Supplementary Material for

More Examples of the $15-$ Crown- $5 \cdots \mathrm{H}_{2} \mathrm{O}-\mathrm{M}-\mathrm{OH}_{2} \cdots 15-\mathrm{Crown}-5$ Motif, $M=\mathbf{A l}{ }^{3+}, \mathbf{C r}^{3+}$, and $\mathbf{P d}^{2+}$

By Maxime A. Siegler, Jacob H. Prewitt, Steven P. Kelley, Sean Parkin
John P. Selegue \& Carolyn Pratt Brock

Abstract

Five structures of co-crystals grown from aqueous solutions equimolar in 15-crown-5 (or, $15 \mathrm{C} 5)$ and $\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{n}, M=\mathrm{Al}^{3+}, \mathrm{Cr}^{3+}$, and Pd^{2+}, are reported. The H-bonding patterns in all are similar: metal complexes including the fragment trans $-\mathrm{H}_{2} \mathrm{O}-\mathrm{M}-\mathrm{OH}_{2}$ alternate with 15 C 5 molecules, to which they are hydrogen bonded, to form stacks. A literature survey shows that this H -bonding pattern is very common. In each of the two polymorphs of the compound $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3} \cdot 15 \mathrm{C} 5 \cdot 4 \mathrm{H}_{2} \mathrm{O}$ there are two independent cations; one forms H bonds directly to the 15 C 5 molecules adjacent in the stack while the other cation is H -bonded to two water molecules that act as spacers in the stack. These stacks are then crosslinked by H bonds formed by the three nitrate counterions and the three lattice water molecules. The H-bonded stacks in $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot(3 / 2)(15 \mathrm{C} 5) \cdot \mathrm{H}_{2} \mathrm{O}$ are discrete rather than infinite; each unit contains two Cr^{3+} complex cations and three 15 C 5 molecules. These units are again crosslinked by the uncoordinated nitrate ions and a lattice water molecule. In $\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 15 \mathrm{C} 5$ the infinite stacks are electrically neutral and are not crosslinked. In $\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 2(15 \mathrm{C} 5) \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot$ $2 \mathrm{HNO}_{3}$ a discrete, uncharged unit containing one Pd complex and two 15 C 5 molecules is "capped off" at either end by a lattice water molecule and an included nitric acid molecule. In all five structures the infinite stacks or discrete units form an array that is at least approximately hexagonal.

Items Included

1. List of structures retrieved from the CSD (2 pp.)
2. Reciprocal lattice slices for Cr compound showing diffuse scattering (3 pp .)
3. Details of disorder of "inner" 15 -crown- 5 ring in the Cr compound (1 pg .)

Refcode	R value	M	M Oxidation State	Charge of Complex	\boldsymbol{M}-OH2 distance	Motif (if unusual)
DUCNEU	0.050	Zn	2	0	2.00	Comments

Deleted Hits:

CARYUP	0.150	Zn	2	0	2.00
CIGSAM	0.117	Cu	2	0	1.99
FUVFIL	0.111	U	6	$2+$	2.38
GOHTEC	0.109	Nd	3	$1+$	2.44
TUVYUE	0.120	Sc	3	$1+$	$2.2 ?$

Okl Slice of the Reciprocal Lattice for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 1.5\left(15\right.$-crown-5) $\cdot \mathrm{H}_{2} \mathrm{O}$ at 90 K

hkO Slice of the Reciprocal Lattice for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 1.5\left(15\right.$-crown-5) $\cdot \mathrm{H}_{2} \mathrm{O}$ at 90 K

hk3 Slice of the Reciprocal Lattice for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 1.5\left(15\right.$-crown-5) $\cdot \mathrm{H}_{2} \mathrm{O}$ at 90 K

Inner 15-Crown-5 Rings in
 $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 1.5\left(15\right.$-crown-5) $\cdot \mathrm{H}_{2} \mathrm{O}$ at 90 K

