
A Influence of systematic absences on Ito’s method

Here, the notation in Section 2 is adopted. We shall determine why the use of Ito’s
equation is not appropriate for establishing a powder auto-indexing method for all types
of systematic absence. Let P1(L

∗) be the set consisting of all the primitive vectors of
L∗. In the case of space groups, unlike in the case of wallpaper groups, some types of
systematic absence have the latter property:

(i) Γext ∩ P1(L
∗) is contained in a union of finite hyperplanes.

(ii) Γext ∩ P1(L
∗) is not contained in any union set of finite hyperplanes.

Table 1 lists all types of systematic absences corresponding to the latter case.
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In the methods by Ito and de Wolff, if the q-values q1, q2, q3, q4 of observed diffraction
peaks satisfy 2(q1 + q2) = q3 + q4, they are assumed to have l∗1, l

∗
2 ∈ L∗ satisfying the

following and used to obtain a zone:

q1 = |l∗1|
2
, q2 = |l∗2|

2
, q3 = |l∗1 + l∗2|

2
, q4 = |l∗1 − l∗2|

2
. (A.1)

Candidates for the 3 × 3 metric tensor of L∗ are made from combinations of zones.
To simplify the procedure, it is very desirable that {l∗1, l∗2} in (A.1) be a primitive set
of L∗. Otherwise, metric tensors of 3D sublattices L∗

2 ⊊ L∗ might have been obtained,
which complicates and slows the powder auto-indexing method.

In fact, according to the following fact, {l∗1, l∗2} is never a primitive set of L∗ for some
types of systematic absence, as long as l∗1, l

∗
2 satisfies (A.1).

Fact A.1. If the type of systematic absence belongs to the category B or N, there exists
no primitive set {l∗1, l∗2} of L∗ such that none of l∗1, l

∗
2, l

∗
1 ± l∗2 belong to Γext.

In order to eliminate the adverse effects of systematic absences, equations other than
Ito’s equation have been proposed (de Wolff, 1957). However, it has not been ascertained
whether the equations work appropriately for all types of systematic absence. The
following was also proposed to obtain 3× 3 metric tensors directly:

|l∗1|
2
+ |l∗2|

2
+ |l∗3|

2
+ |l∗1 + l∗2 + l∗3|

2
= |l∗1 + l∗2|

2
+ |l∗1 + l∗3|

2
+ |l∗2 + l∗3|

2
. (A.2)

The above formula has a similar property to Ito’s equation:

Fact A.2. If the type of systematic absence belongs to the category B, C, F, G, or N,
there exists no basis ⟨l∗1, l∗2, l∗3⟩ of L∗ such that none of l∗1, l

∗
2, l

∗
3, l

∗
1 + l∗2, l

∗
1 + l∗3, l

∗
2 + l∗3,

l∗1 + l∗2 + l∗3 belong to Γext.

B A proof of Lemma 1

In this section, a self-contained proof of Lemma 1 is provided. In the following, L is a
3D lattice in the Euclidean space R3. S3 is the 6-dimensional linear space consisting of
all 3-by-3 metric tensors. S3

≻0 ⊂ S3 is its subset consisting of all positive definite metric
tensors.

For any Φ ∈ V3 (see Section 3.2 for definition), D(Φ) ⊂ S3
≻0 is defined as follows:

D(Φ) := {S ∈ S3
≻0 : tuSu = min{ t(u+ 2l)S(u+ 2l) : l ∈ L} for any u ∈ Φ}. (A.3)

From the definition, D(Φ) is the convex cone defined by the inequalities:

tuSu ≤ t(u+ 2l)S(u+ 2l) (u ∈ Φ, l ∈ L). (A.4)

Note that when L = Z3 and Φ0 = {± t(c1, c2, c3) : cj = 0, 1}, any S ∈ S3
≻0 is Selling

(Delaunay) reduced if and only if S ∈ D(Φ0).
The following lemma is used in the proof of Lemma 1:

Lemma B.1. For any fixed basis ⟨l1, l2, l3⟩ of L, we define l4 := −l1 − l2 − l3 and

