Supplementary material for "**Protein imperfections: separating intrinsic from extrinsic variation of torsion angles**" by Glenn L. Butterfoss, Jane S. Richardson and Jan Hermans.

Computed energy and torque for each of 47 methionine residues in the database for which the  $C^{\gamma}$ -S<sup> $\delta$ </sup> torsion angle,  $\chi_3$  lies within 30° of the canonical value for a skewed conformation (120° or -120°). These have been sorted into 6 sets according to the criteria given in the following table. See also legend of Figure 8 of the accompanying paper.

| Set | Distance<br>from<br>eclipsed | Sign of torque | Distance from energy minimum        | Number of instances |
|-----|------------------------------|----------------|-------------------------------------|---------------------|
| 1   | >10°                         | Correct        |                                     | 22                  |
| 2   | > 10°                        | Wrong          | ≤ 5°                                | 8                   |
| 3   | > 10°                        | Wrong          | > 5 °                               | 4                   |
| 4   | < 10°                        |                | ≤ 5°                                | 9                   |
| 5   | < 10°                        |                | $> 5^{\circ}$ but $\leq 10^{\circ}$ | 1                   |
| 6   | < 10°                        |                | > 10°                               | 3                   |

Set  $1 = \text{Native} > 10^{\circ}$  from eclipsed, correct torque, # 1-4 of 22







Set  $1 = \text{Native} > 10^{\circ}$  from eclipsed, correct torque, # 13-16 of 22



met chi3

kcal/mol

met chi3

Set  $1 = \text{Native} > 10^{\circ}$  from eclipsed, correct torque, # 17-20 of 22



-15 -130

-120

-110

-100

met chi3

-90

-80

-70

-60

-10 └─ 40

50

60

70

90

met chi3

100

110

120

130

140





Set  $2 = \text{Native} > 10^{\circ}$  from eclipsed, wrong torque and native  $\leq 5^{\circ}$  away from local energy minimum, # 1-4 of 8



Set  $2 = \text{Native} > 10^{\circ}$  from eclipsed, wrong torque and native  $\leq 5^{\circ}$  away from local energy minimum, # 5-8 of 8



Set  $3 = \text{Native} > 10^{\circ}$  from eclipsed, wrong torque and native  $> 5^{\circ}$  away from local energy minimum, # 1-4 of 4



Set  $4 = \text{Native within } 10^{\circ} \text{ of eclipsed and native} \le 5^{\circ} \text{ away from local energy minimum, } # 1-4 of 9$ 





Set 4 = Native within 10° of eclipsed and native <= 5° away from local energy minimum, # 9 of 9



Set 5 = Native within  $10^{\circ}$  of eclipsed and native >5  $^{\circ}$  but < =  $10^{\circ}$  away from local energy minimum , # 1 of 1



Set  $6 = \text{Native within } 10^{\circ} \text{ of eclipsed and native } > 10^{\circ} \text{ away from local energy minimum }, # 1-3 of 3$ 





