Excerpts of information given to HAMB, showing the types of information we are able to give HAMB about the known relationships among the attributes and our reasoning behind the information. In addition to known relationships among the attributes, we are also able to provide HAMB with other types of information, such as attributes and values that are uninteresting or uninformative, such as UNKNOWN-CHEMICAL-CLASS, which HAMB uses to avoid reporting potentially uninteresting or uninformative rules.

• Associations derived from chemical properties and classifications of the additives and species. For example, the additive sodium chloride breaks down into the species sodium and chloride, and the species imadazole belongs to the chemical class m.other, has a perceived role of buffer (ROLE-B), has a pK_a in the neutral range, and all species are used to calculate ionic strength.

(known-association ADD-SODIUM-CHLORIDE SPEC-SODIUM) (known-association ADD-SODIUM-CHLORIDE SPEC-CHLORIDE) (known-association SPEC-SODIUM SPEC-CHLORIDE) (known-association CHM-CLSS-M.OTHER SPEC-IMIDAZOLE) (known-association CHM-CLSS-M.OTHER ROLE-B) (known-association CHM-CLSS-M.OTHER NEUTRAL) (known-association CHM-CLSS-M.OTHER IONIC-STR)

• Net charge is directly related to the species and indirectly to properties related to the species, such as the chemical class

(known-association CH>=2 SPEC-CALCIUM_[II]) (known-association CH<= -2 SPEC-SULFATE)

• Because the additive sodium phosphate's perceived role is as a buffer (ROLE-B), there is a known chemical association among the additive sodium phosphate, the perceived role of buffer, and the species sodium and phosphate.

(known-association ADD-SODIUM-PHOSPHATE) (known-association ROLE-B SPEC-SODIUM) (known-association ROLE-B SPEC-PHOSPHATE)

All additives and species with titrateable groups are associated with buffering capacity, since

buffering capacity is derived from the properties of species

(known-association BUFFERING-CAPACITY ROLE-P.AM) (known-association BUFFERING-CAPACITY SPEC-Amine) (known-association BUFFERING-CAPACITY SPEC-Carbonate) ...

• Similary, because ionic-strength is derived from the properties of species, ionic strength is

chemically related to all additives that dissociate into charged species.

(known-association IONIC-STR SPEC-AZIDE) (known-association IONIC-STR SPEC-EDTA) • Pclass, sclass, tclass, and qclass form the macromolecule heirarchy described in this paper; therefore, these attributes are related to each other and to the macromolecule id and the molecular weight of the macromolecule.

(defined-by macmolwgt macmol-id) (defined-by macmolwgt macmol-pclass) (defined-by macmolwgt macmol-sclass) (defined-by macmolwgt macmol-tclass) (defined-by macmolwgt macmol-qclass) ...

• Abstractions of the crystallization method:

(abstraction crysmeth_scale crysmeth_desc) (abstraction crysmeth_type crysmeth_scale) (abstraction crysmeth_type crysmeth_desc) ...

• Abstractions of the form of the crystal:

(abstraction spgrpid1 spgrps_desc) (abstraction spgrps_desc crhabit) (abstraction spgrps_desc crform) ...

• Some of the relationships used to form the macromolecule hierarchy:

(abstraction macmol-pclass macmol-sclass) (abstraction macmol-sclass macmol-tclass) (abstraction macmol-pclass macmol-tclass) ... A subset of over 300 rules discovered by HAMB. Patterns discovered from HAMB organized according to "rule families".

Sulfhydryls and chelators

Rule	TP	FP	SEN	PPV
Species with strongly basic PKAs are not present	727	0	0.35	1.00
\rightarrow organic sulfhydryls are not present ****				
Species with strongly basic PKAs are not present	727	0	0.35	1.00
→ additives with perceived roles of reducing				
agent are not present				
EDTA is not present \rightarrow 2-mercaptoethanol is not	2019	38	0.93	0.98
present				
Organic chelators are not present \rightarrow 2-	2007	37	0.93	0.98
mercaptoethanol is not present				
Inorganic alkaline metals are not present and	991	25	0.48	0.98
organic sulfhydryls are not present \rightarrow organic				
chelators are not present				
Species with strongly basic PKAs are not present	712	15	0.35	0.98
➔ organic chelators are not present				
Species with ≥ 3 titrateable groups are not present	1035	36	0.50	0.97
➔ organic sulfhydryls are not present				
Species with net charges ≥ 3 are not present and	1467	53	0.72	0.97
organic sulhydryls are not present \rightarrow organic				
chelators are not present				
Species with net charges \leq -2 are not present \rightarrow	729	23	0.36	0.97
organic sulfhydryls are not present				
Species with net charges \leq -3 are not present \rightarrow	1212	43	0.59	0.97
organic sulfhydryls are not present				
Species with neutral titrateable groups are not	901	29	0.44	0.97
present \rightarrow organic sulfhydryls are not present				
Species with strongly acidic PKAs are not	1018	32	0.50	0.97
present \rightarrow organic sulfhydryls are not present				
Species with strongly acidic PKAs are not	1018	32	0.50	0.97
present \rightarrow additives with perceived roles of				
reducing agent are not present				
Species with neutral titrateable groups are not	900	30	0.44	0.97
present \rightarrow additives with perceived roles of				
reducing agent are not present				
Species with net charges of \leq -3 are not present	1212	43	0.59	0.97
→ additives with perceived roles of reducing				
agent are not present				
Species with net charges of \leq -2 are not present	729	23	0.36	0.97
→ additives with perceived roles of reducing				
agent are not present				
Additives with perceived roles of reducing agent	1955	93	0.95	0.96

