# A single crystal investigation of L-tryptophan with Z' = 16Carl Henrik Görbitz, Karl Wilhelm Törnroos and Graeme Day

# Supplementary material

1. **Figure 1S** (below). Overlay of the eight molecules **A**, **B**, **E**, **F**, **I**, **J**, **M** and **N** of the *T* family (calculated by Sybyl-X, version 1.3; Tripos, 2011).

2. cif file for refinement model with extended constraints on anisotropic displacement parameters, 1338 refined parameters, final *R*-factor 0.0879.

3. *Acta Cryst.* C style preprint including complete listing of torsion angles and hydrogen bonding geometry.



#### Figure 1S

## Reference

Tripos (2011). Sybyl-X 1.3. Tripos International, St. Louis, Missouri, USA



**Figure 2S**. Observed powder XRD data at T = 295 K compared with calculated pattern from single crystal structure at T = 123 K.

# A single crystal investigation of L-tryptophan with Z' = 16

## Carl Henrik Görbitz,<sup>a\*</sup> Karl Wilhelm Törnroos<sup>b</sup> and Graeme Day<sup>c</sup>

<sup>a</sup>Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway, <sup>b</sup>Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway, and <sup>c</sup>Department of Chemistry, University of Cambridge, UK Correspondence email: c.h.gorbitz@kjemi.uio.no

A complex, disorder-free structure in space group *P*1 has been established for L-tryptophan, for which no crystal structure has previously been available. The 16 molecules in the asymmetric unit can be divided into two groups of eight molecules; one group where the side chains have *gauche*- orientations and one group with *trans* orientations. Molecules within each group have almost identical molecular geometries. The unit cell lengths mimic an hexagonal cell, but deviations from 90° for the cell angles  $\alpha = 84.421$  (4)° and  $\beta = 87.694$  (4)° give a small tilt that rules out hexagonal (or trigonal) symmetry. The hydrogen bonding pattern resembles that found in the crystal structure of the racemic structure of DL-tryptophan, but the calculated density, hydrogen bond lengths and aromatic interactions show that the enantiomeric structure is less efficiently packed.

#### Comment

Text

#### **Experimental**

From a saturated solutions of L-Trp in water (approximately 10  $\mu$ g/ml), 30 ml was deposited into a series of 30 x 6 mm test tubes. The tubes were subsequently sealed with parafilm. For each tube a needle was then used to prick a single small hole in the parafilm after which the tube was placed inside a larger test tube filled with 1 mL of acetonitrile. The system was ultimately capped and left for three days at 20 °C.

#### Crystal data

| $C_{11}H_{12}N_2O_2$            |
|---------------------------------|
| $M_r = 204.23$                  |
| Triclinic, P1                   |
| a = 11.430(3) Å                 |
| b = 11.464 (4)  Å               |
| c = 35.606 (9)  Å               |
| $\alpha = 84.421 \ (4)^{\circ}$ |
| $\beta = 87.694 \ (4)^{\circ}$  |

#### Data collection

Bruker APEXII CCD diffractometer Absorption correction: Multi-scan (*SADABS*; Bruker, 2007)  $T_{min} = 0.943$ ,  $T_{max} = 0.987$ 66471 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.085$  $wR(F^2) = 0.255$ S = 1.1324736 reflections 2178 parameters

| $\gamma = 60.102 \ (2)^{\circ}$                       |
|-------------------------------------------------------|
| $V = 4025.6 (19) \text{ Å}^3$                         |
| Z = 16                                                |
| Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| $\mu = 0.10 \text{ mm}^{-1}$                          |
| T = 123  K                                            |
| $0.62\times0.28\times0.14~mm$                         |
|                                                       |

24736 independent reflections 19659 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.043$ 

3 restraints H-atom parameters constrained 
$$\begin{split} &\Delta\rho_{max}=0.53~e~\AA^{-3}\\ &\Delta\rho_{min}=-0.47~e~\AA^{-3} \end{split}$$

# Table 1

Selected torsion angles (°)

