Supplementary Material

Crystal structure of indole-3-glycerol phosphate synthase from Thermus thermophilus HB8: implications for thermal stability.

Bagautdin Bagautdinov ${ }^{\text {a,b* }}$, Katsuhide Yutani ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
${ }^{b}$ RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
*Correspondence e-mail: bagautdi@spring8.or.jp

1. Materials and methods

1.1. Protein expression and purification

The $\operatorname{trp} \mathrm{C}$ gene, encoding IGPS was amplified by the polymerase chain reaction (PCR) using T. thermophilus HB8 genomic DNA as the template. The PCR product was ligated with pT7blue (Novagen). The plasmid was digested with $N d e$ I and $B g l I I$ and the fragment was inserted into the expression vector pET-11a (Novagen) linearized with NdeI and BamHI. E. coli BL21(DE3) cells were transformed with the recombinant plasmid and grown at 310 K in Luria-Bertani medium containing $50 \mu \mathrm{~g} \mathrm{ml}-1$ ampicillin for 20 h . The cells were harvested by centrifugation at 4500 g for 5 min at 277 K and were subsequently
suspended in 20 mM Tris- HCl pH 8.0 containing 0.5 M NaCl and $5 \mathrm{~m} M$ 2mercaptoethanol. Cells were disrupted by sonication and heated at 343 K for 12 min . The cell debris and denatured proteins were removed by centrifugation (14 000 rev min-1, $30 \mathrm{~min})$. The supernatant solution was used as the crude extract for purification. The crude extract was desalted with a HiPrep 26/10 desalting column (Amersham Biosciences) and applied onto a Super Q Toyopearl 650M (Tosoh) column equilibrated with $20 \mathrm{~m} M$ Tris$\mathrm{HCl} \mathrm{pH} 8.0($ buffer $A)$. After elution with a linear gradient of $0-0.3 \mathrm{M} \mathrm{NaCl}$, the fraction containing $T t$ IGPS was desalted with a HiPrep 26/10 desalting column with buffer A. The sample was subjected to a Resource Q column (Amersham Biosciences) equilibrated with buffer A. After elution with a linear gradient of $0-0.4 \mathrm{M} \mathrm{NaCl}$, the fraction containing TtIGPS was desalted with a HiPrep 26/10 desalting column with $10 \mathrm{~m} M$ sodium phosphate pH 7.0. The sample was then applied onto a Bio-Scale CHT-20-I column (Bio-Rad) equilibrated with $10 \mathrm{~m} M$ sodium phosphate pH 7.0 . After elution with a linear gradient of 10-100 $\mathrm{m} M$ sodium phosphate, the fraction containing TtIGPS was subjected once more to a Resource Q column. The sample was concentrated by ultrafiltration (Vivaspin) and loaded onto a HiLoad 16/60 Superdex 75 prep-grade column (Amersham Biosciences) equilibrated with buffer A containing 0.2 M NaCl . The homogeneity and identity of the purified sample were assessed by SDS-PAGE (Laemmli, 1970) and N-terminal sequence analysis.

1.2. Dynamic light-scattering study

The oligomerization state of the purified TtIGPS was examined by a dynamic lightscattering experiment using a DynaPro MS/X (Protein Solutions) instrument at a protein concentration of $20.0 \mathrm{mg} \mathrm{ml}^{-1}$ in $20 \mathrm{~m} M$ Tris- HCl pH 7.6 with $0.2 M \mathrm{NaCl}$. The measurements recorded at 291 K and analyzed using the DYNAMICS software v.3.30
(Protein Solutions) showed a monomodal profile centered at 2.5 nm radius and corresponding to a molecular weight of 27.7 kDa , which is consistent with a monomeric state in these solution conditions.