Φ := {±
∑3

i=1 cili : ci = 0, 1} ∈ V3. In this case, D(Φ) is the convex cone in S3
≻0 defined

by the following inequalities:

t(li + lj)S(li + lj) ≤ t(li − lj)S(li − lj) (1 ≤ i < j ≤ 4). (A.5)
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Table 1: Types of systematic absence having Γext that is not contained in a union of
finite hyperplanesa.
Space group G (No.b) Rc

H Coordinates
A (Face-centered lattice) B (Body-centered lattice) P 4̄ 3 n (218) C2 (x, 0, 1

2
)

F d d 2 (43) C2 (0, 0, z) I 41/a (88) Ci (0, 1
4
, 1
8
) P m 3̄ n (223) C2 ( 1

4
, y, y + 1

2
)

F d d d (70) C2 (x, 0, 0) I 41/a (88) Ci ( 1
4
, 0, 3

8
) P m 3̄ n (223) C2v (x, 1

2
, 0)

F d d d (70) D2 (0, 0, 0) I 41/a m d (141) C2h (0, 1
4
, 1
8
) P m 3̄ n (223) C2v (x, 0, 1

2
)

F d d d (70) D2 ( 1
2
, 1
2
, 1
2
) I 41/a m d (141) C2h (0, 1

4
, 5
8
) F (Body-centered lattice)

F d 3̄ (203) C2 (x, 0, 0) C I 4̄ 3 d (220) C3 (x, x, x)
F d 3̄ (203) T (0, 0, 0) I 41/a m d (141) C2 (x, 1

4
, 1
8
) I a 3̄ d (230) C3 (x, x, x)

F d 3̄ (203) T ( 1
2
, 1
2
, 1
2
) I 41/a c d (142) C2 ( 1

4
, y, 1

8
) G

F 41 3 2 (210) C2 (x, 0, 0) D P 42 3 2 (208) D2 ( 1
4
, 0, 1

2
)

F 41 3 2 (210) T (0, 0, 0) P 3 1 c (159) C3 ( 1
3
, 2
3
, z) P 42 3 2 (208) D2 ( 1

4
, 1
2
, 0)

F 41 3 2 (210) T ( 1
2
, 1
2
, 1
2
) P 3̄ 1 c (163) C3 ( 1

3
, 2
3
, z) P 4̄ 3 n (218) S4 ( 1

4
, 0, 1

2
)

F d 3̄ m (227) C2v (x, 0, 0) P 3̄ 1 c (163) D3 ( 2
3
, 1
3
, 1
4
) P 4̄ 3 n (218) S4 ( 1

4
, 1
2
, 0)

F d 3̄ m (227) Td (0, 0, 0) P 3̄ 1 c (163) D3 ( 1
3
, 2
3
, 1
4
) P m 3̄ n (223) D2d ( 1

4
, 0, 1

2
)

F d 3̄ m (227) Td ( 1
2
, 1
2
, 1
2
) P 63 (173) C3 ( 1

3
, 2
3
, z) P m 3̄ n (223) D2d ( 1

4
, 1
2
, 0)

A (Body-centered lattice) P 63/m (176) C3 ( 1
3
, 2
3
, z) H

I 41 (80) C2 (0, 0, z) P 63/m (176) C3h ( 2
3
, 1
3
, 1
4
) P 43 3 2 (212) D3 ( 1

8
, 1
8
, 1
8
)

I 41/a (88) C2 (0, 0, z) P 63/m (176) C3h ( 1
3
, 2
3
, 1
4
) P 43 3 2 (212) D3 ( 5

8
, 5
8
, 5
8
)

I 41/a (88) S4 (0, 0, 0) P 63 2 2 (182) C3 ( 1
3
, 2
3
, z) P 41 3 2 (213) D3 ( 3

8
, 3
8
, 3
8
)

I 41/a (88) S4 (0, 0, 1
2
) P 63 2 2 (182) D3 ( 2

3
, 1
3
, 1
4
) P 41 3 2 (213) D3 ( 7

8
, 7
8
, 7
8
)

I 41 2 2 (98) C2 (0, 0, z) P 63 2 2 (182) D3 ( 1
3
, 2
3
, 1
4
) I

I 41 2 2 (98) D2 (0, 0, 0) P 63 m c (186) C3v ( 1
3
, 2
3
, z) I 41 3 2 (214) D3 ( 1

8
, 1
8
, 1
8
)