| N1A—C2A—C3A—C5A | -172.9 (4) | N1I—C2I—C3I—C5I | -173.1 (4) |
|-----------------|------------|-----------------|------------|
| C2A—C3A—C5A—C4A | -114.9 (6) | C2I—C3I—C5I—C4I | -113.3 (6) |
| N1B-C2B-C3B-C5B | -174.1 (4) | N1J—C2J—C3J—C5J | -173.6 (4) |
| C2B-C3B-C5B-C4B | -112.2 (6) | C2J—C3J—C5J—C4J | -113.2 (6) |
| N1C—C2C—C3C—C5C | -79.1 (5)  | N1K—C2K—C3K—C5K | -78.2 (5)  |
| C2C—C3C—C5C—C4C | 111.2 (6)  | C2K—C3K—C5K—C4K | 109.8 (6)  |
| N1D-C2D-C3D-C5D | -79.0 (5)  | N1L—C2L—C3L—C5L | -79.8 (5)  |
| C2D-C3D-C5D-C4D | 112.1 (6)  | C2L—C3L—C5L—C4L | 113.5 (6)  |
| N1E—C2E—C3E—C5E | -173.1 (4) | N1M—C2M—C3M—C5M | -173.4 (4) |
| C2E—C3E—C5E—C4E | -114.0 (6) | C2M—C3M—C5M—C4M | -112.6 (6) |
| N1F—C2F—C3F—C5F | -173.7 (4) | N1N-C2N-C3N-C5N | -173.4 (4) |
| C2F—C3F—C5F—C4F | -114.7 (6) | C2N-C3N-C5N-C4N | -115.2 (6) |
| N1G-C2G-C3G-C5G | -77.8 (5)  | N10-C20-C30-C50 | -78.7 (5)  |
| C2G—C3G—C5G—C4G | 109.6 (6)  | C2O—C3O—C5O—C4O | 111.8 (6)  |
| N1H—C2H—C3H—C5H | -80.0 (5)  | N1P-C2P-C3P-C5P | -79.1 (6)  |
| C2H—C3H—C5H—C4H | 113.6 (6)  | C2P—C3P—C5P—C4P | 111.3 (6)  |
|                 |            |                 |            |

# Table 2

Hydrogen-bond geometry (Å, °)

| D—H···A                                               | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|-------------------------------------------------------|-------------|-------|--------------|------------|
| N1 <i>A</i> —H1 <i>A</i> ···O1 <i>E</i>               | 0.91        | 1.91  | 2.797 (5)    | 165        |
| N1 <i>B</i> —H1 <i>B</i> ···O1 <i>F</i>               | 0.91        | 1.90  | 2.784 (6)    | 165        |
| N1 <i>C</i> —H1 <i>C</i> ···O1 <i>G</i>               | 0.91        | 1.98  | 2.820 (6)    | 152        |
| N1 <i>D</i> —H1 <i>D</i> …O1 <i>H</i>                 | 0.91        | 1.94  | 2.813 (5)    | 159        |
| $N1E$ — $H1E$ ···O1 $C^{i}$                           | 0.91        | 1.94  | 2.789 (5)    | 155        |
| $N1F$ — $H1F$ ···O1 $D^{i}$                           | 0.91        | 1.93  | 2.798 (5)    | 159        |
| N1G—H1G···O1B                                         | 0.91        | 1.95  | 2.811 (6)    | 158        |
| N1 <i>H</i> —H1 <i>H</i> ···O1 <i>A</i> <sup>ii</sup> | 0.91        | 1.94  | 2.810 (5)    | 161        |
| N1 <i>I</i> —H1 <i>I</i> ···O1 <i>M</i>               | 0.91        | 1.93  | 2.801 (5)    | 159        |
| N1 <i>J</i> —H1 <i>J</i> ···O1 <i>N</i>               | 0.91        | 1.92  | 2.786 (6)    | 157        |
| N1 <i>K</i> —H1 <i>K</i> ···O1 <i>O</i>               | 0.91        | 1.96  | 2.833 (5)    | 159        |
| N1 <i>L</i> —H1 <i>L</i> ···O1 <i>P</i>               | 0.91        | 1.94  | 2.812 (5)    | 161        |
| $N1M$ — $H1M$ ···O $1L^{iii}$                         | 0.91        | 1.95  | 2.796 (5)    | 155        |
| N1 <i>N</i> —H1 <i>N</i> ···O1 <i>K</i>               | 0.91        | 1.91  | 2.789 (5)    | 162        |
| N1 <i>O</i> —H1 <i>O</i> …O1 <i>I</i>                 | 0.91        | 1.94  | 2.813 (6)    | 160        |
| N1 <i>P</i> —H1 <i>P</i> …O1 <i>J</i>                 | 0.91        | 1.96  | 2.809 (6)    | 154        |
| N1 <i>A</i> —H2 <i>A</i> ···O2 <i>B</i>               | 0.91        | 1.83  | 2.704 (6)    | 161        |
| N1 <i>B</i> —H2 <i>B</i> ···O2 <i>A</i> <sup>ii</sup> | 0.91        | 1.84  | 2.716 (6)    | 162        |
| N1 <i>C</i> —H2 <i>C</i> ···O2 <i>D</i>               | 0.91        | 1.81  | 2.716 (6)    | 176        |
| $N1D$ — $H2D$ ···O2 $C^{ii}$                          | 0.91        | 1.83  | 2.713 (6)    | 165        |
| $N1E$ — $H2E$ ···O2 $F^{iv}$                          | 0.91        | 1.82  | 2.720 (6)    | 172        |
| N1 <i>F</i> —H2 <i>F</i> ···O2 <i>E</i>               | 0.91        | 1.83  | 2.717 (6)    | 165        |
| $N1G$ — $H2G$ ···O2 $H^{iv}$                          | 0.91        | 1.79  | 2.697 (6)    | 172        |
| N1 <i>H</i> —H2 <i>H</i> ···O2 <i>G</i>               | 0.91        | 1.81  | 2.709 (6)    | 167        |
| N1 <i>I</i> —H2 <i>I</i> ···O2 <i>J</i> <sup>i</sup>  | 0.91        | 1.80  | 2.699 (6)    | 169        |
| N1 <i>J</i> —H2 <i>J</i> ···O2 <i>I</i> <sup>ii</sup> | 0.91        | 1.81  | 2.711 (6)    | 170        |
| $N1K$ — $H2K$ ···O $2L^{i}$                           | 0.91        | 1.84  | 2.716 (6)    | 161        |
| N1 $L$ —H2 $L$ ···O2 $K^{ii}$                         | 0.91        | 1.83  | 2.713 (6)    | 162        |
| $N1M$ — $H2M$ ···O2 $N^{iv}$                          | 0.91        | 1.82  | 2.723 (6)    | 171        |
| $N1N - H2N \cdots O2M^{v}$                            | 0.91        | 1.86  | 2.735 (6)    | 161        |
| $N1O - H2O \cdots O2P^{iv}$                           | 0.91        | 1.79  | 2.692 (6)    | 169        |
|                                                       |             |       |              |            |