are not present → EDTA is not present				
Additives with perceived roles of anti microbial	1607	72	0.79	0.96
are not present \rightarrow organic chelators are not				
present				
Species with \geq 4 titrateable groups are not present	1675	62	0.82	0.96
\rightarrow organic sulfhydryls are not present				
Species with ≥ 4 titrateable groups are not present	1675	62	0.82	0.96
→ additives with perceived roles of reducing				
agent are not present				
Additives with perceived roles of chelator are	1947	98	0.95	0.95
not present \rightarrow additives with perceived roles of				
reducing agent are not present				
Additives with perceived roles of reducing agent	1947	101	0.95	0.95
are not present \rightarrow additives with perceived roles	1747	101	0.75	0.75
of chelator are not present				
1	1946	102	0.95	0.95
Additives with perceived roles of reducing agent	1940	102	0.95	0.95
are not present \rightarrow organic chelators are not				
present	1070	0.0	0.07	0.07
EDTA is not present \rightarrow organic sulfhydryls are	1958	99	0.95	0.95
not present				
The species EDTA is not present \rightarrow organic	1956	96	0.95	0.95
sylfhydryls are not present				
EDTA is not present \rightarrow additives with perceived	1955	102	0.95	0.95
roles of reducing agent are not present				
The species EDTA is not present \rightarrow additives	1953	99	0.95	0.95
with perceived roles of reducing agent are not				
present				
Organic chelators are not present \rightarrow organic	1948	96	0.95	0.95
sulfhydryls are not present				
Organic sulfhydryls are not present → EDTA is	1958	95	0.95	0.95
not present				
Organic sulfydryls are not present \rightarrow organic	1948	105	0.95	0.95
chelators are not present.				
Organic sulfhydryls are not present \rightarrow additives	1949	104	0.95	0.95
with perceived roles of chelator are not present		10.	0.70	0.70
Additives with perceived roles of reducing agent	1953	95	0.95	0.95
are not present \rightarrow the species EDTA is not	1755)5	0.75	0.75
present ² the species LDTA is not				
Organic sulfhydryls are not present \rightarrow the	1956	97	0.95	0.95
	1930	97	0.95	0.95
species EDTA is not present	1500	80	0.79	0.05
Species with dipole charges are not present \rightarrow	1599	80	0.78	0.95
organic sulfhydryls are not present	1 - 10	0.0	0.07	0.05
Species with somewhat mixed charges are not	1740	93	0.85	0.95
present \rightarrow additives with perceived roles of				
chelator are not present				
Species with dipole charges are not present \rightarrow	1599	80	0.78	0.95

additives with perceived roles of reducing agent				
are not present				
Species with dipole charges are not present \rightarrow	1842	109	0.90	0.94
organic chelators are not present				
Organic sulfhydryls are present with a total	26	52	0.29	0.33
concentration between 0.0003M and 0.001M \rightarrow				
the species EDTA is present with a concentration				
\leq 0.001M				
Organic sulfhydryls are present with a total	26	52	0.28	0.33
concentration $\leq 0.001 \text{ M} \Rightarrow$ organic chelators are				
present with a total concentration between				
0.0003M and 0.001M				
Organic sulfhydryls are present with a total	26	52	0.28	0.33
concentration $\leq 0.001 \text{ M} \Rightarrow$ additives with				
perceived roles of chelator are present with a				
total concentration between 0.0003M and				
0.001M				
Additives with perceived roles of reducing agent	25	56	0.27	0.31
are present with a total concentration between				
0.0003M and 0.001M \rightarrow the species EDTA is				
present with a concentration ≤ 0.001 M				
Additives with perceived roles of reducing agent	25	56	0.27	0.31
are present with a total concentration ≤ 0.001 M				
\rightarrow additives with perceived roles of chelator are				
present with a total concentration between				
0.0003M and 0.001M				
The species EDTA is present with a	26	65	0.33	0.29
concentration between 0.0003M and 0.001M \rightarrow				
organic sulfhydryls are present with a total				
concentration $\leq 0.001 M$				
Organic chelators are present with a total	26	66	0.33	0.28
concentration between 0.0003M and 0.001M \rightarrow				
organic sulfhydryls are present with a total				
concentration $\leq 0.001 M$				
Additives with perceived roles of chelator are	25	67	0.31	0.27
present with a total concentration between				
0.0003M and 0.001M \rightarrow additives with the				
perceived roles of reducing agent are present with				
a total concentration ≤ 0.001 M			0.01	
The species EDTA is present with a	25	66	0.31	0.27
concentration between 0.0003M and 0.001M \rightarrow				
additives with perceived roles of reducing agent				
are present with a total concentration ≤ 0.001 M			0.00	0.01
EDTA is present with a concentration between	23	65	0.28	0.26
0.0003M and 0.001M \rightarrow additives with				
perceived roles of reducing agent are present with				

