

Crystal of $[Ni(H_2O)_2(15C5)](HSO_4)_2$ removed from the mother liquor. Near room temperature, decomposition occurred after an hour, and growth of new green crystallites took place. These crystallites were those of the tetragonal polymorph of Ni(SO₄)·6H₂O.

Crystal of $[Ni(H_2O)_2(15C5)](HSO_4)_2$ mounted on the diffractometer. The indices are given in the $Cmc2_1$ cell of phase I. The most important crystal faces and directions of the reciprocal crystal axes are shown.

Overlay of the two crystallography independent formula units of $[Ni(H_2O)_2(15C5)](HSO_4)_2$ (phase III, Z' = 2). The two cations nearly superimposed (even the H atoms nearly superimposed except for those of the water ligands), whereas differences in orientations are more noticeable for the counterions.

Plots of $\frac{1}{2}(a + b')$ (Å) versus *T* (K). Values of $\frac{1}{2}(a + b')$ are measured for the transitions I \leftrightarrow II and II \leftrightarrow III at ± 4 K for both cooling (blue) and heating (red) regimens. Discontinuities in these values are found for both transitions. The positions of the vertical dotted lines give the estimated transition temperatures.

Drawing showing the packing in the unit cell of the $Pbn2_1$, Z' = 2 structure down the **c** direction. The structure is pseudosymmetric, and there are four non-crystallographic pseudo *c* glide planes (\perp to *b*) per unit cell separated by *b*/4. The pseudo glide planes are shown as black dashed lines. H atoms are omitted for clarity.

(i) non alternations R R or S S nb nb b b nb......b nb Ni Ni Ni Ni nb b nb nb b nbb (ii) alternations R S or S R nb nb b ... b nb nb b Ni Ni Ni Ni nb nb b b b ... b nb nb

The different geometries of the S $-O-H\cdots O-S$ bridges for nonalternations *R R* (or *S S*) and alternations *R S* (or *S R*) along the **a** ± **b**/2 directions (phase III). For alternations *R S* (or *S R*), the two bridges b b and nb b are related by 2₁ axes. Table S-1. Measurement temperature (*T*), number of reflections used for cell refinement, cell constants (*a*, *b*, *c*), and cell volume *V* for the transitions $I \rightarrow II$ and $II \rightarrow III$ in the cooling mode (blue), and for the transitions $III \rightarrow II$ and $II \rightarrow I$ in the heating mode (red). The cell constants are given in the cells $Cmc2_1$ (I), $Pbc2_1$ (II) and $Pbn2_1$ (III)

т (К)	phase	ref#	a (Å)	b (Å)	c (Å)	V(Å3)
270	I.	807	17.8604 (9)	7.4 836(3)	14.7905(5)	1976.89(18)
260	I.	820	17.8628(9)	7.4818(3)	14.7761(6)	1974.77(19)
250	Ш	834	17.7546(6)	7.5 264(3)	14.7896(6)	1976.32(20)
240	Ш	868	17.7533(10)	7.5 222(2)	14.7754(4)	1973.15(13)
230	Ш	872	17.7541(8)	7.5 25 3(3)	14.7627(6)	197238(18)
220	Ш	880	17.7525(11)	7.5 240(3)	14.7471(6)	1969.78(17)
210	П	908	17.7507(07)	7.5 245(4)	14.7321(5)	1967.69(18)
200	111	1060	17.8507(07)	14.9346(4)	14.7071(5)	3920.81(26)
190	III	1177	17.8480(6)	14.9298(7)	14.6955(5)	3915.85(37)
180	111	1243	17.8434(8)	14.9240(6)	14.6850(4)	3910.52(31)
170	111	1321	17.8424(7)	14.9226(7)	14.6749(5)	3907.29(39)
160	111	1339	17.8416(4)	14.9203(4)	14.6648(4)	3903.81(26)
150	111	1388	17.8410(6)	14.9171(5)	14.6533(4)	3899.75(33)
140	111	1416	17.8386(6)	14.9170(6)	14.6421(5)	3896.23(26)
130	111	1461	17.8396(8)	14.9132(6)	14.6331(6)	3893.06(32)
120	111	1485	17.8392(8)	14.9111(7)	14.6228(6)	3889.69(36)
110	111	1479	17.8377(9)	14.9086(8)	14.6118(7)	3885.78(39)
110	111	1519	17.8395 (8)	14.9060(6)	14.6111(7)	3885.34(42)
120	III	1495	17.8406(10)	14.9100(8)	14.6227(6)	3889.70(50)
130	111	1451	17.8396(10)	14.9124(7)	14.6338(5)	3893.02(39)
140	111	1419	17.8404 (8)	14.9152(6)	14.6428(6)	3896.34(39)
150	111	1398	17.8410(7)	14.9188(6)	14.6536(6)	3900.30(31)
160	111	1347	17.8416(8)	14.9213(6)	14.6642(6)	3903.89(27)
170	III	1311	17.8437(10)	14.9237(6)	14.6754(5)	3907.99(33)
180	111	1268	17.8474(8)	14.9272(5)	14.6852(4)	391229(29)
190	111	1207	17.8444(7)	14.9288(6)	14.6985(4)	3915.62(32)
200	III	1131	17.8500(6)	14.9305(6)	14.7088(4)	3920.03(34)
210	Ш	902	17.7525(12)	7.5 236(4)	14.7342(6)	1967.95(21)
220	Ш	912	17.7534(8)	7.5 241(3)	14.7479(5)	1970.00(18)
230	II	884	17.7528(8)	7.5 25 3(3)	14.7633(5)	1972.30(15)
240	Ш	872	17.7546(11)	7.5 261(4)	14.7761(6)	1974.44(20)
250	Ш	861	17.7556(9)	7.5 255(3)	14.7893(6)	1976.13(19)
260	Ш	850	17.7549(9)	7.5 274(4)	14.8023(6)	1978.31(18)
270	I	807	17.8605(10)	7.4 850(4)	14.792(10)	1977.49(18)