1.3. Crystallization

Crystallization trials were carried out using the oil-microbatch method (Chayen et al., 1990) in Nunc HLA plates at 291 K using a TERA crystallization robot (Sugahara \& Miyano, 2002). Equal volumes of protein solution ($0.5 \mu \mathrm{l}$) and precipitant solution ($0.5 \mu \mathrm{l}$) were mixed. The crystallization drop was overlaid with a $1: 1$ mixture of silicone and paraffin oils ($13 \mu \mathrm{l}$), allowing slow evaporation of water in the drop. One condition provided the most well defined crystals; the precipitant solution consisted of 1.93 M ammonium sulfate, 0.1 M acetate- $\mathrm{NaOH}, \mathrm{pH} 4.8$. The best diffracting crystals grew to maximum dimensions of $0.2 \times 0.2 \times 0.15 \mathrm{~mm}$ after 5 days incubation of the crystallization solution at 295 K .

1.4. Data collection

The best crystal, with dimensions of $0.2 \times 0.2 \times 0.15 \mathrm{~mm}$ was used for data collection. Prior to data collection, the crystals were soaked in cryoprotectant (reservoir solution and 15% glycerol) for a few seconds and then were flash-cooled in a 100 K dry nitrogen stream. Xray diffraction data collection was performed at 100 K using a RIGAKU FR-D generator (Cu radiation $\lambda=1.5418 \AA$) and an R-AXIS IV image-plate detector. The crystal-to-detector distance was set to 170 mm and images of 0.5° oscillation were collected for 15 min . The data set was processed using the program HKL2000 (Otwinowski \& Minor, 1997). Crystal belongs to the orthorhombic space group, $P 2_{1} 2_{2} 2_{1}$, with unit-cell parameters $a=63.652$,
$\mathrm{b}=78.193, \mathrm{c}=93.523 \AA$ and consists of two protomers in the asymmetric unit. The calculated Matthews coefficient (Matthews, 1968) is $2.08 \AA^{3} \mathrm{Da}^{-1}$, which corresponds to a solvent-volume fraction of approximately 41%.

2. Supplementary tables

Table S1. Stabilization centers (SC) pairs in the four IGPS with secondary structure positions. The stabilization residues (SR) are marked in bold and underlined.

SsIGPS	TmIGPS	TtIGPS	EcIGPS
outer	Outer	outer	outer
Nter R3-I136 $\alpha 4$	$\alpha 0 \quad$ I15-V115 $\quad \alpha 3$	Nter R2-L142 $\alpha 4$	$\alpha 0 \quad$ R19-L125 $\quad \alpha 3$
Nter R3-L137 α^{4}	$\alpha 0-\alpha 00 \mathrm{~V} 25-\mathrm{S} 121 \times 3$	$\alpha 0$ R19-V116 $\beta 3-\alpha 3$	$\alpha 0-\alpha 00$ Q23-L125 $\alpha 3$
Nter L5-K135 $\alpha 4$	$\alpha 0-\alpha 00$ R28-G151 $\alpha 4$	$\alpha 0-\alpha 00$ Y26-E123 $\alpha 3$	$\alpha 0-\alpha 00$ L25-Y124 α^{3}
Nter L5-I136 ${ }^{\text {a }}$	$\beta 1-\alpha 1$ S52-F87 $\beta 2-\alpha 2$	$\alpha 0-\alpha 00$ L28-E123 $\alpha 3$	$\alpha 0-\alpha 00$ F28-Y124 $\alpha 3$
$\alpha 0$ L17-V114 $\beta 3-\alpha 3$	$\alpha 4 \quad$ I140-V170 $\quad \alpha 5$	$\alpha 0-\alpha 00$ L28-A126 $\alpha 3$	$\beta 1-\alpha 1$ A57-F93 $\beta 2-\alpha 2$
$\alpha 0$ L17-K115 ${ }^{\text {a }}$	$\alpha 7$ L218-W250 $\alpha 8$	$\alpha 0-\alpha 00$ P29-A126 $\alpha 3$	$\beta 1-\alpha 1$ S58-F93 $\beta 2-\alpha 2$
$\alpha 0$ R18-K115 ${ }^{\text {a }}$		$\alpha 0-\alpha 00$ P29-F127 $\alpha 3$	$\alpha 3$ I123-V152 $\alpha 4$
$\alpha 0$ R28-G126 ${ }^{\text {a }}$	outer-core	$\alpha 0-\alpha 00$ P31-A126 $\alpha 3$	$\alpha 3$ Y124-L156 $\alpha 4-\beta 5$
$\beta 1-\alpha 1$ K55-F89 $\beta 2-\alpha 2$	$\alpha 00-\beta 1$ K39-N226 $\beta 8$	$\alpha 0-\alpha 00$ P32-A126 $\alpha 3$	
$\beta 1-\alpha 1$ S56-F89 $\beta^{2-\alpha 2}$		$\beta 1-\alpha 1$ Q55-F91 $\beta 2-\alpha 2$	outer-core
$\beta 1-\alpha 1$ V62M237 $\alpha 8$,	core	$\beta 1-\alpha 1$ I62-M240 $\alpha 8$,	$\beta 1$ K55-R65 $\beta 1-\alpha 1$
$\beta 1-\alpha 1$ V62-R238 $\alpha 8$,	$\beta 1$ V42-N226 $\beta 8$	$\beta 1-\alpha 1$ R63-R241 $\alpha 8$ '	$\beta 6$ N185-R197 $\alpha 6$
人1 F72-P240 $\quad \alpha 8$	$\beta 1$ V42-A227 $\beta 8$	$\alpha 6$ P196-L229 $\alpha 7-\beta 8$	
$\alpha 1$ M73-I243 $\alpha 8$	$\beta 1 \quad$ K43-A227 $\beta 8$	$\alpha 6$ G199-L229 $\alpha 7-\beta 8$	core