a total concentration ≤ 0.001 M		

Spermine, cacodylate, nucleic acids, and magnesium chloride

Rule	TP	FP	SEN	PPV
Inorganic divalent metals are not present \rightarrow	1802	1	0.82	1.00
spermine is not present				
Sodium cacodylate is not present \rightarrow spermine	2105	9	0.96	1.00
tetrahydrochloride is not present				
Species with ≥ 2 titrateable groups are not present	974	0	0.45	1.00
→ metabolite nucleotides are not present				
Species with acidic PKAs are not present →	952	0	0.44	1.00
metabolite nucleotides are not present				
Species with acidic PKAs are present and the	9	0	2193.0	1.00
macromolecule is a very small peptide \rightarrow			0	
additives with unknown perceived roles are				
present *** fix***				
Species with net charges of \leq -1 are present with	11	0	0.18	1.00
a total concentration $> 2.23M$ and additives with				
perceived roles of precipitating agent are present				
with a total concentration between 0.7M and				
$0.701M \rightarrow$ the macromolecule is a ribonuclease				
Species with net charges of ≥ 1 are present with a	11	0	0.18	1.00
total concentration > 2.41 M and additives with				
perceived roles of precipitating agent are present				
with a total concentration between 0.7M and				
$0.701 M \rightarrow$ the macromolecule is a ribonuclease				
Species with strongly acidic PKAs are not present	1048	2	0.49	1.00
→ metabolite nucleotide are not present				
Species with strongly acidic PKAs are not present	1050	0	0.48	1.00
\rightarrow the species maleate is not present				
Species with strongly basic PKAs are not present	727	0	0.34	1.00
\rightarrow the species spermine is not present				
The macromolecule is a protein \rightarrow spermine is	1921	1	0.87	1.00
not present				
The macromolecule is a protein \rightarrow spermine	1918	4	0.87	1.00
tetrahydrochloride is not present				
The macromolecule is an enzyme \rightarrow spermine is	809	0	0.38	1.00
not present				
The macromolecule is an enzyme \rightarrow the species	809	0	0.38	1.00
spermine is not present				
The species magnesium II is not present \rightarrow	1985	3	0.90	1.00
spermine is not present				
The species magnesium II is not present \rightarrow	1981	7	0.90	1.00
spermine tetrahydrochloride is not present				

The macromolecule is a little miscellaneous protein \rightarrow species with a basic PKA are not	139	112	0.27	0.55
present				
Species with net charges of ≥ 2 are present with a	40	36	0.35	0.53
total concentration between 0.01M and 0.03M \rightarrow		20	0.00	0.00
the macromolecule is a nucleic acid				
The macromolecule is a deoxy oligonucleotide \rightarrow	34	36	0.17	0.49
species with net charges of $= 0$ are present with a				
total concentration between 0.21M and 2.34M				
The macromolecule is a little miscellaneous	108	143	0.32	0.43
protein \rightarrow species with net charges of \leq -1 are not				
present				
Magnesium chloride is present with a	14	20	0.35	0.41
concentration between 0.012M and 0.04M \rightarrow				
species with net charges of ≥ 3 are present with a				
total concentration between 0.002M and 0.01M				
The species magnesium II is present with a	9	13	0.30	0.41
concentration between 0.01M and 0.015M \rightarrow the				
species cacodylate is present with a total				
concentration between 0.02M and 0.03M				
Species with basic PKAs are not present \rightarrow the	78	121	0.34	0.39
macromolecule is a miscellaneous little protein				
The species spermine is present with a	10	16	0.29	0.38
concentration between 0.0008M and 0.002M \rightarrow				
the species cacodylate is present with a total				
concentration ≤ 0.01 M				
Sodium cacodylate is present \rightarrow the species	6	10	0.60	0.37
spermine is present with a concentration between				
0.0025M and 0.006M				
The macromolecule is a trna \rightarrow the species	12	21	0.34	0.36
cacodylate is present with a total concentration \leq				
0.01M	• •		0.0-	0.0.0
The macromolecule is an oligonucleotide \rightarrow	28	50	0.37	0.36
species with net charges of ≥ 2 are present with a				
total concentration between 0.01M and 0.03M	0	17	0.00	0.25
Sodium cacodylate is present with a concentration	9	17	0.26	0.35
between 0.02M and 0.03M \rightarrow magnesium				
chloride is present with a concentration between				
0.012M and 0.04M	10	7.4	0.52	0.25
The macromolecule is an nucleic acid \rightarrow species with not abarrent with a total	40	74	0.53	0.35
with net charges of ≥ 2 are present with a total				
concentration between 0.01M and 0.03M	()	110	0.25	0.24
Species with 0 titrateable groups are present and $2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 $	62	118	0.25	0.34
species with titrateable groups ≥ 2 are not present the macromologula is a little soluble protein				
\rightarrow the macromolecule is a little soluble protein	104	244	0.40	0.24
Species with net charges of \leq -2 are not present	124	244	0.49	0.34

and additives with perceived roles of buffer are				
not present \rightarrow the macromolecule is a little				
soluble protein****				
Species with ≥ 1 titrateable groups are not present	58	117	0.23	0.33
\rightarrow the macromolecule is a little soluble protein				
Species with net charges of ≤ -2 are not present	38	76	0.54	0.33
and additives with perceived roles of buffer are				
present with a total concentration between				
0.014M and 0.045M \rightarrow the macromolecule is a				
deoxy oligonucleotide****				
The macromolecule is a deoxy oligonucleotide \rightarrow	23	47	0.30	0.33
species with net charges of ≥ 2 are present with a				
total concentration between 0.01M and 0.03M				
The species cacodylate is present with a	10	20	0.29	0.33
concentration between 0.002M and 0.03M \rightarrow				
magnesium chloride is present with a				
concentration between 0.012M and 0.04M				
The macromolecule is a nucleic acid \rightarrow inorganic	36	78	0.50	0.32
divalent species are present with a total				
concentration between 0.01M and 0.04M**				
The macromolecule is a deoxy oligonucleotide \rightarrow	21	49	0.29	0.30
inorganic divalent species are present with a total			0.22	0100
concentration >0.01M and 0.04M**				
The species cacodylate is present with a	9	21	0.41	0.30
concentration between 0.002M and 0.03M \rightarrow the	-	-1	0.11	0.00
species magnesium II is present with a				
concentration between 0.001M and 0.015M				
Magnesium chloride is present with a	10	24	0.33	0.29
concentration between 0.012M and 0.04M \rightarrow the	10	2 .	0.55	0.27
species cacodylate is present with a total				
concentration between 0.02M and 0.03M				
The species cacodylate is present with a	10	25	0.38	0.29
concentration ≤ 0.01 M \rightarrow the species spermine is	10	23	0.50	0.27
present with a concentration between 0.0008M				
and 0.002M				
The macromolecule is a nucleic acid \rightarrow the	31	83	0.38	0.27
species magnesium II is present with a	51	0.5	0.50	0.27
concentration between 0.004M and 0.01M				
The macromolecule is an oligonucleotide \rightarrow the	21	57	0.70	0.27
species cacodylate is present with a total	21	51	0.70	0.27
concentration between 0.02M and 0.03M				
The macromolecule is a little miscellaneous	66	185	0.38	0.26
protein \rightarrow species with net charges of = 0 are	00	105	0.50	0.20
protein a species with het charges of a o are present				
The macromolecule is a little miscellaneous	60	191	0.32	0.24
	00	171	0.32	0.24
protein \rightarrow species with net charges of = 0 are				

