SUPPLEMENTARY MATERIAL

Synthesis and structural characteristics of lithocholate triads: steroid type channels occupied by spacer fragments
 Urszula Rychlewska*, Beata Warżajtis, Roman Joachimiak and Zdzisław Paryzek

Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland

1S. Synthesis of compounds 5 and 7

1S.1. Synthesis of bis(23-benzyloxycarbonyl-24-nor-5 β-cholan-3 α-yl) terephthalate (8). To a solution of benzyl lithocholate 3 (Yuexian \& Dias, 1997) (1 g, 2.14 mmol) in anhydrous benzene (10 ml) terephthalic acid dichloride ($239 \mathrm{mg}, 1.17 \mathrm{mmol}$) and pyridine (5 $\mathrm{ml})$ were added. After 4 hours, additional portion of dichloride ($110 \mathrm{mg}, 0.584 \mathrm{mmol}$) was added. The reaction was carried out overnight (total reaction time 18 hours) until all compound 3 had reacted (TLC control). Chloroform (40 ml) was added and the solution was washed twice with $\mathrm{HCl}(1 \mathrm{~N})$ solution, $\mathrm{NaHCO}_{3}(5 \%)$ and brine. The organic layer was dried with MgSO_{4} and evaporated in vacuo to give 1.14 g of the crude product, which was purified by column chromatography on silica gel with benzene as eluent. The ester $\mathbf{8}$ was obtained $(838 \mathrm{mg})$ as a white solid, $\mathrm{mp} 194-195{ }^{\circ} \mathrm{C}$ (hexane-AcOEt). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 0.638 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}-18$), 0.924 (d, $6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}-21$), 0.967 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}-19$), 4.991 ($\mathrm{m}, 2 \mathrm{H}$, $3-\mathrm{H}), 5.12\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ph}\right), 7.36\left(\mathrm{~m}, 10 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{C}_{6} \underline{H}_{5}\right), 8.09\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CO}-\mathrm{C}_{6} \underline{H}_{4}-\mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): $\delta=11.98$ (C-18), $18.22(\mathrm{C}-21), 20.84(\mathrm{C}-11), 23.31$ (C-19), 24.12 (C-15), 26.30 (C-7), 26.69 (C-6), 27.01 (C-16), 28.11 (C-2), 30.94 (C-23), 31.29 (C-22), 32.29 (C-10), 34.61 (C-1*), 35.03 (C-4*), 35.26 (C-8**), 35.73 (C-20**), 40.09 (C-12), 40.47 (C-9), 41.96 (C-5), 42.71 (C-13), 55.99 (C-17), 56.43 (C-14), 66.03 ($\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 75.56(\mathrm{C}-3)$, 128.14, 128.20, 128.51, 129.37 134.53, 136.15, 165.39 (OOCC ${ }_{6} \mathrm{H}_{4} \mathrm{COO}$), 170.04 (C-24). IR $(\mathrm{KBr}): v_{\max }=3034,2923,1732,1714,1451,1382,1279,1124,1105,729,656 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ES): $\mathrm{m} / \mathrm{z}=907\left[\mathrm{M}-2 \mathrm{Bn}+\mathrm{Na}^{+}\right]^{+}, 994\left[\mathrm{M}-\mathrm{Bn}+\mathrm{Na}^{+}\right]^{+}, 882\left[\mathrm{M}-2 \mathrm{Bn}+\mathrm{H}^{+}\right]^{-}$. Anal. Calcd. for $\mathrm{C}_{70} \mathrm{H}_{94} \mathrm{O}_{8}$: C, 79.06; H, 8.91; O, 12.04. Found: C, 78.61; H, 9.10; O, 12.29.