$\alpha 3$ I119-Y148 $\alpha 4$ $\alpha 3$ D120-Y152 $\alpha 4-\beta 5$			$\beta 1$	K43-V228	$\beta 8$	$\alpha 6$ G199-F230 $\alpha 7-\beta 8$			$\beta 1$	A49-G232	$\beta 8$
			$\beta 1$	I45-A77	$\beta 2$				$\beta 1$	151-L234	$\beta 8$
$\alpha 5$	E163-M200		$\beta 1$	I45-178	$\beta 2$		core		$\beta 1$	151-A83	$\beta 2$
			$\beta 1$	A46-178	$\beta 2$		L46-A232	$\beta 8$	$\beta 1$	151-184	$\beta 2$
	outer-core		$\beta 2$	D76-R103	$\beta 3$		S47-A232	$\beta 8$	$\beta 1$	$\underline{L 52-184}$	$\beta 2$
$\alpha 00$	R36-V78	$\beta 2$	$\beta 2$	A77-R103	$\beta 3$		S47-V233	$\beta 8$	$\beta 1$	L52-S85	$\beta 2$
$\beta 7$	V208-V227 $\alpha 7-\beta 8$		$\beta 2$	A77-P104			V48-V233	$\beta 8$	$\beta 1$	E53-S85	$\beta 2$
			$\beta 2$	S79-L106	$\beta 3$		I49-L234	$\beta 8$	$\beta 1$	E53-V86	$\beta 2$
	core		$\beta 2$	180-4107			I49-A81	$\beta 2$	$\beta 1$	C54-V86	$\beta 2$
$\beta 1 \quad \underline{\mathbf{I 4 8}}$-F230 $\quad \beta 8$			$\beta 3$	L106-A127		$\beta 1$	I49-V82	$\beta 2$	$\beta 2$	S82-Q109	$\beta 3$
$\beta 1$	I49-L231	$\beta 8$	$\beta 3$	A107-I128			A50-V82	$\beta 2$	$\beta 2$	A83-Q109	$\beta 3$
$\beta 1$	I49-I232	$\beta 8$	$\beta 4$	A127-D153		$\beta 1$	A50-S83	$\beta 2$	$\beta 2$	A83-P110	$\beta 3$
$\beta 1$	I49-V78	$\beta 2$	$\beta 4$	L129-L155			E51-S83	$\beta 2$	$\beta 2$	S85-L112	$\beta 3$
$\beta 1$	I49-G79	$\beta 2$	$\beta 5$	L155-I176	$\beta 6$		A81-L107	$\beta 3$	$\beta 2$	V86-C113	$\beta 3$
$\beta 1$	I49-L80	$\beta 2$	$\beta 5$	V156-I176		$\beta 2$	$\underline{\text { A81-P108 }}$	$\beta 3$	$\beta 3$	L112-A133	$\beta 4$
$\beta 1$	A50-L80	$\beta 2$	$\beta 5$	V156-G177			S83-L110	$\beta 3$	$\beta 3$	L112-C134	
$\beta 2$	V78-I105	$\beta 3$	$\beta 5$	G157-G177			V84-R111	$\beta 3$	$\beta 3$	C113-C134	
$\beta 2$	G79-I105	$\beta 3$	$\beta 6$	I175-T204			T86-K112	$\beta 3$	$\beta 3$	C113-L135	
$\beta 2$	G79-P106	$\beta 3$	$\beta 6$	I175-V205			L110-A131		$\beta 4$	A133-G159	$\beta 5$
$\beta 2$	S81-L108	$\beta 3$	$\beta 6$	[176-T204			L110-A132		$\beta 4$	C134-G159	$\beta 5$
$\beta 2$	182-M109		$\beta 6$	1176-V205			R111-A132	$\beta 4$	$\beta 4$	C134-V160	$\beta 5$
$\beta 3$	L108-V130		$\beta 6$	[176-V206			R111-L133	$\beta 4$	$\beta 4$	L135-L161	$\beta 5$
$\beta 3$	L108-L131	$\beta 4$	$\beta 6$	G177-V207			A131-E156	$\beta 5$	$\beta 4$	L136-T162	
$\beta 3$	M109-L131	$\beta 4$	$\beta 7$	V207-A227			A131-A157	$\beta 5$	$\beta 5$	L161-V181	
$\beta 3$	M109-L132	$\beta 4$	$\beta 7$	V207-V228			A132-E156	$\beta 5$	$\beta 5$	T162-V181	