present with a total concentration > 2.34m				
The macromolecule is a deoxy oligonucleotide	16	54	0.53	0.23
\rightarrow the species cacodylate is present with a total	10	54	0.55	0.23
concentration between 0.02M and 0.03M				
	26	00	0.20	0.22
The macromolecule is a nucleic acid \rightarrow inorganic	26	88	0.30	0.23
divalent species are present with a total				
concentration between 0.005M and 0.01M**	70	252	0.00	0.00
Species with net charges of ≥ 1 are not present \rightarrow	73	253	0.90	0.22
the macromolecule is a very small peptide				
The macromolecule is an oligonucleotide \rightarrow	17	61	0.50	0.22
magnesium chloride is present with a				
concentration between 0.012M and 0.04M				
Additives with perceived roles of buffer are not	163	617	0.65	0.21
present \rightarrow the macromolecule being crystallized				
is a small soluble protein				
The macromolecule is a deoxy oligonucleotide \rightarrow	15	55	0.58	0.21
the species spermine is present with a				
concentration between 0.0008M and 0.002M				
The macromolecule is a nucleic acid \rightarrow	24	90	0.71	0.21
magnesium chloride is present with a				
concentration between 0.012M and 0.04M				
The macromolecule is an nucleic acid \rightarrow species	24	90	0.32	0.21
with net charges of ≥ 2 are present with a total				
concentration between 0.005M and 0.01M				
Species with net charges of \leq -2 are not present	154	598	0.61	0.20
\rightarrow the macromolecule is a small soluble protein.				
Species with net charges of \leq -1 are not present	65	272	0.80	0.19
\rightarrow the macromolecule is a very small peptide				
The macromolecule is an oligonucleotide \rightarrow the	15	63	0.68	0.19
species magnesium II is present with a		00	0.00	0.17
concentration between 0.01M and 0.015M				
Species with net charges of ≥ 2 are present with a	14	62	0.47	0.18
total concentration between 0.01M and 0.03M \rightarrow	11	02	0.17	0.10
the species cacodylate is present with a total				
concentration between 0.02M and 0.03M				
Species with net charges of ≥ 2 are present with a	14	62	0.47	0.18
total concentration between 0.01M and 0.03M \rightarrow	14	02	0.47	0.10
the species cacodylate is present with a				
concentration between 0.02M and 0.03M				
The macromolecule is a nucleic acid \rightarrow the	20	04	0.57	0.19
	20	94	0.57	0.18
species cacodylate is present with a total				
concentration between 0.02M and 0.03M			0.50	0.10
The macromolecule is a nucleic acid \rightarrow the	21	93	0.70	0.18
species cacodylate is present with a total				
concentration ≤ 0.01 M				
The macromolecule is a nucleic acid \rightarrow inorganic	19	95	0.27	0.17

divalent species are present with a total				
concentration between 0.0025M and 0.005M**				
The macromolecule is a nucleic acid \rightarrow the	19	95	0.86	0.17
species magnesium II is present with a				
concentration between 0.01M and 0.015M				
The macromolecule is a nucleic acid \rightarrow	18	96	0.40	0.16
magnesium chloride is present with a				
concentration between 0.005M and 0.01M				
The macromolecule is a nucleic acid \rightarrow	18	96	0.34	0.16
magnesium chloride is present with a				
concentration less than 0.005M				
Additives with perceived roles of buffer are	42	233	0.60	0.15
present with a total concentration between				
0.014M and 0.045M \rightarrow the macromolecule is a				
deoxy oligonucleotide				
Species with ≥ 1 titrateable groups are not present	27	148	0.52	0.15
\rightarrow the macromolecule is a little miscellaneous				
protein				
Species with basic PKAs are not present \rightarrow the	76	438	0.94	0.15
macromolecule is a peptide				
Additives with perceived roles of salt are present	30	180	0.38	0.14
with a total concentration between 0.01M and				
$0.05M \rightarrow$ the macromolecule is an				
oligonucleotide				
Species with 0 titrateable groups are present with	24	146	0.39	0.14
a total concentration > 3.2 M and species with				
titrateable groups ≥ 2 are not present \rightarrow the				
macromolecule is a ribonuclease				
The macromolecule is a deoxy oligonucleotide \rightarrow	10	60	0.59	0.14
the species spermine is present with a				
concentration $\leq 0.0008 M$				
Species with ≥ 1 titrateable groups are present	32	265	0.46	0.11
with a total concentration $\leq 0.03 \text{M} \rightarrow$ the				
macromolecule is a deoxy oligonucleotide				
Species with net charges of \leq -2 ares not present	77	675	0.95	0.10
\rightarrow the macromolecule is a very small peptide				
Species with 0 titrateable groups are present with	27	268	0.44	0.09
a total concentration > $3.2M \rightarrow$ the				
macromolecule is a ribonuclease				
Species with net charges of \leq -2 are not present	65	687	0.93	0.09
\rightarrow the macromolecule is a deoxy oligonucleotide.				
Species with basic PKAs are not present \rightarrow the	37	477	0.71	0.07
macromolecule is a miscellaneous little protein				
Species with strongly acidic PKAs are not present	65	985	0.93	0.06
\rightarrow the macromolecule is a deoxy oligonucleotide	50	2.50		5.50
2-methyl-2/4 pentanediol is not present \rightarrow the	1836	183	0.92	0.91
- mentji - pentanodior is not present - the	1050	105	5.72	5.71

