A single crystal investigation of L-tryptophan with $Z=16$ Carl Henrik Görbitz, Karl Wilhelm Törnroos and Graeme Day

Supplementary material

1. Figure $\mathbf{1 S}$ (below). Overlay of the eight molecules $\mathbf{A}, \mathbf{B}, \mathbf{E}, \mathbf{F}, \mathbf{I}, \mathbf{J}, \mathbf{M}$ and \mathbf{N} of the T family (calculated by Sybyl-X, version 1.3; Tripos, 2011).
2. cif file for refinement model with extended constraints on anisotropic displacement parameters, 1338 refined parameters, final R-factor 0.0879 .
3. Acta Cryst. C style preprint including complete listing of torsion angles and hydrogen bonding geometry.

Figure 1S

Reference

Tripos (2011). Sybyl-X 1.3. Tripos International, St. Louis, Missouri, USA

Figure 2S. Observed powder XRD data at $T=295 \mathrm{~K}$ compared with calculated pattern from single crystal structure at $T=123 \mathrm{~K}$.

A single crystal investigation of L-tryptophan with $Z^{\prime}=16$

Carl Henrik Görbitz, ${ }^{\text {a* }}$ Karl Wilhelm Törnroos ${ }^{\text {b }}$ and Graeme Day ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway, ${ }^{\text {b }}$ Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway, and ${ }^{\text {² }}$ Department of Chemistry, University of Cambridge, UK
Correspondence email: c.h.gorbitz@kjemi.uio.no

A complex, disorder-free structure in space group $P 1$ has been established for L-tryptophan, for which no crystal structure has previously been available. The 16 molecules in the asymmetric unit can be divided into two groups of eight molecules; one group where the side chains have gauche- orientations and one group with trans orientations. Molecules within each group have almost identical molecular geometries. The unit cell lengths mimic an hexagonal cell, but deviations from 90° for the cell angles $\alpha=84.421$ (4) ${ }^{\circ}$ and $\beta=87.694(4)^{\circ}$ give a small tilt that rules out hexagonal (or trigonal) symmetry. The hydrogen bonding pattern resembles that found in the crystal structure of the racemic structure of DL-tryptophan, but the calculated density, hydrogen bond lengths and aromatic interactions show that the enantiomeric structure is less efficiently packed.

Comment

Text

Experimental

From a saturated solutions of L-Trp in water (approximately $10 \mu \mathrm{~g} / \mathrm{ml}$), 30 ml was deposited into a series of $30 \times 6 \mathrm{~mm}$ test tubes. The tubes were subsequently sealed with parafilm. For each tube a needle was then used to prick a single small hole in the parafilm after which the tube was placed inside a larger test tube filled with 1 mL of acetonitrile. The system was ultimately capped and left for three days at $20^{\circ} \mathrm{C}$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \\
& M_{r}=204.23 \\
& \text { Triclinic, } P 1 \\
& a=11.430(3) \AA \\
& b=11.464(4) \AA \\
& c=35.606(9) \AA \\
& \alpha=84.421(4)^{\circ} \\
& \beta=87.694(4)^{\circ}
\end{aligned}
$$

$$
\gamma=60.102(2)^{\circ}
$$

Data collection

Bruker APEXII CCD

diffractometer
Absorption correction: Multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.943, T_{\text {max }}=0.987$
66471 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.085$
$w R\left(F^{2}\right)=0.255$
24736 independent reflections
19659 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$S=1.13$
24736 reflections
3 restraints
H -atom parameters constrained

2178 parameters

Table 1

Selected torsion angles (${ }^{\circ}$)

