Supplementary Material I for: Bailey et al. manuscript 'An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases.'

Abstract

Abbreviations Boc butoxycarbonyl, CBz benzyloxycarbonyl, DCCI dicyclohexylcarbodiimide, DMF N,Ndimethylformamide, DMSO dimethyl sulfoxide, HOBt hydroxybenzotriazole, TEA triethylamine, TFA trifluoroacetic acid, -R- reduced peptide bond.

Inhibitor synthesis

The inhibitors were made using manual solid-phase Boc synthetic techniques and had sequences based on those commonly occurring at chymosin and Mucor Pusillus pepsin cleavage sites in the insulin β-chain.
$\mathrm{H}_{2} \mathrm{~N}$-His-Pro-His-Leu-Ser-Phe-R-Met-Ala-Tyr-COOH \ldots (DB1)
$\mathrm{H}_{2} \mathrm{~N}$-His-Pro-His-Leu-Ser-Phe-R-Met-Ala-Ile-COOH \ldots (DB2)
$\mathrm{H}_{2} \mathrm{~N}$-His-Pro-His-Leu-Ser-Ile-R-Met-Ala-Ile-COOH \ldots (DB3)
$\mathrm{H}_{2} \mathrm{~N}$-His-Pro-His-Leu-Ser-Phe-R-Met-Ala-His-COOH \ldots (DB4/5)
$\mathrm{H}_{2} \mathrm{~N}$-His-Ser-Leu-Phe-His-Phe-R-Phe-Thr-Pro-COOH \ldots (DB6)

Synthetic Strategy

The first three amino acids at the C-terminal end of each inhibitor were linked to the resin sequentially and a small amount of the resin was removed for analysis. During this time the compound required to form the reduced bond with the free amino group was synthesised. This compound was always a Boc-protected aldehyde of the next amino acid in the sequence which was coupled to the free amino end of the resin-linked tripeptide by reductive amination. The resin would then be reloaded and the synthesis continued until the remaining five other amino acids were attached. After this each peptide was cleaved from the resin using anhydrous hydrogen fluoride, analysed as before and then purified by HPLC chromatography.

The imidazole ring of histidine was protected with Boc, serine and threonine hydroxyls with benzyl ethers and the tyrosine hydroxyl with the Cbz group.

Synthesis of the Aldehyde

Two Boc-protected aldehydes were synthesised, Boc-Leu-CHO and Boc-Phe-CHO. A summary of the steps which are detailed below is shown in Figure 1.

Preparation of Boc-Phe-COOMe

An ethereal solution of diazomethane was prepared by adding 20 g of N -methyl-N-nitrosourea to 60 ml of a $40 \% \mathrm{KOH}$ solution under 240 ml of ether. The diazomethane was distilled using dry ice/ethanol as a cooling medium. The resulting solution was poured onto an ethereal solution of Boc-Phe-COOH. The un-recrystallised residue Boc-Phe-COOMe was used in the next stage of the synthesis.

Preparation of Boc-Phe- $\mathrm{CH}_{2}-\mathrm{OH}$

The un-recrystallised methyl ester was dissolved in 350 ml of dioxane and cooled to $10^{\circ} \mathrm{C}$ whereupon 20 g of sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ was added and the temperature maintained at $10^{\circ} \mathrm{C}$ for 1 hour whilst at the same time adding a solution of 25 ml acetic acid in 100 ml dioxane. This mixture was then refluxed for $1 \frac{1}{2}$ hours, after which 100 ml of methanol was added. The solvent was removed by rotary evaporation and the residue dissolved in 250 ml of saturated sodium bicarbonate. This solution was extracted three times with 150 ml portions of ethyl acetate and dried over sodium sulphate. The residue remaining after rotary evaporation was redissolved in ether and crystallised from a mixture of butyl methyl ether and hexane to give the alcohol Boc-Phe- $\mathrm{CH}_{2}-\mathrm{OH}$.