anaging magnagium II is not present				
species magnesium II is not present	1102	26	0.57	0.07
Additives with perceived roles of salt are not	1183	36	0.57	0.97
present \rightarrow the species cacodylate is not present	1004	1.7	0.57	0.00
Additives with perceived roles of salt are not	1204	15	0.57	0.99
present \rightarrow sodium cacodylate is not present				
Additives with perceived roles of salt are not	1038	181	0.60	0.85
present \rightarrow the macromolecule is a soluble protein				
Inorganic divalent metals are not present \rightarrow 2-	1684	119	0.83	0.93
methyl 2/4 pentanediol is not present				
Inorganic divalent metals are not present \rightarrow the	1750	53	0.85	0.97
species cacodylate is not present				
Inorganic divalent metals are not present \rightarrow	1774	29	0.84	0.98
sodium cacodylate is not present				
Inorganic halides are not present → sodium	1352	25	0.64	0.98
cacodylate is not present	1552	20	0.01	0.70
Magnesium chloride is not present \rightarrow the species	1969	90	0.95	0.96
cacodylate is not present a the species	1707	70	0.75	0.70
Magnesium chloride is not present \rightarrow species	1538	521	0.95	0.75
	1556	321	0.95	0.75
with net charges of ≥ 3 are not present	2028	21	0.05	0.00
Magnesium chloride is not present \rightarrow the species	2028	31	0.95	0.98
spermine is not present	2111		0.00	0.00
Metabolite nucleotides are not present \rightarrow species	2114	45	0.99	0.98
with two or more polymerization states are not				
present				
The species cacodylate is not present \rightarrow	2054	11	0.93	0.99
spermine is not present				
Sodium cacodylate is not present \rightarrow magnesium	2008	106	0.98	0.95
chloride is not present				
Sodium cacodylate is not present \rightarrow the species	1943	171	0.98	0.92
magnesium II is not present				
Sodium cacodylate is not present \rightarrow the species	2084	30	0.97	0.99
spermine is not present				
Species with ≥ 4 titrateable groups are not present	1710	27	0.79	0.98
\rightarrow metabolite nucleotides are not present		-		
Species with dipole charges are not present \rightarrow	1660	19	0.77	0.99
metabolite nucleotides are not present	1000	17	0.77	0.77
Species with somewhat mixed charges are not	1810	23	0.84	0.99
present \rightarrow metabolite nucleotides are not present	1010	23	0.84	0.99
1 · · · · ·	21	1	0.29	0.07
Species with net charges of \leq -1 are not present	31	1	0.38	0.97
and species with a neutral PKA are present \rightarrow the				
macromolecule is a very small peptide	1247	4.2	0.67	0.07
Species with net charges of ≥ 2 are not present \rightarrow	1347	42	0.65	0.97
the species cacodylate is not present				
Species with net charges of ≥ 2 are not present \rightarrow	1274	115	0.66	0.92
the macromolecule is a protein				
Species with net charges of ≥ 2 are not present \rightarrow	1347	42	0.65	0.97

the species cacodylate is not present				
Spermine is not present \rightarrow the species	1985	212	1.00	0.90
magnesium II is not present	1700		1.00	0.70
Spermine tetrahydrochoride is not present \rightarrow the	1981	213	1.00	0.90
species magnesium II is not present	-,			
The macromolecule is a protein \rightarrow 2-methyl 2/4	1788	134	0.89	0.93
pentanediol is not present		_		
The macromolecule is a protein \rightarrow inorganic	1660	262	0.92	0.86
divalent species are not present				
The macromolecule is a protein → magnesium	1862	60	0.90	0.97
chloride is not present				
The macromolecule is a protein \rightarrow the species	1857	65	0.90	0.97
cacodylate is not present				
The macromolecule is a protein \rightarrow species with	1274	648	0.92	0.66
net charges of ≥ 2 are not present				
The macromolecule is a soluble protein \rightarrow	1696	47	0.82	0.97
magnesium chloride is not present				
The macromolecule is a soluble protein \rightarrow the	1686	57	0.82	0.97
species cacodylate is not present				
The macromolecule is a soluble protein \rightarrow	1172	571	0.84	0.67
species with net charges of ≥ 2 are not present				
The macromolecule is a soluble protein \rightarrow the	1662	81	0.84	0.95
species magnesium is not present				
The macromolecule is an enzyme \rightarrow the species	783	26	0.38	0.97
cacodylate is not present				
The species cacodylate is not present \rightarrow	1969	96	0.96	0.95
magnesium chloride is not present				
The species cacodylate is not present \rightarrow spermine	2042	23	0.95	0.99
is not present				
The species cacodylate is not present \rightarrow the	1907	158	0.96	0.92
species magnesium II is not present				
The species chloride is not present \rightarrow sodium	1360	25	0.64	0.98
cacodylate is not present				
The species magnesium II is not present \rightarrow 2-	1836	152	0.91	0.92
methyl 2/4 pentanediol is not present				
The species magnesium II is not present \rightarrow the	1907	81	0.92	0.96
species cacodylate is not present				
The species spermine is not present \rightarrow 2-methyl	1981	161	0.98	0.92
2/4 pentanediol is not present			0.00	0.07
The species spermine is not present \rightarrow	2028	114	0.98	0.95
magnesium chloride is not present		100		
The species spermine is not present \rightarrow the species	2042	100	0.99	0.95
cacodylate is not present	2 00 t		0.00	0.0-
The species spermine is not present \rightarrow sodium	2084	58	0.99	0.97
cacodylate is not present			0.07	0.60
The species spermine is present with a	6	4	0.37	0.60

concentration between 0.0025M and 0.006M \rightarrow sodium cacodylate is present with a concentration between 0.03M and 0.045M				
The species chloride is not present \rightarrow the macromolecule is a protein	1271	114	0.66	0.92
Inorganic halides are not present \rightarrow the macromolecule is a protein	1263	114	0.66	0.92