Table S2. Amino acid compositions of the SC cluster, SC and SR in the four IGPS proteins.

| | | SsIGPS | | | TmIGPS | | | TtIGPS | | | EcIGPS | | |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Amino acid | | Clust. | SC | SR | Clust. SC | SR | Clust. SC | SR | Clust. SC | SR | | | |
| Charged | Lys | 12 | 4 | - | 14 | 2 | | 3 | 1 | - | 5 | 1 | - |
| | Arg | 13 | 5 | - | 8 | 1 | | 11 | 5 | - | 5 | 3 | - |
| | Asp | 9 | 1 | - | 7 | 2 | 1 | 6 | 1 | - | 6 | - | - |
| | Glu | 17 | 2 | 1 | 11 | 1 | 1 | 11 | 4 | 1 | 6 | 3 | 1 |
| | | 51 | 12 | 1 | 40 | 6 | 2 | 31 | 11 | 1 | 22 | 7 | 1 |
| Polar | Asn | 8 | - | - | 2 | 1 | 1 | - | - | - | 2 | 3 | - |
| | Gln | 3 | - | - | 3 | - | - | 1 | 1 | - | 7 | 2 | - |
| | Ser | 15 | 2 | 1 | 8 | 3 | 1 | 9 | 2 | 1 | 5 | 4 | 2 |
| | Thr | 2 | 1 | - | 2 | 1 | - | 3 | 1 | - | 1 | 2 | 1 |
| | | 28 | 3 | 1 | 15 | 5 | 2 | 13 | 4 | 1 | 15 | 11 | 3 |
| Aliphatic | Val | 6 | 8 | 3 | 8 | 9 | 3 | 7 | 9 | 7 | 5 | 6 | 2 |
| | Ile | 12 | 10 | 4 | 7 | 8 | 4 | 2 | 2 | - | 3 | 5 | 1 |
| | Leu | 18 | 9 | 4 | 8 | 4 | 2 | 16 | 12 | 4 | 6 | 9 | 4 |
| | Met | 4 | 4 | 1 | 2 | - | - | 3 | 1 | - | 1 | - | - |
| | | 40 | 31 | 12 | 25 | 21 | 9 | 28 | 24 | 11 | 15 | 20 | 7 |
| Aromatic | Phe | 7 | 4 | 2 | 4 | 1 | - | 5 | 3 | - | 4 | 3 | - |
| | Tyr | 9 | 2 | - | 3 | - | - | 2 | 1 | - | 1 | 1 | - |
| | Trp | 1 | - | - | 1 | 1 | - | - | - | - | 1 | - | - |
| | | 17 | 6 | 2 | 8 | 1 | 0 | 7 | 4 | 0 | 6 | 4 | 0 |
| Other | Ala | 6 | 3 | 2 | 7 | 6 | 5 | 13 | 8 | 5 | 7 | 5 | 2 |
| | Pro | 8 | 3 | - | 4 | 1 | 1 | 13 | 5 | 1 | 3 | 1 | 1 |
| | Cys | - | - | - | - | - | - | - | - | - | 1 | 3 | 2 |
| | Gly | 7 | 3 | 2 | 5 | 2 | 1 | 9 | 2 | - | 3 | 3 | 1 |
| | His | - | - | - | 2 | - | - | 1 | - | - | 1 | - | - |
| | | 21 | 9 | 4 | 18 | 9 | 7 | 36 | 15 | 6 | 15 | 12 | 6 |
| Total | | 157 | 61 | 20 | 106 | 43 | 20 | 115 | 58 | 19 | 77 | 54 | 17 |