Table S-2. Measurement temperature (*T*), number of reflections used for cell refinement, cell constants (*a*, *b*, *c*), and cell volume *V* for the transitions $I \rightarrow II$ (cooling, blue) and $II \rightarrow I$ (heating, red). The cell constants are given in the cells $Cmc2_1$ (I) and $Pbc2_1$ (II)

Т (К)	phase	refl. #	a (Å)	b (Å)	c (Å)	V(Å ³)
278	I	833	17.8575(8)	7.4881(3)	14.8071(5)	1979.99(17)
274	I	723	17.8589(7)	7.4876(3)	14.8025(5)	1979.40(16)
270	Ι	852	17.8610(8)	7.4875(3)	14.7970(5)	1978.86(18)
266	I	834	17.8600(8)	7.4859(3)	14.7911(6)	1977.53(19)
262	I	857	17.8581(9)	7.4858(4)	14.7853(6)	1976.53(20)
258	I	847	17.8619(8)	7.4838(3)	14.7792(5)	1975.60(18)
254	I	860	17.8627(9)	7.4833(3)	14.7748(7)	1974.98(20)
250	П	888	17.7593(7)	7.5275(3)	14.7928(6)	1977.56(20)
246	П	894	17.7576(10)	7.5286(3)	14.7869(6)	1976.86(18)
242	П	899	17.7567(5)	7.5276(3)	14.7815(5)	1975.77(15)
242	П	899	17.7564(8)	7.5267(3)	14.7828(4)	1975.68(15)
246	П	913	17.7568(8)	7.5270(3)	14.7875(6)	1976.43(18)
250	П	896	17.7582(9)	7.5288(4)	14.7926(5)	1977.75(19)
254	П	878	17.7586(7)	7.5279(3)	14.7978(5)	1978.24(14)
258	П	883	17.7584(10)	7.5277(4)	14.8032(7)	1978.90(21)
262	П	878	17.7593(7)	7.5279(3)	14.8090(5)	1979.82(16)
266	I	840	17.8586(7)	7.4858(2)	14.7914(5)	1977.41(15)
270	I	843	17.8585(7)	7.4869(3)	14.7955(4)	1978.23(18)
274	I	840	17.8574(9)	7.4876(3)	14.8017(6)	1979.11(21)
278	I	828	17.8546(6)	7.4886(3)	14.8081(4)	1979.94(14)

Table S-3. Measurement temperature (*T*), number of reflections used for cell refinement, cell constants (*a*, *b*, *c*), and cell volume *V* for the transitions $II \rightarrow III$ (cooling, blue) and $III \rightarrow II$ (heating, red). The cell constants are given in the cells $Pbc2_1$ (II) and $Pbn2_1$ (III)