1S.2. Synthesis of bis(23-carboxy-24-nor-5 β-cholan-3 α-yl) terephthalate (5). To a solution of triad $8(500 \mathrm{mg}, 0.47 \mathrm{mmol})$ in benzene-methanol ($1: 1,40 \mathrm{ml}$), Pd / C catalyst $(10 \%, 100 \mathrm{mg})$ and ammonium formate $(570 \mathrm{mg}, 9 \mathrm{mmol})$ was added and the mixture was refluxed for 1.5 h (TLC control). The warm solution was filtered and the solid was washed with hot chloroform (twice 25 ml). The combined solutions were evaporated in vacuo. To the residue a hot mixture of chloroform-dioxane $(1: 1,60 \mathrm{ml})$ was added and the solid was filtered off. The filtrate was evaporated and the residue (415 mg) was crystallized from chloroform-methanol to give compound 5 as crystals, which melt at $320^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz deuterium pyridine) : $\delta=0.613\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-18\right), 0.912\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-19\right), 1.01(\mathrm{~d}$, $\left.\mathrm{J}=5.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}-21\right), 2.49-2.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{COOH}\right), 5.179(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 8.473(\mathrm{~s}, 4 \mathrm{H},-$ $\mathrm{C}_{6} \underline{\mathrm{H}}_{4}$). ${ }^{13} \mathrm{C}$ NMR (300 MHz deuterium pyridine): $\delta=12.21,18.56,21.07,23.36,24.34$, $26.46,26.94,27.24,28.39,31.75,31.82,32.53,34.66,35.17,35.65,35.81,40.16,40.50$, 42.08, 42.80, 56.25, 75.80, 129.80, 165.11, 176.24. IR (KBr): $v_{\max }=3417,2933,2866$,
$1710,1717,1279,1127,1106,1465,1447,1020 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}): \mathrm{m} / \mathrm{z}=882\left[\mathrm{M}^{\left.-\mathrm{H}^{+}\right]^{-}, 906}\right.$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$. Compound $\mathbf{5}$ was crystallized from pyridine to give solvated crystals of $\mathbf{5 + 2 P y}$.

1S.3. Synthesis of methyl 3α-chloroformyloxy- 5β-cholan-24-ate (4). To a solution of methyl lithocholate 2 (Dayal, et al., 1981) ($50 \mathrm{mg}, 0.125 \mathrm{mmol}$) in anhydrous methylene chloride (2 ml) triphosgene ($25 \mathrm{mg}, 0.085 \mathrm{mmol}$) was added. To this solution kept at $-20^{\circ} \mathrm{C}$ pyridine ($25 \mu \mathrm{l}, 0.315 \mathrm{mmol}$) was added and the reaction mixture was stirred until all substrate reacted (TLC test). The solvent was evaporated and benzene 3 ml) was added. The organic layer was washed with $\mathrm{HCl}(1 \mathrm{~N})$ and brine, dried with magnesium sulfate and evaporated. The residue was purified by column chromatography on silica gel with benzene as eluent to give compound $4(52 \mathrm{mg}, 90 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=4.81(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.67$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 2.16-2.41\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-19\right), 0.90-0.92(\mathrm{~d}, \mathrm{~J}=$ $\left.6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-21\right), 0.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-18\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=11.97,18.20,20.77$, 23.09, 24.10, $26.1726 .85,28.10,30.93$, 30.99 , $31.69,34.46,34.74,35.30,35.69,40.02$, $40.37,41.89,42.67,51.41,55.93,56.38,83.80,149.75,174.71$. IR (KBr) $v_{\max }=2947,2881$, 1777, 1732, 1469, 1437, 1380, 1209, 1179, 1162, 970, 868, 825, $685 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI): m/z: $491\left[\mathrm{M}+\mathrm{K}^{+}\right]^{+}, 475\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$.