3. Supplementary figures

Figure S1. (a) Superposition of the active site residues of SsIGPS (cyan) with structurally corresponding ones of TtIGPS (green). Structural alignments of SsIGPS (sky-blue) and TtIGPS (grey) presented. All important active site residues of SsIGPS are conserved in TtIGPS suggesting a similar role in the proteins. The N - and C-terminal ends of the TtIGPS polypeptide chain are labeled. (b) The molecular surface and electrostatic potential of the TtIGPS structure. This view corresponds to looking down the barrel axis. Surface electrostatic potentials less than -5 kT , neutral, and greater than 5 kT are displayed in red and blue, respectively. The electrostatic potential is mapped onto the TtIGPS molecular surface. The active site area is highlighted by the yellow circle and the active side residues are shown in the stick mode. Secondary-structure elements and a semi-transparent surface are shown. The electrostatic potential surface of $T t$ IGPS calculated using APBS (Adaptive Poisson-Boltzmann Solver) (Baker et al., 2001) is graphically represented using PyMOL (http://www.pymol.org/).

(b)

(c)

(d)

Figure S2. Distribution of the stabilization centers (SC) in the four IGPS: (c) TtIGPS, (b) EcIGPS, (c) TmIGPS, and (d) SsIGPS. For each protein, stereo-view of the SC pair interactions is shown in magenta and the C^{α} positions for SC residues are indicated by residue numbers. The corresponding $(\beta / \alpha)_{8}$-barrel fold is drawn in the cyan.

Figure S3. Spatial distribution of the SC residues in the four IGPS. The locations of the C^{α} positions for the SC residues are indicated by spheres. SCs of EcIGPS are shown in red, TtIGPS in yellow, TmIGPS in green and SsIGPS in blue. The $(\beta / \alpha)_{8}$-barrel fold is drawn in gray.

4. References

Baker, N. A., Sept, D., Joseph, S., Holst, M. J. \& McCammon, J. A. (2001). Proc. Natl. Acad. Sci. USA, 98, 10037-10041.

Chayen, N. E., Shaw Stewart, P. D., Maeder, D. L. \& Blow, D. M. (1990). J. Appl. Cryst. 23, 297-302.

Laemmli, U. K. (1970). Nature, 227, 680-685.
Matthews, B. W. (1968). J. Mol. Biol. 33, 491-497.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.

