2387 N <> 2386	N <> 2401 0 C <> 2406 CD1 O <> 2384 CB O <> 2387 NE1 N <> 2386 CD1	N <> 2401 O SER C <> 2406 CD1 ILE O <> 2384 CB TRP O <> 2387 NE1 TRP N <> 2386 CD1 TRP	N <> 2401 O SER 3 C <> 2406 CD1 ILE 4 O <> 2384 CB TRP 2 O <> 2387 NE1 TRP 2 N <> 2386 CD1 TRP 2	N <> 2401 O SER 3 2.75 C <> 2406 CD1 ILE 4 4.03 O <> 2384 CB TRP 2 3.47 O <> 2387 NE1 TRP 2 3.19 N <> 2386 CD1 TRP 2 4.89	N <> 2401 O SER 3 2.75 ILE C <> 2406 CD1 ILE 4 4.03 GLN O <> 2384 CB TRP 2 3.47 GLY O <> 2387 NE1 TRP 2 3.19 ILE N <> 2386 CD1 TRP 2 4.89 GLY	N <> 2401 O SER 3 2.75 ILE A C <> 2406 CD1 ILE 4 4.03 GLN A O <> 2384 CB TRP 2 3.47 GLY A O <> 2387 NE1 TRP 2 3.19 ILE A N <> 2386 CD1 TRP 2 4.89 GLY A	N <> 2401 O SER 3 2.75 ILE A 228 C <> 2406 CD1 ILE 4 4.03 GLN A 229 O <> 2384 CB TRP 2 3.47 GLY A 230 O <> 2387 NE1 TRP 2 3.19 ILE A 231 N <> 2386 CD1 TRP 2 4.89 GLY A 232	N <> 2401 O SER 3 2.75 ILE A 228 O C <> 2406 CD1 ILE 4 4.03 GLN A 229 CG O <> 2384 CB TRP 2 3.47 GLY A 230 N O <> 2387 NE1 TRP 2 3.19 ILE A 231 O N <> 2386 CD1 TRP 2 4.89 GLY A 232 C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

List of contacts generated through GetNeares for interaction between the peptides DWSI and DGSGI.