Preparation of Boc-Phe-CHO

A four-necked flask was set up with a stirrer, spirit thermometer and two dropping funnels. 1 ml of oxalyl chloride $\left((\mathrm{COCl})_{2}\right)$ was dissolved in 25 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled using a dry ice/ethanol mix to $-50^{\circ} /-60^{\circ}$. From one funnel, 1.7 ml of dimethylsulphoxide $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right)$ in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and after two minutes a solution of 2.51 g of $\mathrm{Boc}-\mathrm{Phe}-\mathrm{CH}_{2}-\mathrm{OH}$ in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added over five minutes from the second dropping funnel. After a further 15 minutes, 7 ml of TEA was added and the resulting solution stirred for five minutes. The reaction mixture was then allowed to reach room temperature and the water layer extracted with 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were then combined and quickly extracted with saturated NaCl and dried over MgSO_{4}. After rotary evaporation a yellow oil was obtained which was immediately stored in the cold to prevent further degradation. This raw aldehyde undoubtedly contained some impurities.

Figure 1: Preparation of Boc-Phe-Aldehyde

Peptide Synthesis Protocol

The synthesis of each peptide inhibitor consisted of the following stages.

1. Attachment of first amino acid residue to the resin
2. Attachment of the 3 amino acid residues up to the reduced bond
3. Formation of reduced bond
4. Attachment of remaining amino acid residues
5. Cleavage of peptide inhibitor
6. Purification and characterisation of inhibitor

The sequential attachment of the residues consisted of three stages, deprotection, neutralisation and coupling, as shown in Figure 2.

The attachment of the initial amino acid to the resin was performed using DMF and KI at $60^{\circ} \mathrm{C}$. The resin was then loaded into the reaction vessel and the protecting Boc group removed by washing the resin twice with a 50% solution of trifluoroacetic acid (TFA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirring for 30 minutes. The excess acid was removed with washes of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and a solution of 30% dioxane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Neutralisation of the product was achieved using TEA as a 10% solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to form the tert-ammonium salt, which was washed away prior to attachment of the next amino acid. A DCCI/HOBt mix was used as the coupling agent.

Figure 2: Peptide Synthesis Protocol

First residue attachment

Formation of the reduced bond

The reduced peptide bond analogue was formed by reductive amination of the Boc-Phe-Aldehyde by the resin linked peptide. The reaction proceeds via an imine intermediate as shown in Figure 3. The reducing agent used, sodium cyanoborohydride, reduces the imine group more rapidly than the carbonyl.

The raw aldehyde was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as was the peptide resin, and to this mixture a 3eqv. excess of sodium cyanoborohydride $\left(\mathrm{NaBH}_{3} \mathrm{CN}\right)$ in acetic acid buffered-DMF was added, followed by shaking overnight. The resulting reaction mix was then treated according to the following protocol :

The reaction was repeated with more aldehyde, after which the final six residues were added in the conventional way. Anhydrous hydrogen fluoride was used to cleave the peptide from the resin in anisole for one hour on ice and excess HF was then flushed away with nitrogen. Each peptide was then recovered from the resin and any anisole degradation products by trituration with ether. Peptides were purified by reverse phase HPLC on a Sepharon C18 column and were characterised by liquid secondary ion mass spectrometry (LSIMS) using a ZAB-EQ instrument from V6 Analytical Ltd, Manchester (see following mass-spectra). Formation of the reduced bond is expected to lead to some racemisation at the P 1 residue. However when the DB5 and DB6 complexes were solved, the L configuration was confirmed.

Figure 3: Reductive Amination

Supplementary Material II for: Bailey et al. manuscript 'An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases.'

Table 5: The contacts made by the sulphate groups in type IV native endothiapepsin. Note that the residues are numbered according to the scheme of Blundell et al., (1990) in which insertions relative to porcine pepsin are indicated by suffixes by $\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc.

