Supplementary material

Table S1: Cu Coordination Geometry in PPLO

Angle		Triangular pyramidal $^{\text {a }}$ (His 528 at the apex)		Tetrahedral		Square pyramidal ${ }^{a, b}$ (one equatorial ligand is missing; $\mathrm{O}_{\text {axial }}$ at the apex)	
	Measured	Ideal	Distortion	Ideal	Distortion	Ideal	Distortion
H528-Cu-H530	99.2°	90°	9.2°	109.5°	10.3°	90°	9.2°
H528-Cu-H694	100.0°	90°	10.0°	109.5°	$9.4{ }^{\circ}$	90°	10.0°
H530-Cu-H694	135.2°	120°	15.2°	109.5°	25.7°	180°	$44.8{ }^{\circ}$
H530-Cu-O ${ }_{\text {axial }}$	106.1°	120°	13.9°	109.5°	$3.4{ }^{\circ}$	90°	16.1°
H528-Cu-O ${ }_{\text {axial }}$	96.1°	90°	6.1°	109.5°	13.4°	90°	6.1°
H694-Cu-O ${ }_{\text {axial }}$	111.6°	120°	8.5°	109.5°	$2.1{ }^{\circ}$	90°	21.6°
Average							
Distortion			$10.5{ }^{\circ}$		10.7°		18.0°
Deviation of Cu							
from base ${ }^{a, b}$			0.3 Å				0.6 Å
Cu distance							
from centre ${ }^{\text {c,d }}$					$0.35 \AA$		

$\overline{{ }^{a}}$ The triangular pyramid has $\mathrm{N}^{\varepsilon 2}$ (His 528) at the apex and $\mathrm{N}^{\varepsilon 2}$ (His 530), $\mathrm{N}^{\delta 1}$ (His 964) and $\mathrm{O}_{\text {axial }}$ at the base.
${ }^{b}$ The square pyramid has $\mathrm{O}_{\text {axial }}$ at the apex, the N (His) atoms and a missing atom at the base.
${ }^{c}$ The centre of the tetrahedron is the unweighted mean position of $\mathrm{N}^{\varepsilon 2}$ (His 528), $\mathrm{N}^{\varepsilon 2}$ (His 530), $\mathrm{N}^{\delta 1}$ (His 964) and $\mathrm{O}_{\text {axial }}$.

