Supporting information

Appendix A.

For conformations **3** and **4**, additional conformational MP2/6-311G(d,p) scans have been achieved around the equilibrium position of these two conformations. Six steps of 10° have been considered around the exact position of minima obtained with PBE0/6-31G(d,p) for conformation **3** and **4**. Each scan is accomplished with one dihedral angles constrained (either T1 or T2) and the rest of the molecule unconstrained. All the scans were performed in both directions (by steps of $+ 10^{\circ}$ and -10°). As seen on the evolution in the figure, there is no discrepancy between the two series of points in each original (black squares) and reverse scans (red crosses) but they were accomplished on a limited range of dihedral angle values, in contrast with the potential energy surface scan in [Price, 2005]. According to the minimal dihedral angles values highlighted here, there is a little correction to bring about the position of the two minima in conformation **3** and **4** (60° in place of 70° for T2 in conformation **3** and 90° and 300° in place of 80° and 290° for T1 and T2 respectively in conformation **4**).

Figure Potential energy surface scans of T1 (left panels) and T2 (right panels) for PIRACETAM in conformation **3** (above) and **4**(under) in both directions for each scan

Appendix B.

Figure H-bond network in the crystal packing for the experimental structure (Polymorph III) (D: distance between H-donor and H-acceptor atom; d: distance between H atom and H-acceptor atom and ?: angle between H-donor atom, H atom and H-acceptor atom) (i = x, y, -1 + z; ii = 1 - x, 1 - y, -z).

Appendix C.

Table Description of H-bonds for the five PIRACETAM polymorphs registered in CSD (D: distance between H-donor and H-acceptor atom; d: distance between H atom and H-acceptor atom and ?: angle between H-donor atom, H atom and H-acceptor atom) and comparison between form III from CSD and form III from this work.

Polymorph	H-bond protagonists	D (?)	d (?)	? (°)		
Form I (BISMEV03	$NH_2 \exp - C = O_{li} endo$ (1)	2.929(17)	2.005	148		
Space group : $P2_1/n$	$NH_2 exo - C = O_{2ii} exo$ (2)	2.894(12)	2.123	122		
(i = -	$\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$, $ii =$	$-\frac{1}{2} + x, \frac{1}{2} - y,$	$-\frac{1}{2} + z$)			
<i>Form II (BISMEV [</i> Admiraal <i>et al.</i> ,	$NH_2 \exp - C = O_{li} endo$ (1)	2.9628	2.001	160		
1982]) Space group : P-1	$NH_2 exo - C = O_{2ii} exo$ (2)	2.9419	1.954	169		
	(i = 1 - x, 1 - y, -z, i)	ii = 1 + x, y, z				
Form III (BISMEV02 [Galdecki et al.,	$NH_2 exo - C = O_{li} endo$ (1)	2.964(6)	2.161(3)	160.6(3)		
Space group : $P2_1/n$	$\begin{array}{c} \text{NH}_2 \text{ exo} - \text{C}=\text{O}_{2ii} \text{ exo} \\ \textbf{(2)} \end{array}$	2.939(6)	2.053(3)	167.7(2)		
(i = x, y, -1 + z; ii = 1 - x, 1 - y, -z)						
Form IV (BISMEV04 [Fabbiani et al.,	$NH_2 exo - C=O_{li} endo$ (1)	3.017(5)	2.173	162		
Space group : P2 ₁ /c	$NH_2 \exp{-C=O_{2ii} exo}$ (2)	2.941(8)	2.050	176		
$(i = 2 - x, -\frac{1}{2} + y, \frac{5}{2} - z, ii = 1 - x, -y, 2 - z)$						
Form V (BISMEV08 [Fabbiani et al., 20071)	$NH_2 exo - C=O_{li} endo$ (1)	2.953(10)	2.140	153		
Space group : P-1	$ \begin{array}{c} \operatorname{NH}_2 \operatorname{exo} - \operatorname{C}=\operatorname{O}_{2ii} \operatorname{exo} \\ \end{array} (2) $	2.881(11)	2.017	167		
(i = -1 + x, y, z; ii = 1 - x, -y, -z)						

Appendix D.

Table General description of the 30 structures in CSD involving PIRACETAM.