Residue	Sulphate Atom	VDW contacts	Hydrogen Bonds
Intramolecular Contacts			
$\mathrm{SO}_{4} 1$ (19vdw 4hb)			
Ser 108	O1	1	0
W205	O1	1	0
Ser 108	O2	2	0
W204	O2	1	1
W205	O2	1	1
Ser 108	O3	3	0
Ser 109	O3	2	0
Ser 108	O4	3	0
Ser 109	O4	4	2
W74	O4	1	0
$\mathrm{SO}_{4} 2$ (15vdw 7hb)			
Ser 240	O1	4	1
Ser 241	O1	1	1
Ser 240	O2	1	1
Ser 242	O2	4	2
Lys 238A	O4	2	1
Ser 240	O4	3	1
$\mathrm{SO}_{4} 3$ (19vdw 5hb)			
Tyr 175	O1	3	1
Gly 177	O1	1	0
Ser 178	O1	2	0
W238	O1	1	0
Ser 178	O2	3	0
Ile 179	O2	5	1
Tyr 175	O3	1	1
W211	O3	1	1
W238	O3	1	1
Ser 178	O4	1	0
Intermolecular Contacts			
$\mathrm{SO}_{4} \mathbf{1} \cdots(-x, y+1 / 2,1-z)$			
Ser 236	O2	1	1
Ser 236	O3	1	1
$\mathrm{SO}_{4} \mathbf{1} \cdots(x, y, 1+z)$			
Thr 318	O1	1	0
Thr 318	O3	2	0
Thr 319	O1	1	1
Thr 319	O4	2	1
$\mathrm{SO}_{4} \mathbf{2} \cdots(x, y-1 / 2,1-z)$			
Ser 132	O1	1	1
Ser 132	O3	2	1
Pro 133	O3	1	0
$\mathrm{SO}_{4} \mathbf{3} \cdots(1-x, y-1 / 2,-z)$			
Lys 64	O1	1	1

Table 6: The lattice contacts in type IV endothiapepsin crystals. Note that the residues are numbered according to the scheme of Blundell et al., (1990) in which insertions relative to porcine pepsin are indicated by suffixes by $\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc.

Contactants	H-Bonding	Residue $\mathrm{B}_{\text {iso }}$	Type IV $\mathrm{B}_{\text {iso }}$
Molecule at $(1+x, y, z)$			
$\begin{gathered} \text { Ser } 1 \cdots \text { Thr } 226 \\ \text { Gln } \mathbf{1 9} \cdots \text { Ala } 295 \\ \text { Ala } \mathbf{2 4} \cdots \text { Gly } 296 \end{gathered}$		$\begin{gathered} 10.8(2.6) \end{gathered} \cdots 15.2(2.9)$	$\begin{array}{cccc} 12.6(3.8) & \cdots & 7.3 & (2.2) \\ 10.9 & (9.6) & \cdots & 12.5(3.7) \\ 10.6 & (3.6) & \cdots & 17.4 \end{array}(4.0)$
Molecule at $(x, y, 1+z)$			
	$\begin{gathered} \mathrm{O} \rightarrow \mathrm{O} \\ \mathbf{O}^{\epsilon 2} \rightarrow \mathbf{O}^{\gamma 1} \\ \mathrm{O}^{\delta 2} \rightarrow \mathrm{O} \\ \mathrm{O}^{\delta 1}{\text { or } \mathrm{O}^{\delta 2}} \rightarrow \mathrm{O}^{\gamma} \\ \mathbf{N} \rightarrow \mathbf{O} \\ \mathbf{O}^{\gamma} \rightarrow \mathbf{N} \\ \mathbf{O}^{\gamma} \rightarrow \mathbf{N} \\ \mathbf{O}^{\epsilon 1} \rightarrow \mathbf{\mathbf { N } ^ { \delta 2 }} \\ \mathbf{O}^{\gamma} \rightarrow \mathbf{O}^{\gamma} \\ \mathbf{N} \rightarrow \mathbf{O}^{\gamma} \end{gathered}$	$\begin{array}{llll} 11.6 & (6.3) & \cdots & 19.0 \\ 11.6 & (6.3) & \cdots & 13.9 \\ (5.3) \\ 20.6 & (5.4) & \cdots & 11.4 \\ 20.6 & (4.0) \\ 20.4) & \cdots & 14.9 & (5.5) \end{array}$	$\begin{aligned} & 22.0(7.0) \\ & 22.0(7.0) \\ & 22.0 \\ & 27.5(7.0) \\ & 27.9(6.2) \\ & 27.5(7.0) \end{aligned} \cdots 16.5(5.6) 17.8(6.6)$
Molecule at $(-x, y+1 / 2,-z)$			
	$\begin{gathered} \mathbf{N} \rightarrow \mathbf{O} \\ \mathbf{N} \rightarrow \mathbf{O} \\ \mathbf{N} \rightarrow \mathbf{O} \\ \mathbf{O}^{\gamma 1} \rightarrow \mathbf{N} \\ \mathbf{N} \rightarrow \mathbf{O} \& \mathbf{N}^{\epsilon 2} \text { or } \mathrm{O}^{\epsilon 1} \rightarrow \mathbf{N} \end{gathered}$		

Table 6: continued.