Т (К)	phase	refl. #	a (Å)	b (Å)	c (Å)	V(ų)
222	П	900	17.7557(10)	7.5269(2)	14.7553(5)	1971.98(17)
218	П	904	17.7525(10)	7.5266(3)	14.7487(5)	1970.66(16)
214	П	909	17.7514(11)	7.5260(3)	14.7429(7)	1969.60(23)
210	П	906	17.7516(10)	7.5258(3)	14.7385(6)	1968.98(18)
206	П	923	17.7506(9)	7.5259(3)	14.7334(5)	1968.21(17)
202	II	915	17.7518(10)	7.5252(3)	14.7273(8)	1967.37(20)
198	П	923	17.7504(10)	7.5236(3)	14.7225(6)	1966.12(23)
194	П	918	17.7494(10)	7.5242(3)	14.7182(6)	1965.60(19)
190	III	1165	17.8453(9)	14.9355(7)	14.6997(6)	3917.88(40)
186	III	1156	17.8427(7)	14.9349(6)	14.6965(6)	3916.32(44)
186	III	1186	17.8417(8)	14.9352(7)	14.6951(5)	3915.80(38)
190	III	1147	17.8425(6)	14.9353(6)	14.7012(5)	3917.64(33)
194	III	1124	17.8434(8)	14.9375(8)	14.7050(6)	3919.43(42)
198	III	1105	17.8430(8)	14.9409(5)	14.7083(6)	3921.08(33)
202	П	921	17.7514(10)	7.5240(3)	14.7264(6)	1966.88(17)
206	II	926	17.7520(7)	7.5260(3)	14.7323(5)	1968.26(16)
210	II	908	17.7527(10)	7.5256(3)	14.7371(6)	1968.87(16)
214	П	925	17.7523(11)	7.5255(4)	14.7434(7)	1969.65(25)
218	П	909	17.7515(10)	7.5257(4)	14.7487(6)	1970.31(23)
222	П	901	17.7531(9)	7.5258(2)	14.7431(5)	1971.11(16)

	0–H…O (Å)	H…O (Å)	00 (Å)	O-H-O (°)
Pha se I	0 11 0 (11)		< /	0 11 0 ()
06-H…08	0.767(19)	1.91(2)	2.667(3)	168(4)
06-H…08'	0.767(19)	2.02(2)	2.743(4)	157(4)
07-H…09	0.797(17)	1.889(18)	2.650(3)	159(3)
07–H••08'	0.797(17)	2.06(2)	2.767(5)	149(3)
O11−H…O10	0.82	1.82	2.581(8)	1.53
O11−H…O10'	0.82	1.82	2.619(14)	1 64
Pha se I I				
06-H·•08	0.79(2)	1.88(2)	2.663(4)	168(4)
	0.81(2)	1.87(2)	2.676(3)	174(3)
06-H … 08'	0.79(2)	2.00(3)	2.728(5)	154(4)
	0.81(2)	2.01 (3)	2.757(16)	153(4)
07-H…09	0.79(2)	1.89(2)	2.645(4)	161(4)
	0.81(2)	1.87(2)	2.672(3)	170(4)
07-H…08'	0.79(2)	2.02(3)	2.724(5)	148(3)
	0.81(2)	2.15(4)	2.799(18)	137(3)
O11−H…O10	0.83	2.03	2.596(5)	1 25
	0.83	2.12	2.69(2)	1 26
O11−H…O10'	0.83	1.67	2.44(3)	153
	0.83	1.70	2.50(2)	160
Pha se III				
06-H••08	0.85(2)	1.88(2)	2.712(3)	168(3)
	0.87(2)	1.91(2)	2.730(3)	158(3)
	0.78(2)	1.97(2)	2.738(3)	165(3)
	0.83(2)	1.89(2)	2.697(3)	162(3)
07–H••08	0.77(2)	1.99(2)	2.748(3)	164(3)
	0.86(2)	1.88(2)	2.729(3)	173(3)
07-H…09	0.84(2)	1.85(2)	2.686(3)	176(3)
	0.82(2)	1.87(2)	2.671(3)	167(3)
O11−H…O10	0.84(2)	1.76(2)	2.583(3)	166(3)
	0.87(2)	1.75(2)	2.579(3)	158(3)
	0.82(2)	1.77(2)	2.565(3)	163(3)
	0.85(2)	1.76(2)	2.583(3)	161(3)

Table S-4. Geometrical parameters for OH•••O hydrogen bonds found in phases I, II and III of $[Ni(H_2O)_2(15C5)](HSO_4)_2$