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Appendix to "Neutron diffraction investigation of the temperature dependence of crystal
structure and thermal motions of red Hgl,"
Dieter Schwarzenbach, Henrik Birkedal, Marc Hostettler and Peter Fischer.

Hgl,, red modification: phonon model for wave vectors (¢, ¢, 0)

Atoms

Space group P4,/nmc, origin at 1

Layer 1:

Hgl 1/43/41/4

11 1/41/40.39 11" 1/45/40.39 1" 5/41/40.39

12 3/43/40.11 12" -1/43/40.11 12" 3/4-1/40.11 2" -14-140.11

Layer 2:

Hg2 3/41/43/4

I3  1/41/40.89 13" 5/41/40.89 13" 1/45/40.89 13" 1/4 1/4 -0.11
14 3/43/40.61 14" 3/4-1/40.61 14" —1/4 3/4 0.61 14" —14 -14 0.61
Force constant tensors

Interactions are assumed for nearest neighbors: 4 I around Hg on the corners of a
tetrahedron; 12 I around I on the corners of a cuboctahedron. There are 1 type of Hg-I

and 4 types of I-I vectors.

Layer 1

Hgl-I1, symmetry m,, vector 0 —1/2 0.14 o vy, ¥
Symmetrically equivalent: Hg1-11" with m,, Hg1-12 with 7 ~', Hg1-12' with 7 .
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I1-11', symmetry mm?2, vector 0 1 0, apical edge of Hgl, tetrahedron —|o j_, ©



[2-12": interchange ¢;; and ¢,.

[1-I1", symmetry mm?2, vector 1 0 0, apical edge of empty tetrahedron —

[2-12": interchange &, and &,.

I1-12, symmetry 2_j,o, vector 1/2 1/2 —0.28, equatorial edge of Hgl,

Symmetry-equivalent neighbors of I1 by m,, m,, 2.

Layer 2
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Vectors are related to those of layer 1 by symmetry 1 , thus we find the same tensors:

Hg2-14 same as Hgl-I1
Hg2-13 same as Hg1-12
[4-14' same as 11-1I1'
I3-I3' same as 12-12'
14-14" same as I11-11"
I3-13" same as 12-12"
I4-13 same as 11-12

Between layers, I-I contacts

I1-I4, symmetry 1, vector 1/2 1/20.22

Symmetry-equivalent neighbors of I1 by m,, m,, 2.

12-13", equivalent to 11-14 by 2_;yo

Symmetry-equivalent neighbors of 12 by m,, m,, 2.

Simplified force constant model for illustrative purpose
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Results will be developed in terms of the complete y, @, & p and 7 tensors, i.e. 23 force



constants. To give an intuitive meaning, the following simplified matrices are proposed.
Assuming symmetry mm?2 for all interactions, we approach idealized Hgl, tetrahedra with
4 3m symmetry. Each tensor is reduced to 3 force constants (equivalent to a diagonal
matrix), 1 longitudinal along the bond and 2 transverse perpendicular to the bond.

y tensor: y; longitudinal, v, transverse perpendicular to m, y,, transverse in plane m.
Wi = was W= Q2+ wa)l35 was = (W + 2Wn)/3; ys =y = 2"y — y)/3.

¢ tensor: ¢ = ¢ longitudinal, ¢, = ¢, transverse perpendicular m,, ¢s; = ¢ transverse
parallel to 2-axis.

€ tensor: &, = & longitudinal, &, = g, transverse perpendicular m,, &; = & transverse
parallel to 2-axis.

p tensor: p; longitudinal, p, transverse perpendicular to pseudo-mirror, p, transverse
along axis 2_jo.

P = P = (Pr+ P+ 202)/4; ps = (P1+ P25 pra = Por = (P1+ P — 202)14;

P13 = P =—(p1— pa)/8".

T tensor: 7; longitudinal, 7, transverse perpendicular to pseudo-mirror, 7, transverse along
pseudo-axis 2 .

== (0+ 6+ 204 = (0 + 5)/2; 1o= 1 = (0 + T, - 20)/4;

T3 = T3 = +(1, — 7,,)/8".

Dynamical matrix

The dynamical matrix for wave vectors 27(g,a,* + ¢,a,*) is a Hermitian 18x18 matrix
composed of 3x3 matrices as follows:

Hgi-Hg1i Hgi-Ii  Hgi-I2 o o o

I1-Hg1 I1-I1 [1-12 o o I1-14

D= I>-Hg1 I>-I1 I2-I2 o [2-I3 o
o o o Hg>o+Hg> Hge-I3 Hg-I4

o o I3-12 I3-Hg> I3-13 I3-I4

o I4-Ih o I4-Hg> I4-13 I4-14

The matrices in the lower triangle are the complex-conjugate-transposed matrices in the
upper triangle. Abbreviating ¢; = coS7q,; ¢2 = COS7q,; S| = SIN7G,; S2 = SIN7G,:
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—t _cc +t.s s —it_s c

22 1 2 12 1 2 23 1 2

12-13 = 4rr1,il 4+t s s —t cc —it _c s

12 1 2 1 1 2 13 1 2

—it.s c. —it _c s —t. cc
2312 1312 3312

Hg2-Hg2 = Hgl-Hgl

I3-13 = 12-12

14-14 = 11-11

Hg2-13 = Hgl-12

Hg2-14 = Hgl-I1

[3-14 = 1211 = (I1-12)transposed



Isolated layer:

The dynamical matrix is given by the upper 9x9 submatrix of D, consisting of the Hgl, I1
and I2 matrices, but without the t; contributions. The lower 9x9 submatrix of D,
consisting of the Hg2, I3 and I4 matrices, represents the same layer rotated by 90°.