Contactants	H-Bonding	Residue $\mathrm{B}_{\text {iso }}$	Type I B ${ }_{\text {iso }}$
Molecule at $(1-x, y+1 / 2,-z)$			
Lys $64 \cdots$ Gly 177	$\mathbf{N}^{\zeta} \rightarrow \mathbf{O}$		
Molecule at $(-x, y+1 / 2,1-z)$			
	$\begin{gathered} \mathbf{O}^{\gamma} \rightarrow \mathbf{N}^{\zeta} \\ \mathbf{O}^{\gamma} \rightarrow \mathbf{O} \\ \mathbf{O}^{\gamma} \rightarrow \mathbf{O}^{\gamma} \\ \mathrm{O} \rightarrow \mathrm{O}^{\gamma} \\ \mathbf{N} \rightarrow \mathbf{O} \\ \mathbf{O}^{\gamma} \rightarrow \mathbf{O} \\ \mathbf{N}^{\zeta} \rightarrow \mathbf{O} \\ \mathbf{N}^{\zeta} \rightarrow \mathbf{O} \\ \mathbf{N}^{\zeta} \rightarrow \mathbf{O} \\ \mathbf{N}^{\prime} \rightarrow \mathbf{O}^{\gamma} \end{gathered}$		
Molecule at $(1-x, y+1 / 2,1-z)$			
	$\begin{gathered} \mathbf{O} \rightarrow \mathbf{N} \\ \mathrm{O}^{\gamma 1} \rightarrow \mathrm{O} \text { or } \mathrm{C}^{\beta} \rightarrow \mathrm{O} \end{gathered}$		

Table 7: The lattice contacts in type I endothiapepsin crystals.

Residues	H-Bonding	Residue $\mathrm{B}_{\text {iso }}$	Type I B ${ }_{\text {iso }}$
Molecule at ($x, y, 1+z$)			
Tyr $175 \cdots$ Gly 281 Ser 178 ... Gly 281 Ile 179 ... Thr 280 Ile 179 ... Gly 281 Ile 179 ... Ser 282 Tyr $181 \cdots$ Ser 279 Tyr 181 ... Thr 280	$\begin{gathered} \mathrm{O}^{\gamma} \rightarrow \mathrm{O} \\ \mathbf{N} \rightarrow \mathbf{O} \\ \mathrm{O} \rightarrow \mathrm{~N} \\ \mathbf{O H} \rightarrow \mathbf{O} \end{gathered}$		
Molecule at ($1+x, y, 1+z$)			
Leu 66 ... Ser 251 Ser 67 ... Cys 250 Ser 67 ... Ser 251 Ser 67 … Ser 282A Gly 68 ... Ser 282A Pro 133 ... Pro 249 Thr $134 \cdots$ Ser 251 Thr $134 \cdots$ Ala 252	$\mathbf{O} \rightarrow \mathbf{O}^{\gamma}$ $\begin{gathered} \mathrm{O}^{\gamma 1} \rightarrow \mathrm{O}^{\gamma} \\ \mathbf{O}^{\gamma 1} \rightarrow \mathbf{N} \end{gathered}$		
Molecule at ($1-x, y+1 / 2,-z$)			
Thr 3 ... Ala 225 Pro 17 ... Ser 229 Gln $19 \ldots$ Ser 229 Gln 19 ... Ala 233 Ala 24 ... Gln 234 Thr $26 \ldots$ Ala 230 Thr 26 ... Ala 233 Asn 28 ... Lys 204 Asn 28 ... Thr 226 Thr $54 \cdots$ Lys 204 Pro 162 ... Ala 295	$\mathbf{O}^{\epsilon 1} \rightarrow \mathbf{O}^{\gamma}$ $\mathbf{O} \rightarrow \mathbf{N}^{\epsilon 1}$ $\mathrm{O}^{\delta 1} \rightarrow \mathrm{~N}^{\epsilon}$		