Rules involving heme porphyrin containing proteins

Rule	TP	FP	SEN	PPV
Species with strongly acidic PKAs are present \rightarrow	68	31	0.30	0.69
the macromolecule is a heme porphyrin protein				
Species with net charges of \leq -2 are present \rightarrow	71	73	0.31	0.49
the macromolecule is a heme porphyrin protein				
Species with strongly acidic PKAs are present	55	65	0.24	0.46
with a total concentration > $0.86M \rightarrow$ the				
macromolecule is a heme porphyrin protein				
Species with net charges of ≥ 1 are present \rightarrow the	70	121	0.31	0.37
macromolecule is a heme porphyrin protein				
Species with net charges of \leq -1 are present \rightarrow	72	127	0.31	0.36
the macromolecule is a heme porphyrin protein				
The macromolecule is a heme porphyrin protein	78	151	0.39	0.34
\rightarrow species with a basic PKA are present.				
Species with ≥ 1 titrateable groups are present \rightarrow	79	179	0.34	0.31
the macromolecule is a heme porphyrin protein				
The macromolecule is a heme porphyrin protein	72	157	0.36	0.31
→ species with net charges of \leq -1 are present				
The macromolecule is a heme porphyrin protein	70	159	0.37	0.31
→ species with net charges of ≥ 1 are present				
The macromolecule is a heme porphyrin protein	66	163	0.25	0.29
→ species with net charges of ≥ 1 are present				
with a total concentration of 2.42M				
Species with 0 titrateable groups are present \rightarrow	80	229	0.35	0.26
the macromolecule is a heme porphyrin protein				
The macromolecule is a heme porphyrin protein	25	204	0.62	0.11
→ inorganic divalent species are present.				
The macromolecule is a heme porphyrin protein	26	203	0.57	0.11
→ species with net charges of ≥ 2 are present				

Miscellaneous Rules between macromolecules and additives

Rule	TP	FP	SEN	PPV
Organic simple hydroxyls are present and the	6	0	0.75	1.00
macromolecule is a miscellaneous soluble protein				

➔ sodium acetate is present				
The concentration of the macromolecule is	21	0	0.42	1.00
greater than 25m and the molecular weight of the				
macromolecule is $\leq 10,500$ and the PH is between				
5.8 and 6.6 \rightarrow ammonium phosphate is present				
The macromolecule has a molecular weight of	25	1	0.50	0.96
10,500 and the PH is between 5.8 and 6.6 and an				
additive with a perceived role of precipitating				
agent is present \rightarrow ammonium phosphate is				
present				

Crystallization method versus macromolecule characteristics and concentration

Rule	TP	FP	SEN	PPV
Organic hydroxyls are not present and the molecular weight of the			0.63	
macromolecule is $\leq 10,500 \rightarrow$ the crystallization method is other*				
The crystallization method scale is micro \rightarrow methanol is not present	1337	7	0.62	0.99
The crystallization method scale is micro \rightarrow simple organic	1280	64	0.63	0.95
hydroxyls are not present				
The crystallization method description is batch-method and additives	33	2	0.31	0.94
with perceived roles of buffer are not present and species with ≥ 3				
titrateable groups are present \rightarrow the species sulfate is present				
The crystallization method scale is macro \rightarrow poly alcohol organic	380	70	0.28	0.84
hydroxyls are not present***				
The crystallization method is other \rightarrow species with net charges of ≥ 1	111	74	0.34	0.60
are not present				
Species with basic PKAs are present \rightarrow the crystallization method	92	107	0.24	0.46
type is batch				
Species with net charges of ≤ -1 are present \rightarrow the crystallization	91	108	0.25	0.46
method is batch method				
Species with net charges of ≥ 1 are present \rightarrow the crystallization	88	103	0.24	0.46
method is batch method				
Species with ≥ 1 titrateable groups are present \rightarrow the crystallization	105	153	0.27	0.41
method type is batch				
Species with ≥ 1 titrateable groups are not present \rightarrow the	65	110	0.35	0.37
crystallization method type is other				
Species with net charges of 0 are present with a concentration >	64	123	0.35	0.34
$234M^{***???}$ \rightarrow the crystallization method type is other				
Species with net charges of 0 are not present \rightarrow the crystallization	210	509	0.55	0.29
method type is batch				
Species with basic PKAs are not present \rightarrow the crystallization	136	378	0.74	0.26
method type is other				
Species with net charges of 0 are present \rightarrow the crystallization	44	130	0.43	0.25
method is concentration-by-evaporation				
Species with net charges of ≥ 1 are not present \rightarrow the crystallization	75	251	0.73	0.23
method is concentration by evaporation				
The crystallization method type is batch \rightarrow species with net charges	89	295	0.47	0.23
of ≥ 1 are present				
Species with net charges of ≤ -1 are not present \rightarrow the crystallization	70	267	0.68	0.21
method is concentration by evaporation				
Species with basic PKAs are not present \rightarrow the crystallization	90	424	0.87	0.18
method is crystallization-by-evaporation				
Species with net charges of 0 are present with a concentration of	21	166	0.70	0.11
234M***??? \rightarrow the crystallization method is temperature-				
crystallization				

Crystallization method versus species or additives or their properties

Additive versus Additive

EDTA and dithioethreitol

Ammonium phosphate and iron citrate

Rule	TP	FP	SEN	PPV
Ammonium phosphate is not present \rightarrow iron II citrate is not present.	2171	4	0.99	1.00
The species phosphate is not present \rightarrow iron II citrate is not present.	1589	0	0.72	1.00
Iron II citrate is not present \rightarrow ammonium phosphate is not present*	2171	28	1.00	0.99
Iron II citrate is present \rightarrow ammonium phosphate is present*	22	4	0.44	0.85
Ammonium phosphate is present \rightarrow iron II citrate is present.	22	28	0.85	0.44
The species phosphate is present \rightarrow iron II citrate is present.	23	58	0.88	0.28