CSD Refcode	Cocrystallizer	Space group	R ₁ - factor	[Reference, Deposition year]	T1 (°)	T2 (°)
BISMEV03 (Polymorph I)	/	$P2_1/n$	3.0	[Louër <i>et al.</i> , 1995]	103.3(14) (*)	178.4(11) (*)
BISMEV05 (Polymorph I)	/	$P2_1/n$	4.2	[Fabbiani <i>et al.</i> , 2005]	95.6(16) (*)	177.5(19) (*)
BISMEV (Polymorph II)	/	P-1	5.8	[Admiraal <i>et</i> <i>al.</i> , 1982]	91.9 (*)	155.1 (*)
BISMEV01 (Polymorph III)	/	P21/n	6.4	[Admiraal <i>et al.</i> , 1982]	92.7 (*)	159.2 (*)
BISMEV02 (Polymorph III)	/	$P2_1/n$	4.9	[Galdecki et al., 1983]	92.6(2) (*)	200.63(2) (*)
BISMEV04 (Polymorph IV)	/	$P2_1/c$	5.3	[Louër <i>et al</i> ., 1995]	115.4(6) (*)	328.0(7) (**)
BISMEV06 (Polymorph V)	/	P-1	11.5	[Fabbiani <i>et</i> <i>al.</i> , 2007]	89.6(12) (*)	154.1(9) (*)
BISMEV07 (polymorph V)	/	P-1	8.8	[Fabbiani <i>et al.</i> , 2007]	90.4(13) (*)	158.8(8) (*)
BISMEV08 (polymorph V)	/	P-1	8.0	[Fabbiani <i>et</i> <i>al.</i> , 2007]	91.2(10) (*)	160.3(7) (*)
BISMEV09 (polymorph V)	/	P-1	8.8	[Fabbiani <i>et al.</i> , 2007]	86.8(12) (*)	159.7(8) (*)
BISMEV10 (polymorph V)	/	P-1	9.1	[Fabbiani <i>et al.</i> , 2007]	84.5(13) (*)	160.6(8) (*)
YAKWAJ (monohydrate)	/	P-1	4.1	[Fabbiani <i>et</i> <i>al.</i> , 2005]	92.2(11) (*)	170.43(10) (*)
LIFNOE (dihydrate)	/	P-1	3.5	[Fabbiani <i>et</i> <i>al.</i> , 2007]	118.0(5) (*)	153.0(5) (*)
Polymorph III	/	$P2_1/n$	3.5	In this work	93.00(13) (*)	159.25(11) (*)
DAVPAS	Gentisic acid	C2/c	4.3	[Vishweshwar et al., 2005]	76.7(9) (*)	185.7(7) (*)
DAVPEW	Parahydroxybenzoïc acid	$P2_1/n$	4.8	[Vishweshwar et al., 2005]	80.7(11) (*)	168.4(3) (*)
RUCDUP	L-tartaric acid	P212121	3.4	2009 [Viertelhaus <i>et al.</i> , 2009]	258.0(13) (*)	199.3(10) (*)
RUCFAX	Citric acid (1 : 1)	$P2_1/a$	3.5	[Viertelhaus	114.8(17)	159.8(14)

				et al., 2009]	(*)	(*)
RUCFEB	Citric acid (3 : 2)	P21/a	7.7	[Viertelhaus	110.3(2) (*) 81.3(2) (*)	157.1(2) (*) 183 4(2) (*)
	Mandelic acid			[Viertelbaus	72.2(2) (*) 87.5(19)	163.4(2)(*) 161.0(2)(*) 178.4(13)
RUCFIF	(racemic)	C2/c	8.3	<i>et al.</i> , 2009]	(*)	(*)
XOZSOV	L-mandelic acid	P2 ₁ 2 ₁ 2 ₁	5.5	[Viertelhaus et al., 2009]	261.4(2) (**) 265.9(2) (**)	(*) 189.5(17) (*)
YEDJIA	Cobalt (Co (II))/ 2 NO3 ⁻ / 2H2O	P-1	3.9	1993 [Sabirov et al., 1993a]	107.7(4) (*)	169.6(3) (*)
HAFSAI	Cobalt (Co (II))/ 2 Cl ⁻ / 2H ₂ O	P-1	3.3	1992 [Sabirov et al., 1992c]	104.5(3) (*)	160.5(3) (*)
HEPWII	Copper (Cu (II))/ 2 NO ₃ ⁻ / 2H ₂ O	P21/n	7.5	1993 [Sabirov et al., 1993b]	112.3(7) (*)	7.8(9) (**)
JOFJAP	Copper (Cu (II))/ 2H ₂ O / ClO ₄	P21/c	6.7	[Delacruz <i>et</i> al., 1992]	90.7(4) (*)	9.3(7) (**)
WAJPAY	Copper (Cu (II))/ 2 NO ₃ ⁻ / 2H ₂ O	$P2_1/n$	2.9	1992 [Sabirov et al., 1992a]	113.8(2) (*)	7.7(3) (**)
WAJSOP	Zinc (Zn (II))/ 2H ₂ O	$P2_1/n$	4.7	1992 [Sabirov et al., 1992b]	97.6(7) (*)	2.6(7) (**)
WEGBEP	Zinc (Zn (II))/ 2 NO ₃ ⁻ / 2H ₂ O	P-1	4.5	1993 [Sabirov et al., 1993c]	104.8(4) (*)	167.8(3) (*)
LEDZUP	Manganese (Mn (II))/ 2 Cl ⁻ / 2H ₂ O	P-1	4.7	1993 [Sabirov et al., 1993d]	99.6(18) (**)	159.8(17) (*)
HEPWUU	Nickel (Ni (II))/ 2 NO ₃ ⁻ / 2H ₂ O	P-1	4.7	1993 [Sabirov et al., 1993e]	109.0(4) (*)	167.5(8) (*)
OHECEK	Nickel (Ni (II)) / 2 H ₂ O (With Cl ⁻ & H ₂ O)	P21/c	6.9	[Braga <i>et al</i> ., 2009]	85.8(11) (*)	350.0(13) (**)
					* Category	* Category

Dihedral	angles	distribution	

$\begin{array}{c} ** & ** \\ Category \\ 2:270 \pm \\ 30^{\circ} & :0 \pm 30^{\circ} \end{array}$	$1:90 \pm 30^{\circ}$	1 : 180 ± 30°
	** Category 2 : 270 ± 30°	** Category 2 : 0 ± 30°