Eigenvectors at point M, ¢, = ¢, = 1/2

si=ss=1;¢,=¢,=0.

The eigenvectors have the form

XHgl1 YHg1 <Hgl ! xu Yn Zn ! xp Y in /ngZ YHg2 THg2 ! x13 Y13 213 / X1 V4 214 /

Single isolated layer

Mode 1: Vi = 000/100/01 0, eigenvalue CO12 = 4m{1(l//11/2 +ou + pi2 + ¢1] + 8]1) = @[7
"(Wa + pr + pn + 26, + 2g). Libration. Deformation obeys 4 axis. & is across the empty

tetrahedron.

Mode 2: v,=000/100/0 -1 0; eigenvalue @,” = 4m; " (yi/2 +py — pio + i + €1) =
2mi (W + 202 + 26, + 2&). Deformation obeys 2, symmetry.

Mode 3: v;=000/010/-10 0; eigenvalue @s* = 4m ' (yaf2 +p11 — P2 + ¢ + &) =
2m Qi 13+ w13 + 2, + 2¢, + 2¢,,). Breathing mode.

Modes 4, 5: v4;5=001ia/0b 0/ b 0 0; two eigenvalues. If y;, = 0, then one mode moves
only I with @,* = 2m' Qi 13 + v I3 + pi + pu + 2¢ + 2&,), the other moves only Hg
with (052 = 4-ﬂng_1 Ws3.

Modes 6, 7: ve7=a00/000/0 0 ib; again, if y»; =0, I and Hg are decoupled.

Modes 8,9: vso=0a0/00ib/0 0 0; degenerate with modes 6, 7; again, if y»; =0, I and
Hg are decoupled.

N
: v

mode 1 mode 2 mode 3 mode 4

acoustical acoustical optical optical



transverse longitudinal ~ transverse longitudinal



Complete structure with two layers per cell

Modes 1,2,3: Vi,3=000/a00/0a0/00—ic/b00/0 b 0; this is mode v, for layer
I and modes v,4s for layer 2. In layer 1 the empty tetrahedra, and in layer 2 the filled
tetrahedra are deformed into lozenges. v, dominates in Vi, v4 in V, and vs in V;. The
smaller the elements of 1, the more independent are the layers. If 7,,=0,then000/100
/010/000/00 0 is an eigenvector, layer 1 vibrates with the libration mode v, and
layer 2 is not affected. The eigenvalue is then as above with an additional term 7;; which
represents a "friction between layers: Q\* = 4m; ' (wi/2 +pu + pi + ¢u + &1 + ).
Similarly, v, 5 are also eigenmodes of an isolated layer for 7, = 0.

Modes 4,5, 6: V456=00—-ic/0b0/b00/00/0a0/a0O0; this is modes v,s for layer
1 and mode v, for layer 2. Degenerate with V.

Modes 7, 8: V;5=000/a00/0-a0/000/b500/0—-b 0; mode v, for layer 1 and
mode v; for layer 2. Breathing mode of the filled tetrahedra in layer 1, and of the empty
tetrahedra in layer 2; similar arguments as for V.

Modes 9, 10: Vo;,0=000/0b60/-b00/000/0a0/—-a0 0; mode v; for layer 1 and
mode v, for layer 2. Degenerate with V5.

Modes 11, 12: V;;;,=a00/000/00iH/000/000/0 0 0; modes vg; for layer 1,
layer 2 at rest.

Modes 13, 14: Vi3, =000/000/000/0a0/000/0 0 ib; modes ve- for layer 2,
layer 1 at rest. Degenerate with V5.

Modes 15, 16: Vi3, =0a0/00ib/000/000/000/0 0 0; modes vg, for layer 1,
layer 2 at rest. Degenerate with V,;;, and with V3 4.

Modes 17, 18: Vi75=000/000/000/a00/00ib /00 0; modes vg, for layer 2, layer
1 at rest. Degenerate with V15, Vi34 and Vs .

Conclusion

The mode V, is a low-frequency libration mode, but not as low-frequency as v, in the
isolated layer and in the chess board since it is coupled with layer mode v, and there is
friction between adjacent layers. The linear combination aV, + bV, is a mode of libration
of slightly deformed tetrahedra. This coupling probably prevents a soft-mode phase



transition.
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