Additives versus Properties of Additives or of Species

Sodium Azide

Rule	TP	FP SEN	PPV
Species with strongly acidic PKAs are not present \rightarrow sodium azide	1050	0 0.53	1.00

1			
727	0	0.37	1.00
514	0	0.26	1.00
1255	0	0.64	1.00
719	0	0.36	1.00
1620	0	0.82	1.00
1679	0	0.85	1.00
1833	0	0.93	1.00
930	0	0.47	1.00
1847	0	0.94	1.00
1826	24	1.00	0.99
1862	110	0.91	0.94
1454	109	0.74	0.93
	514 1255 719 1620 1679 1833 930 1847 1826 1862	514 0 1255 0 719 0 1620 0 1679 0 1833 0 930 0 1847 0 1826 24 1862 110	514 0 0.26 1255 0 0.64 719 0 0.36 1620 0 0.82 1679 0 0.85 1833 0 0.93 930 0 0.47 1847 0 0.94

Ammonium Sulfate

Rule	тр	ED	SEN	DDV
Species with acidic PKAs are present and the macromolecule is a heme	28	0	0.28	1.00
porphyrin protein and the molecular weight of the macromolecule is \leq				
10,500 → ammonium sulfate is present				
Species with strongly basic PKAs are not present \rightarrow ammonium	727	0	0.50	1.00
sulfate is not present				
The crystallization method description is batch-method and additives	34	3	0.34	0.92
with perceived roles of salt are present and species with ≥ 2 titrateable				
groups are present \rightarrow ammonium sulfate is present				
The crystallization method description is batch-method and additives	36	1	0.34	0.97
with perceived roles of buffer are not present and species with strongly				
acidic PKAs are present → inorganic sulfates are present				
The crystallization method description is batch-method and species	36	1	0.34	0.97
with neutral PKAs are present and additives with perceived roles of				
buffer are not present \rightarrow inorganic sulfates are present				
The crystallization method description is batch-method and the	28	0	0.28	1.00
molecular weight of the macromolecule is $\leq 10,500$ and species with				
neutral PKAs are present \rightarrow ammonium sulfate is present				
The crystallization method description is batch-method and the	26	1	0.25	0.96

molecular weight of the mean molecule is < 10.500 and encodes with $>$				
molecular weight of the macromolecule is $\leq 10,500$ and species with \geq				
2 titrateable groups are present → inorganic sulfates are present	25	2	0.25	0.00
The crystallization method scale is macro and additives with perceived	35	3	0.35	0.92
roles of salt are present and species with ≥ 2 titrateable groups are				
present → ammonium sulfate is present				
The crystallization method scale is macro and additives with perceived	36	1	0.34	0.97
roles of buffer are not present and species with ≥ 3 titrateable groups				
are present \rightarrow inorganic sulfates are present				
The crystallization method type is batch and additives with perceived	34	3	0.34	0.92
roles of salt are present and species with neutral PKA are present \rightarrow				
ammonium sulfate is present				
The crystallization method type is batch-method and additives with	33	2	0.31	0.94
perceived roles of buffer are not present and species with ≥ 3 titrateable				
groups are present \rightarrow inorganic sulfates are present				
The crystallization scale is macro and the molecular weight of the	26	1	0.25	0.96
macromolecule is $\leq 10,500$ and species with ≥ 2 titrateable groups are				
present → inorganic sulfates are present				
The macromolecule is a heme porhpyrin protein and the molecular	26	0	0.25	1.00
weight of the macromolecule is $\leq 10,500$ and species with ≥ 2				
titrateable groups are present \rightarrow inorganic sulfates are present				
The macromolecule is a heme porphyrin protein and species with	37	2	0.35	0.95
neutral PKAs are present and additives with perceived roles of buffer				
are not present \rightarrow the species sulfate is present				
The macromolecule is a heme porphyrin protein and the molecular	28	0	0.28	1.00
weight of the macromolecule is $\leq 10,500$ and species with neutral				
PKAs are present \rightarrow ammonium sulfate is present				
The macromolecule is a heme porphyrin protein and the molecular	28	0	0.27	1.00
weight of the macromolecule is $\leq 10,500$ and species with neutral		5		
PKAs are present \rightarrow inorganic sulfates are present				
morgane sandes de present	1			

Properties of additives or of species versus other properties of additives or of species

Versus	perceived	role of	anti	microbial
	p 0 . 0 0 0 0 .		•••••	

Rule	TP	FP	SEN	PPV
Species with net charges of 0 are not present \rightarrow additives with	719	0	0.37	1.00
perceived roles of anti microbial are not present				
Species with \geq 5 titrateable groups are not present \rightarrow additives with	1831	16	0.94	0.99
perceived roles of anti microbial are not present				
Species with ≥ 4 titrateable groups are not present \rightarrow additives with	1722	15	0.88	0.99
perceived roles of anti microbial are not present				
Species with \geq 3 titrateable groups are not present \rightarrow additives with	1063	8	0.54	0.99
perceived roles of anti microbial are not present				
Species with ≥ 2 titrateable groups are not present \rightarrow additives with	966	8	0.50	0.99
perceived roles of anti microbial are not present				
Species with strongly basic PKAs are not present \rightarrow additives with	719	8	0.37	0.99

