Supplementary data:

Structures of *Burkholderia thailandensis* nucleoside kinase: implications for the catalytic mechanism and nucleoside selectivity

Yoshiaki Yasutake,^a‡ Hiroko Ota,^b‡ Emisa Hino,^b Shin-ichi Sakasegawa^b and Tomohiro Tamura^{a,c}*

^aBioproduction Research Institute, National Institute of Advanced Industrial Science and
 Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
 ^bAsahi Kasei Pharma Corporation, 632-1, Izunokuni, Shizuoka 410-2321, Japan.
 ^cLaboratory of Molecular Environmental Microbiology, Graduate School of Agriculture,
 Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan

‡ These authors contributed equally to this work.

Supplementary figure legends

Supplementary Figure 1

Sequence alignment between BthNK, MtADK, MjNK, and human ADK (hADK). The residue number for hADK is based on the numbering reported in the PDB file (PDB code, 1BX4). The conserved "NXXE" motif crucial for Mg²⁺ binding is boxed. The conserved residues for the binding of the ribose moiety of the nucleoside are highlighted in yellow. The diversified residues for the binding of the base moiety of nucleoside are highlighted in light pink. The Phe residue for the stacking interaction with the base moiety of the bound nucleoside is also highlighted in orange. Identical, strongly similar, and weakly similar residues are in red, green, and light blue, respectively.

Supplementary Movie 1

Conformational dynamics of BthNK between asymmetric open, semiclosed and closed form. In the semiclosed and closed forms, the bound ligands are also shown in stick representation.

Supplementary Movie 2

The same as Supplementary Movie 1 but from a different point of view. The images in this movie were created by an approximate 90° rotation of the images in Supplementary Movie 1.

```
1 -----MATLICGSIAYDNIMTFEGRFREHILPDQVHLINLSFLVPTMRREF
BthNK
        1 -----MTIAVTGSIATDHLMRFPGRFSEQLLPEHLHKVSLSFLVDDLVMHR
MtADK
MjNK
         1 -----NGGKMEKITCVGHTALDYIF-----NVEKFPE---PN-TSIQIPSARKYY
         5 ----RENILFGMGNPLLDISAVVDKDFLDKYSLKPNDQILAEDKHKELFDELVKKFKVEY 60
hADK
BthNK
        47 --GGCAGN----IAYALNLLGGDARMMGTLGA-VDAQPYLDRMDALGLSREYVRVLPDTY
        47 --GGVAGN----MAFAIGVLGGEVALVGAAG--ADFADYRDWLKARGVNCDHVLISETAH
MtADK
        42 --GGAAAN----TAVGIKKLGVNSELLSCVGYDFKNSGYERYLKNLDINISKLYYSEEE
MiNK
        61 HAGGSTQNSIKVAQWMIQQPHKAATLFGCIGIDKFGEILKRKAAEAHVDAHYYEQNEQPT 120
hADK
BthNK 100 SAQAMITTDLDNNQITA HPGAMMQS-HVNHAGEAKDIK-----LAIVGPDGFQG 148
       99 TARFTCTTDVDMAQIAS YPGAMSEAR-NIKLADVVSAIGKP-----ELVIIGANDPEA 151
96 TPKAWIFTDKDNNQITFILWGAAKHYK-ELNPPNFNTEIVH------IATGDPE--- 142
MjNK
hADK
       121 GTCAACITGDNRSLIANLAAANCYKKEKHLDLEKNWMLVEKARVCYIAG<mark>F</mark>FLTVSPE--S 178
BthNK 149 MVQHTEELAQAGVPFIFDPGQ-GLPLFDGATLRRSIELATYIAVNDYEAKLVCDKTGWSE 207
Mtadk 152 MFLHTEECRKLGLAFAADPSQ-QLARLSGEEIRRLVNGAAYLFTNDYEWDLLLSKTGWSE 210
       143 FNLKCAKKAYGNNLVSFDPGQ-DLPQYSKEMLLEIIEHTNFLFMNKHEFERASNLLNFEI 201
MiNK
      179 VLKVAHHASENNRIFTLNLSAPFISQFYKESLMKVMPYVDILFGNETEAATFAREQGFET 238
hADK
BthNK 208 DEI-----ASRVQALIITRGEHGATIRHRDG-TEQIPAVRAERVIDPTGC 251
MtADK 211 ADV------MAQIDLRVTTLGPKGVDLVEPDGT-TIHVGVVPETSQTDPTGV 255
MjNK 202 DDY-----LERVDALIVTKGSKGSVIYTKDK--KIEIPCIKAGKVIDPTGA 245
       239 KDIKEIAKKTQALPKMNSKRQRIVIFTQGRDDTIMATESEVTAFAVLDQDQKEIIDTNGA 298
hADK
BthNK 252 GDAFRGGLLYGIEHGFDWATAGRLASLMGALKIAHQGPQTYAPTRAEIDARFETAFGYRP 311
MtADK 256 GDAFRAGFLTGRSAGLGLERSAQLGSLVAVLVLESTGTQEWQWDYEAAASRLAGAYGEHA 315
MjNK
       246 GDSYRAGFLSAYVKGYDLEKCGLIGAATASFVVEAKGCQTNLPTWDKVVERLEKHRI--- 302
       299 GDAFVGGFLSQLVSDKPLTECIRAGHYAASIIIRRTG-----CTFPEKPDFH---- 345
BthNK 312 K---- 312
MtADK 316 AAEIVAVLA 324
MjNK
hADK
```

Supplementary Fig. 1