N1A-C2A-C3A-C5A	$-172.9(4)$
C2A-C3A-C5A-C4A	$-114.9(6)$
N1B-C2B-C3B-C5B	$-174.1(4)$
C2B-C3B-C5B-C4B	$-112.2(6)$
N1C-C2C-C3C-C5C	$-79.1(5)$
C2C-C3C-C5C-C4C	$111.2(6)$
N1D-C2D-C3D-C5D	$-79.0(5)$
C2D-C3D-C5D-C4D	$112.1(6)$
N1E-C2E-C3E-C5E	$-173.1(4)$
C2E-C3E-C5E-C4E	$-114.0(6)$
N1F-C2F-C3F-C5F	$-173.7(4)$
C2F-C3F-C5F-C4F	$-114.7(6)$
N1G-C2G-C3G-C5G	$-77.8(5)$
C2G-C3G-C5G-C4G	$109.6(6)$
N1H-C2H-C3H-C5H	$-80.0(5)$
C2H-C3H-C5H-C4H	$113.6(6)$

N1I-C2I-C3I-C5I	-173.1 (4)
C2I-C3I-C5I-C4I	-113.3 (6)
N1J-C2J-C3J-C5J	-173.6 (4)
C2J-C3J-C5J-C4J	-113.2 (6)
N1K-C2K-C3K-C5K	-78.2 (5)
$\mathrm{C} 2 \mathrm{~K}-\mathrm{C} 3 \mathrm{~K}-\mathrm{C} 5 \mathrm{~K}-\mathrm{C} 4 \mathrm{~K}$	109.8 (6)
N1L-C2L-C3L-C5L	-79.8 (5)
C2L-C3L-C5L-C4L	113.5 (6)
N1M-C2M-C3M-C5M	-173.4 (4)
C2M-C3M-C5M-C4M	-112.6 (6)
$\mathrm{N} 1 \mathrm{~N}-\mathrm{C} 2 \mathrm{~N}-\mathrm{C} 3 \mathrm{~N}-\mathrm{C} 5 \mathrm{~N}$	-173.4 (4)
$\mathrm{C} 2 \mathrm{~N}-\mathrm{C} 3 \mathrm{~N}-\mathrm{C} 5 \mathrm{~N}-\mathrm{C} 4 \mathrm{~N}$	-115.2 (6)
$\mathrm{N} 1 \mathrm{O}-\mathrm{C} 2 \mathrm{O}-\mathrm{C} 3 \mathrm{O}-\mathrm{C} 5 \mathrm{O}$	-78.7 (5)
$\mathrm{C} 2 \mathrm{O}-\mathrm{C} 3 \mathrm{O}-\mathrm{C} 5 \mathrm{O}-\mathrm{C} 4 \mathrm{O}$	111.8 (6)
N1P-C2P-C3P-C5P	-79.1 (6)
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 5 \mathrm{P}-\mathrm{C} 4 \mathrm{P}$	111.3 (6)

Table 2

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
0.91	1.91	$2.797(5)$	165
0.91	1.90	$2.784(6)$	165
0.91	1.98	$2.820(6)$	152
0.91	1.94	$2.813(5)$	159
0.91	1.94	$2.789(5)$	155
0.91	1.93	$2.798(5)$	159
0.91	1.95	$2.811(6)$	158
0.91	1.94	$2.810(5)$	161
0.91	1.93	$2.801(5)$	159
0.91	1.92	$2.786(6)$	157
0.91	1.96	$2.833(5)$	159
0.91	1.94	$2.812(5)$	161
0.91	1.95	$2.796(5)$	155
0.91	1.91	$2.789(5)$	162
0.91	1.94	$2.813(6)$	160
0.91	1.96	$2.809(6)$	154
0.91	1.83	$2.704(6)$	161
0.91	1.84	$2.716(6)$	162
0.91	1.81	$2.716(6)$	176
0.91	1.83	$2.713(6)$	165
0.91	1.82	$2.720(6)$	172
0.91	1.83	$2.717(6)$	165
0.91	1.79	$2.697(6)$	172
0.91	1.81	$2.709(6)$	167
0.91	1.80	$2.699(6)$	169
0.91	1.81	$2.711(6)$	170
0.91	1.84	$2.716(6)$	161
0.91	1.83	$2.713(6)$	162
0.91	1.82	$2.723(6)$	171
0.91	1.86	$2.735(6)$	161
0.91	1.79	$2.692(6)$	169