| $N1P$ — $H2P$ ···O2 $O^{v}$             | 0.91 | 1.79 | 2.699 (6) | 177 |
|-----------------------------------------|------|------|-----------|-----|
| N1A—H3A···O1 $H^{iv}$                   | 0.91 | 1.97 | 2.876 (6) | 175 |
| N1 <i>B</i> —H3 <i>B</i> ···O1 <i>G</i> | 0.91 | 1.97 | 2.880 (6) | 176 |
| $N1C$ — $H3C$ ···O $1E^{v}$             | 0.91 | 2.03 | 2.918 (6) | 165 |
| $N1D$ — $H3D$ ···O1 $F^{v}$             | 0.91 | 2.01 | 2.919 (6) | 173 |
| N1 <i>E</i> —H3 <i>E</i> ···O1 <i>A</i> | 0.91 | 1.99 | 2.886 (6) | 170 |
| N1 <i>F</i> —H3 <i>F</i> ···O1 <i>B</i> | 0.91 | 1.99 | 2.895 (6) | 175 |
| N1 <i>G</i> —H3 <i>G</i> ···O1 <i>C</i> | 0.91 | 2.02 | 2.916 (6) | 166 |
| N1 <i>H</i> —H3 <i>H</i> ···O1 <i>D</i> | 0.91 | 2.03 | 2.926 (6) | 167 |
| N1 <i>I</i> —H3 <i>I</i> ···O1 <i>O</i> | 0.91 | 1.97 | 2.870 (6) | 172 |
| N1 <i>J</i> —H3 <i>J</i> …O1 <i>P</i>   | 0.91 | 1.97 | 2.875 (6) | 171 |
| N1 <i>K</i> —H3 <i>K</i> ···O1 <i>N</i> | 0.91 | 2.01 | 2.915 (5) | 175 |
| $N1L$ — $H3L$ ···O1 $M^{vi}$            | 0.91 | 2.02 | 2.928 (6) | 173 |
| N1 <i>M</i> —H3 <i>M</i> …O1 <i>I</i>   | 0.91 | 1.99 | 2.891 (6) | 170 |
| N1 <i>N</i> —H3 <i>N</i> ···O1 <i>J</i> | 0.91 | 1.98 | 2.893 (5) | 179 |
| N1 <i>O</i> —H3 <i>O</i> …O1 <i>K</i>   | 0.91 | 2.03 | 2.925 (6) | 166 |
| N1 <i>P</i> —H3 <i>P</i> …O1 <i>L</i>   | 0.91 | 2.04 | 2.919 (6) | 161 |
|                                         |      |      |           |     |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*-1, *y*-1, *z*; (iv) *x*, *y*-1, *z*; (v) *x*+1, *y*, *z*; (vi) *x*+1, *y*+1, *z*.

The structure of was refined without constraints or restraints on C, N or O positions. No postional disorder was indicated. H atoms were positioned with idealized geometry with fixed N—H = 0.88 (aromatic) or 0.91 Å (amino) and C —H = 0.95 (aromatic), 0.99 (methylene) or 1.00 Å (methine), while permitting free rotation for the amino groups.  $U_{iso}$  values were set to  $1.2U_{eq}$  of the carrier atom, or  $1.5U_{eq}$  for amino groups. In the absence of significant anomalous scattering effects, 23163 Friedel pairs were merged.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus* (Bruker, 2007); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(type here to add acknowledgements)

#### References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bruker (2007). APEX2, SAINT+ and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

#### Figure 1

The paper contains seven figures and two schemes