Supplementary information:

A CSD [1] search using version 5.27, including updates from August 2006 and excluding complexes with metals, gave the following structures containing the ornithine fragment. These are L-ornithinium sulfate monohydrate [2], L-ornithine L-aspartate hemihydrate [3], bis(L-ornithinum) chloride nitrate sulfate [4], L-ornithine aspartate monohydrate [5] DL-ornithine hydrobromide $[6,7]$, a second determination of L-ornithine hydrochloride [8], L-ornithine nitrate [9], L-ornithine dipicrate [10] and L-ornithine aspartate monohydrate [11].

Figures 1-5 show static deformation density plots of the experimentally determined and the invariom-database electron density as well as residual electron density maps for these two models and additionally the independent atom model using all data in each case.

Figure 1: Static deformation density of the experimental charge density refinement in the plane of the carboxylate group, the N1C2C1 plane and the C 2 C 3 C 4 plane; contour lines with $0.1 e \cdot \AA^{-1}$ steps, blue $=$ positive, red $=$ negative, zero contour dashed.

Figure 2: Fourier residual density map of the experimental charge density refinement in the plane of the carboxylate group, the N 1 C 2 C 1 plane and the C 2 C 3 C 4 plane; contour lines with $0.05 e \cdot \AA^{-1}$ steps, blue $=$ positive, red $=$ negative, zero contour dashed.

Figure 3: Static deformation density of the invariom model refinement in the plane of the carboxylate group, the N 1 C 2 C 1 plane and the C 2 C 3 C 4 plane; contour lines with $0.1 e \cdot \AA^{-1}$ steps, blue $=$ positive, red $=$ negative, zero contour dashed.

Figure 4: Fourier residual density map of the invariom model refinement in the plane of the carboxylate group, the N 1 C 2 C 1 plane and the C 2 C 3 C 4 plane; contour lines with $0.05 e \cdot \AA^{-1}$ steps, blue $=$ positive, red $=$ negative, zero contour dashed.

Figure 5: Fourier residual density map of the independent atom model refinement in the plane of the carboxylate group, the N 1 C 2 C 1 plane and the C 2 C 3 C 4 plane; contour lines with $0.05 e \cdot \AA^{-1}$ steps, blue $=$ positive, red $=$ negative, zero contour dashed.

References

[1] Allen, F. H. (2002). Acta Cryst., B58, 380-388.
[2] Ravikumar, B., Athimoolam, S. \& Rajaram, R. K. (2004). Acta Cryst., E60, o2093-o2095.
[3] Salunke, D. M. \& Vijayan, M. (1983). Int. J. Pept. Protein Res. 22, 154.
[4] Ramaswamy, S., Sridhar, B., Ramakrishnan, V. \& Rajaram, R. K. (2004). Acta Cryst., E60, o768-o770.
[5] Salunke, D. M. \& Vijayan, M. (1979). Curr. Sci. 48, 1071.
[6] Schaffrin, R. \& Trotter, J. (1970). J. Am. Chem. Soc., 92, 25-27.
[7] Kalyanaraman, A. R. \& Srinivasan, R. (1971). Acta Cryst., B27, 1420-1427.
[8] Guha, S., Mazumdar, S. K. \& Saha, N. N. (1969). Z. f. Krist., 129, 84.
[9] Ramaswamy, S., Sridhar, B., Ramakrishnan, V. \& Rajaram, R. K. (2002). Acta Cryst., E58, o646-o648.
[10] Nagata, H., In, Y., Tomoo, K., Ishida, I. \& Wakahara, A. (1995). Chem. Pharm. Bull. 43, 1836.
[11] Soman, J. \& Vijayan, M. (1988). Acta Cryst., C44, 1794-1797.