$\mathrm{N} 1 P-\mathrm{H} 2 \mathrm{P} \cdots{ }^{\circ} \mathrm{O} 2 \mathrm{O}^{\text {v }}$	0.91	1.79	2.699 (6)	177
$\mathrm{N} 1 A-\mathrm{H} 3 A \cdots \mathrm{O} 1 H^{\text {iv }}$	0.91	1.97	2.876 (6)	175
$\mathrm{N} 1 B-\mathrm{H} 3 B \cdots \mathrm{O} 1 G$	0.91	1.97	2.880 (6)	176
$\mathrm{N} 1 C-\mathrm{H} 3 C \cdots \mathrm{O} 1 E^{\mathrm{v}}$	0.91	2.03	2.918 (6)	165
$\mathrm{N} 1 D-\mathrm{H} 3 D^{\cdots} \mathrm{O}_{1} F^{\mathrm{v}}$	0.91	2.01	2.919 (6)	173
$\mathrm{N} 1 E-\mathrm{H} 3 E \cdots \mathrm{O} 1 A$	0.91	1.99	2.886 (6)	170
$\mathrm{N} 1 F-\mathrm{H} 3 F \cdots \mathrm{O} 1 B$	0.91	1.99	2.895 (6)	175
$\mathrm{N} 1 G-\mathrm{H} 3 G \cdots \mathrm{O} 1 C$	0.91	2.02	2.916 (6)	166
$\mathrm{N} 1 H-\mathrm{H} 3 H \cdots \mathrm{O} 1 D$	0.91	2.03	2.926 (6)	167
$\mathrm{N} 1 \mathrm{I}-\mathrm{H} 3 \mathrm{I} \cdots \mathrm{O} 1 O$	0.91	1.97	2.870 (6)	172
$\mathrm{N} 1 J-\mathrm{H} 3 J \cdots \mathrm{O} 1 P$	0.91	1.97	2.875 (6)	171
$\mathrm{N} 1 K-\mathrm{H} 3 K \cdots \mathrm{O} 1 N$	0.91	2.01	2.915 (5)	175
$\mathrm{N} 1 L-\mathrm{H} 3 L \cdots \mathrm{O} 1 M^{\mathrm{v}}$	0.91	2.02	2.928 (6)	173
$\mathrm{N} 1 M-\mathrm{H} 3 \mathrm{M} \cdots \mathrm{O} 1 \mathrm{I}$	0.91	1.99	2.891 (6)	170
$\mathrm{N} 1 N-\mathrm{H} 3 N \cdots \mathrm{O} 1 J$	0.91	1.98	2.893 (5)	179
$\mathrm{N} 1 \mathrm{O}-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 1 \mathrm{~K}$	0.91	2.03	2.925 (6)	166
$\mathrm{N} 1 P-\mathrm{H} 3 P \cdots \mathrm{O} 1 L$	0.91	2.04	2.919 (6)	161

Symmetry codes: (i) $x-1, y, z$; (ii) $x, y+1, z$; (iii) $x-1, y-1, z$; (iv) $x, y-1, z$; (v) $x+1, y, z$; (vi) $x+1, y+1, z$.

The structure of was refined without constraints or restraints on C, N or O positions. No postional disorder was indicated. H atoms were positioned with idealized geometry with fixed $\mathrm{N}-\mathrm{H}=0.88$ (aromatic) or $0.91 \AA$ (amino) and C $-\mathrm{H}=0.95$ (aromatic), 0.99 (methylene) or $1.00 \AA$ (methine), while permitting free rotation for the amino groups. $U_{\text {iso }}$ values were set to $1.2 U_{\mathrm{eq}}$ of the carrier atom, or $1.5 U_{\mathrm{eq}}$ for amino groups. In the absence of significant anomalous scattering effects, 23163 Friedel pairs were merged.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
(type here to add acknowledgements)

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2007). APEX2, SAINT+ and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Figure 1

The paper contains seven figures and two schemes