1S.4. Synthesis of bis(23-methoxycarbonyl-24-nor-5 β-cholan-3 α-yl) piperazine-1,4dicarboxylate (7). To a solution of chloroformate $4(300 \mathrm{mg}, 0.66 \mathrm{mmol})$ in tetrahydrofuran $(5 \mathrm{ml})$ 4-dimethylaminopyridine $(80.99 \mathrm{mg}, 0.66 \mathrm{mmol})$ and piperazine $(28.5 \mathrm{mg}, 0.33$ mmol) was added and the reaction mixture was stirred overnight at room temperature. Benzene-ether ($10 \mathrm{ml}, 1: 1$) was added and the organic layer was washed with $\mathrm{HCl}(1 \mathrm{~N})$, $\mathrm{NaHCO}_{3}(5 \%)$ and brine, dried with magnesium sulfate and evaporated. The crude product was purified by column chromatography on silica gel with benzene/ethyl acetate (20:1) as eluent to give compound $7(285 \mathrm{mg}, 94 \%)$, which crystallized from the $4: 1$ mixture of CHCl_{3} and $\mathrm{CH}_{3} \mathrm{OH}$ to give solvated crystals of $\mathbf{7 + 0 . 5} \mathbf{M e O H}$ which melt at $290{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta=4.63(\mathrm{~m}, 2 \mathrm{H}, 2 * 3-\mathrm{H}), 3.66\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{COOCH}_{3}\right), 3.44\left(\mathrm{~s}, 8 \mathrm{H},-\mathrm{N}-\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}-\mathrm{N}-\right), 2.16-$ $2.40\left(\mathrm{dm}, 4 \mathrm{H}, 2 *-\mathrm{CH}_{2}-\mathrm{COOMe}\right), 0.93\left(\mathrm{~s}, 6 \mathrm{H}, 2 * \mathrm{CH}_{3}-19\right), 0.91\left(\mathrm{~d}, \mathrm{~J}=6.03 \mathrm{~Hz}, 6 \mathrm{H}, 2 * \mathrm{CH}_{3}-\right.$ 21), $0.65\left(\mathrm{~s}, 6 \mathrm{H}, 2 * \mathrm{CH}_{3}-18\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=12.11(\mathrm{C}-18), 18.34(\mathrm{C}-21), 20.90(\mathrm{C}-$ 11), 23.39 (C-19), 24.23(C-15), 26.39 (C-2), 27.08 (C-7), 27.13 (C-6), 28.23 (C-16), 31.04 (C-22), 31.08 ($\mathrm{C}-23$), 32.78 ($\mathrm{C}-1$), 34.60 ($\mathrm{C}-10$), 35.09 (C-4), 35.39 (C-20), $35.80(\mathrm{C}-8)$, 40.14 (C-12), 40.47 (C-9), 41.93 (C-5), 42.75 (C-13), $43.48(\mathrm{C}-27), 51.51\left(\mathrm{OCH}_{3}\right), 55.99(\mathrm{C}-$ 17), 56.47 (C-14), $75.62(\mathrm{C}-3), 154.97(\mathrm{CO}-3), 174.57(\mathrm{C}-24) . \mathrm{IR}(\mathrm{KBr}): v_{\max }=2971,2945$, 2937, 2863, 1748, 1728, 1695, 1466, 1435, 1376, 1359, 1309, 1233, 1158, 1105, 982, 939, 827, $756 \mathrm{~cm}^{-1}$. MS (ESI): m/z: $942\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$.

2S. Thermogravimetric analysis.

The sample of $\mathbf{5 + 2 P} \mathbf{y}$ was heated at a rate of $2^{\circ} \mathrm{C} / \mathrm{min}$ in the He gas atmosphere, flowing at $32 \mathrm{ml} / \mathrm{min}$. TG and DTA curves shown in Fig. 1 yielded a distinct weight-loss event in the range of 79 to $115{ }^{\circ} \mathrm{C}$, accounting for the total loss of pyridine solvent, originally present in the material (calc. 15.2%, found 15.8%), followed by a plateau from 115 to $285{ }^{\circ} \mathrm{C}$. The wide range of the plateau indicates high thermal robustness of the solvent free framework.

Figure 1S.
TG-DTA diagram of the $1: 2$ complex of $\mathbf{5}$ with pyridine

