Supplementary Materials

Figure 1 View of the highest residue (pointed by the red arrow) for two orientations of the cobalt complex. Blue: N atoms, red: O atoms, gray: C atoms, green: Co atoms. The black isosurface is drawn for 0.5 e.Å^{-3}

Figure 2 Local axes of the Co atoms for the multipole refinement: X axis is along the Co⁻Co direction (**b** axis), Z axis is perpendicular to the Co₁-O₁-Co₂-O_{1i} plane and Y completes the basis set (in the plane of the bridge).

The d-orbital density is:

$$\rho = \sum_{i} \sum_{j} P_{ij} \phi(d_i) \phi(d_j)$$

Where $\phi(d_i)$ the atomic d-orbital basis set and Pij is is the population of the ij product. The cross term is $\phi(d_i)\phi(d_j)$ with $i\neq j$ and should be zero for the highest symmetry environments.

 Table 1
 Cross terms for the different d-orbital models (obtained with ERD, Sabino & Coppens(2003)).

	Option	dz^2/xz	dz²/yz	dz^2/x^2-y^2	dz2/xy	dxz/yz	dxz/x^2-y^2	dxz/xy	dyz/x^2-y^2	dyz/xy	dx^2-y^2/xy	Sum(di/dj) ²
Co ₁	Ι	-0.059	-0.112	-0.010	-0.272	-0.421	-0.155	-0.046	-0.088	0.151	-0.101	0.334
Co_1	II	0.034	-0.059	0.000	0.289	0.4401	0.048	0.043	0.040	-0.035	0.063	0.294
Co ₂	Ι	-0.033	-0.011	-0.0058	-0.205	-0.399	-0.127	0.125	-0.032	0.322	0.069	0.344
Co ₂	II	0.0312	-0.037	0.000	0.207	0.404	0.044	0.221	0.043	-0.220	0.198	0.349

 Table 2
 Topological properties at selected bond critical points (i refer to the applied symmetry: -x, y, -z+1/2)

Bond	d (Å)	ρ(CP) (e.Å ⁻³)	$\nabla^2 \rho(rc)$ (e.Å ⁻⁵)	d _{1-bcp} (Å)	λ ₁ (e.Å ⁻⁵)	λ_2 (e.Å ⁻⁵)	λ ₃ (e.Å ⁻⁵)
C1-O1	1.3364(5)	2.12	-16.0	0.514	-17.4	-16.1	17.5
C1-C2	1.4114(6)	2.05	-17.8	0.705	-15.7	-12.8	10.71
C2-C3	1.3933(6)	2.08	-17.9	0.686	-15.91	-12.76	10.77
C3-C4	1.4005(7)	2.10	-18.4	0.696	-16.0	-13.3	10.8
C4-C5	1.3974(7)	2.09	-18.1	0.704	-15.9	-13.0	10.8
C5-C6	1.4008(6)	2.05	-17.4	0.710	-15.6	-12.6	10.8
C6-C1	1.4100(6)	2.07	-17.8	0.704	-16.0	-12.6	10.7
C4-C11	1.5070(7)	1.67	-12.4	0.744	-11.7	-10.8	10.1
Ring pheny	/1	0.15	3.47		-1.15	-0.26	1.74

ATOM	Net Charge (e) NEWPROP	Net Charge (e) WinXPRO	ATOM	Net Charge (e) NEWPROP	Net Charge (e) WinXPRO	ATOM	Net Charge (e) NEWPROP	Net Charge (e) WinXPRO
Col	0.8	0.8	C115	0.1	0.0	H103	-0.1	0.2
Co2	0.9	0.8	C116	0.1	0.0	H104	0.1	0.3
В	1.6	1.9	C117	-0.2	-0.6	H105	0.0	0.2
01	-1.4	-1.4	C118	-0.2	-0.4	H106	0.0	0.2
05	-1.3	-1.4	C119	-0.4	-0.4	H108	0.0	0.2
O6	-1.3	-1.5	C120	-0.1	-0.2	H109	0.0	0.2
07	-0.8	-1.1	C121	0.0	-0.2	H110	-0.1	0.1
08	-1.1	-1.2	C122	0.0	-0.1	H111	-0.1	0.1
N1	-1.1	-1.1	C123	-0.1	-0.3	H112	0.0	0.2
N4	-1.1	-1.1	C124	-0.1	-0.2	H114	0.2	0.4
C1	0.4	0.6	C125	-0.1	-0.6	H115	0.0	0.2
C2	-0.2	-0.2	C126	0.7	0.9	H116	0.0	0.2
C3	-0.1	-0.3	C127	-0.6	-1.1	H117	0.0	0.2
C4	-0.1	-0.1	H1	0.7	0.8	H118	0.0	0.3
C5	-0.1	-0.2	H2	0.6	0.8	H120	0.0	0.2
C6	-0.2	-0.1	Н3	0.1	0.3	H121	0.0	0.2
C7	0.2	-0.1	Н5	0.0	0.2	H122	0.0	0.2
C10	0.2	-0.3	H7a	0.0	0.2	H123	0.0	0.2
C11	0.0	-0.5	H7b	0.0	0.2	H124	0.1	0.3
C12	0.2	-0.1	H10a	0.1	0.3	H125	0.2	0.4
C13	0.1	-0.2	H10b	0.0	0.2	H126	0.1	0.3
C15	0.1	-0.3	H10c	0.0	0.2	H127	0.0	0.2
C23	0.1	-0.2	H11a	0.1	0.3	H128	0.1	0.3
C24	0.3	0.0	H11b	0.1	0.3	H129	0.1	0.4
C29	0.3	0.0	H11c	0.1	0.3	H130	0.3	0.4
C101	-0.5	-0.5	H12a	0.1	0.2	H01	0.6	0.8
C102	-0.1	-0.2	H12b	0.0	0.2	H02	0.6	0.8
C103	-0.1	-0.2	H13a	0.0	0.2		L	
C104	-0.1	-0.2	H13b	0.1	0.3			
C105	-0.1	-0.2	H15a	0.1	0.3			
C106	-0.1	-0.3	H15b	0.0	0.2			
C107	-0.4	-0.5	H15c	0.0	0.2			
C108	-0.1	-0.3	H23a	0.1	0.2			
C109	0.0	-0.1	H23b	0.1	0.3			
C110	-0.1	-0.3	H24a	0.0	0.2			
C111	0.0	-0.2	H24b	0.1	0.2			
C112	-0.1	-0.3	H29a	0.1	0.3			
C113	-0.3	-0.4	H29b	-0.1	0.2			
C114	0.0	-0.3	H102	0.0	0.3			