3 0.99
3 0.99
3 0.99
0.99
5 0.99
2 0.99
0.99
8 0.99
1 0.99
6 0.98
1 0.92

Versus perceived role of substrate analogue

Rule	TP	FP	SEN	PPV
Species with acidic PKAs are not present and species with dipole	740	2	0.37	1.00
charges are not present \rightarrow additives with perceived roles of substrate				
analogue are not present				
Species with ≥ 2 titrateable groups are not present \rightarrow additives with	955	19	0.47	0.98
perceived roles of substrate analogue are not present				
Species with net charges of \leq -2 are not present \rightarrow additives with	730	22	0.36	0.97
perceived roles of substrate analogue are not present				
Species with an acidic PKA are not present \rightarrow additives with	928	24	0.46	0.97
perceived roles of substrate analogue are not present**				
Metabolite nucleotides are not present and species with neutral PKAs	884	37	0.44	0.96
are not present \rightarrow additives with perceived roles of substrate				
analogue are not present				
Species with dipole charges are not present \rightarrow additives with	1605	74	0.80	0.96
perceived roles of substrate analogue are not present				
Species with ≥ 4 titrateable groups are not present \rightarrow additives with	1649	88	0.82	0.95
perceived roles of substrate analogue are not present				
Species with \geq 3 titrateable groups are not present \rightarrow additives with	1022	49	0.51	0.95
perceived roles of substrate analogue are not present				
Species with somewhat mixed charges are not present → additives	1742	91	0.87	0.95
with perceived roles of substrate analogue are not present				
Species with net charges of \leq -3 are not present \rightarrow additives with	1193	62	0.59	0.95

perceived roles of substrate analogue are not present				
Species with \geq 5 titrateable groups are not present \rightarrow additives with	1740	105	0.86	0.94
perceived roles of substrate analogue are not present				
Species with net charges of ≥ 3 are not present \rightarrow additives with	1519	101	0.75	0.94
perceived roles of substrate analogue are not present				
Species with net charges of ≥ 2 are not present \rightarrow additives with	1309	80	0.65	0.94
perceived roles of substrate analogue are not present				
Species with \geq polymerization states are not present \rightarrow additives	1981	165	0.98	0.92
with perceived roles of substrate analogue are not present				
Species with an acidic PKA are present \rightarrow additives with perceived	20	137	0.61	0.13
roles of substrate analogue are present**				

Versus perceived roles of precipitating agents

Rule	TP	FP	SEN	PPV
Species with dipole charges are not present and additives with	1622	0	0.74	1.00
unknown perceived roles are not present \rightarrow organic species are not				
present				
Species with \geq 3 titrateable groups are present with a concentration >	124	12	0.28	0.91
$0.5M \rightarrow$ additives with perceived roles of precipitating agent are not				
present				
Species with strongly acidic PKAs are present with a concentration >	109	11	0.24	0.91
0.86M \rightarrow additives with perceived roles of precipitating agent are				
not present				
Species with acidic PKAs are not present \rightarrow additives with	178	45	0.40	0.80
perceived roles of precipitating agent are not present*				
Species with acidic PKAs are present \rightarrow additives with perceived	55	102	0.27	0.35
roles of precipitating agent are present*				

Misc

TP	FP	SEN	PPV
1821	24	0.99	0.99
1679	0	0.92	1.00
1031	10	0.56	0.99
968	6	0.53	0.99
	1821 1679 1031	1821 24 1679 0 1031 10	1031 10 0.56

Global properties

Rule	TP	FP	SEN	PPV
Temperature is between 4 and $20 \rightarrow$ inorganic "other" species are not	716	2	0.33	1.00
present				
Species with acidic PKAs are present with a concentration of \leq	4	0	0.33	1.00

0.205M ***???*** and ionic strength is $\leq 0.025 \rightarrow$ additives with				
unknown perceived roles are present with a concentration of 0.3M				
Ionic strength is ≤ 0.025 and species with a neutral PKA are present	31	1	0.38	0.97
\rightarrow the macromolecule is a very short peptide				
The PH of the solution is between 5.8 and 6.6 and additives with	25	1	0.31	0.96
perceived roles of precipitating agent are present and the space groups				
description of the resulting crystal is $p2 < 1 > \rightarrow$ the species phosphate				
is present				
Ionic strength is ≤ 0.025 and species with ≥ 1 titrateable groups are	33	2	0.41	0.94
present \rightarrow the macromolecule is a very short peptide				
The macromolecule is a small protein \rightarrow ionic strength is ≤ 0.025	114	137	0.32	0.45
The macromolecule is a heme porphyrin protein \rightarrow ionic strength is >	90	139	0.28	0.39
5.975				
Ionic strength is $\leq 0.025 \Rightarrow$ the macromolecule is a very small	114	246	0.45	0.32
miscellaneous protein				
Ionic strength is > 5.975 \rightarrow the macromolecule is a heme porphyrin	90	235	0.39	0.28
protein				
The macromolecule is an enzyme \rightarrow ionic strength is between 2.207	171	638	0.53	0.21
and 5.975				
Ionic strength is ≤ 0.025 \rightarrow the macromolecule is a very short peptide	65	295	0.80	0.18
The diffraction limit of the crystal is ≥ 3 and species with strongly	19	106	0.58	0.15
acidic PKAs are not present \rightarrow the macromolecule is a tRNA				
Ionic strength is between 0.025 and 0.157 \rightarrow the macromolecule is a	41	248	0.59	0.14
deoxy oligonucleotide				
The diffraction limit of the crystal is ≤ 2 and species with strongly	35	207	0.50	0.14
acidic PKAs are not present \rightarrow the macromolecule is a deoxy				
oligonucleotide				
Species with a net charge of > 3 are not present and the diffraction	19	131	0.58	0.13
limit of the crystal is $\geq 3 \Rightarrow$ the macromolecule is a tRNA				
Species with a net charge of \leq -3 are not present and the diffraction	35	260	0.50	0.12
limit of the crystal is $\leq 2 \Rightarrow$ the macromolecule is a deoxy				
oligonucleotide				