Table 3Integrated charges calculated by WinXPRO (Stash & Tsirelson, 2002) and NEWPROP (Souhassou& Blessing, 1999) programs.

ATOM	Volume (Å ³) NEWPROP	Volume (Å ³) WinXPRO	ATOM	Volume (Å ³) NEWPROP	Volume (Å ³) WinXPRO	ATOM	Volume (Å ³) NEWPROP	Volume (Å ³) WinXPRO
Co1	11.3	10.7	C115	13.0	13.2	H103	8.1	6.9
Co2	11.0	10.5	C116	11.5	11.7	H104	8.1	7.2
В	3.2	2.5	C117	15.5	16.5	H105	7.8	6.5
01	13.2	13.0	C118	14.3	14.6	H106	6.8	5.9
O5	15.1	15.3	C119	11.4	10.6	H108	6.9	6.0
O6	14.7	15.0	C120	12.1	12.2	H109	7.5	6.7
O7	19.8	21.0	C121	13.1	12.9	H110	9.4	8.3
08	18.6	18.0	C122	14.1	13.9	H111	8.8	7.8
N1	8.8	8.6	C123	13.8	13.6	H112	7.0	6.4
N4	8.7	8.6	C124	13.9	14.0	H114	6.9	5.8
C1	8.8	8.4	C125	15.5	17.3	H115	10.1	8.9
C2	10.5	9.9	C126	7.9	7.0	H116	7.9	7.6
C3	12.5	12.5	C127	13.9	16.1	H117	6.9	6.7
C4	11.8	10.9	H1	1.9	0.9	H118	7.6	6.3
C5	12.2	12.1	H2	2.1	1.2	H120	7.9	6.6
C6	9.9	9.4	H3	6.4	5.5	H121	8.7	7.8
C7	8.0	9.3	H5	7.6	6.8	H122	8.9	8.5
C10	10.0	11.9	H7a	6.8	6.4	H123	8.4	6.6
C11	12.6	15.2	H7b	5.4	4.8	H124	7.4	6.2
C12	7.9	9.0	H10a	7.2	6.6	H125	4.8	4.0
C13	8.8	10.1	H10b	6.1	5.5	H126	5.0	4.7
C15	9.7	11.5	H10c	7.5	6.9	H127	6.5	5.3
C23	8.4	9.6	H11a	6.8	6.0	H128	5.3	5.0
C24	8.2	9.7	H11b	7.1	7.1	H129	6.8	5.6
C29	7.9	9.2	H11c	9.0	7.9	H130	7.8	7.2
C101	11.4	10.7	H12a	5.1	4.6	H01	1.8	0.9
C102	12.1	12.5	H12b	7.7	7.2	H02	1.8	1.0
C103	12.8	12.7	H13a	7.5	6.9			
C104	14.4	14.6	H13b	6.7	5.8			
C105	14.6	14.5	H15a	6.3	5.7			
C106	11.5	11.8	H15b	6.2	5.4			
C107	11.0	11.0	H15c	6.8	6.1			
C108	13.4	13.7	H23a	7.9	7.4			
C109	12.6	13.2	H23b	6.2	5.5			
C110	13.4	14.0	H24a	7.4	6.7			
C111	12.4	13.1	H24b	6.7	6.0			
C112	11.3	12.1	H29a	7.3	6.8			
C113	11.0	10.8	H29b	6.6	5.9			
C114	12.1	14.6	H102	6.9	5.9			

Table 4Integrated basin volumes calculated by WinXPRO (Stash & Tsirelson, 2002) and NEWPROP(Souhassou & Blessing, 1999) programs.

References

Sabino, J. R. & Coppens, P. (2003). Acta Cryst. A59, 127–131
Souhassou, M. & Blessing, R. H. (1999). J. Appl. Cryst. 32, 210–217.
Stash, A. & Tsirelson, V. (2002). J. Appl. Cryst. 35, 371–373.