I 41 2 2 (98) D2 (0, 0, 1
2
) P 6̄ 2 c (190) C3 ( 1

3
, 2
3
, z) I 41 3 2 (214) D3 ( 7

8
, 7
8
, 7
8
)

I 41 m d (109) C2v (0, 0, z) P 6̄ 2 c (190) C3h ( 2
3
, 1
3
, 1
4
) J

I 4̄ 2 d (122) C2 (0, 0, z) P 6̄ 2 c (190) C3h ( 1
3
, 2
3
, 1
4
) I 41 3 2 (214) D2 ( 1

8
, 0, 1

4
)

I 4̄ 2 d (122) S4 (0, 0, 0) P 63/m m c (194) C3v ( 1
3
, 2
3
, z) I 41 3 2 (214) D2 ( 5

8
, 0, 1

4
)

I 4̄ 2 d (122) S4 (0, 0, 1
2
) P 63/m m c (194) D3h ( 2

3
, 1
3
, 1
4
) I 4̄ 3 d (220) S4 ( 7

8
, 0, 1

4
)

I 41/a m d (141) C2 (x, x, 0) P 63/m m c (194) D3h ( 1
3
, 2
3
, 1
4
) I 4̄ 3 d (220) S4 ( 3

8
, 0, 1

4
)

I 41/a m d (141) C2v (0, 0, z) E K
I 41/a m d (141) D2d (0, 0, 0) P 62 (171) C2 ( 1

2
, 1
2
, z) I 41 3 2 (214) C2 (x, 0, 1

4
)

I 41/a m d (141) D2d (0, 0, 1
2
) P 64 (172) C2 ( 1

2
, 1
2
, z) I 4̄ 3 d (220) C2 (x, 0, 1

4
)

I 41/a c d (142) C2 (x, x, 1
4
) P 62 2 2 (180) C2 ( 1

2
, 0, z) I a 3̄ d (230) C2 ( 1

8
, y,−y+ 1

4
)

B (Face-centered lattice) P 62 2 2 (180) D2 ( 1
2
, 0, 0) L

F d d d (70) Ci ( 1
8
, 1
8
, 1
8
) P 62 2 2 (180) D2 ( 1

2
, 0, 1

2
) I a 3̄ d (230) C2 (x, 0, 1

4
)

F d d d (70) Ci ( 5
8
, 5
8
, 5
8
) P 64 2 2 (181) C2 ( 1

2
, 0, z) M

F d 3̄ (203) C3i ( 1
8
, 1
8
, 1
8
) P 64 2 2 (181) D2 ( 1

2
, 0, 0) I a 3̄ d (230) D2 ( 1

8
, 0, 1

4
)

F d 3̄ (203) C3i ( 5
8
, 5
8
, 5
8
) P 64 2 2 (181) D2 ( 1

2
, 0, 1

2
) I a 3̄ d (230) S4 ( 3

8
, 0, 1

4
)

F 41 3 2 (210) D3 ( 1
8
, 1
8
, 1
8
) F (Primitive lattice) N

F 41 3 2 (210) D3 ( 5
8
, 5
8
, 5
8
) P 42 3 2 (208) C2 (x, 1

2
, 0) I a 3̄ d (230) D3 ( 1

8
, 1
8
, 1
8
)

F d 3̄ m (227) D3d ( 1
8
, 1
8
, 1
8
) P 42 3 2 (208) C2 (x, 0, 1

2
)

F d 3̄ m (227) D3d ( 5
8
, 5
8
, 5
8
) P 4̄ 3 n (218) C2 (x, 1

2
, 0)

aEvery type of systematic absence is removed from the list if L∗ \Γext is contained in the reciprocal
lattice L∗

2 of some L2 ⊋ L.
bNumber assigned to every space group in the International Tables
cThe point group corresponding to the site symmetry group H
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Proof. Any S ∈ D(Φ) clearly satisfy the inequalities in (A.5). Conversely, assume that
S ∈ S3

≻0 satisfies the inequalities in (A.5). From the assumption, we have tliSlj ≤ 0 for

any 1 ≤ i < j ≤ 4. For any u :=
∑3

i=1 αili, the following holds if we put α4 := 0:

tuSu = −
∑

1≤i<j≤4

(αi − αj)
2 tliSlj . (A.6)

It follows from this that S satisfies all the inequalities in (A.4).

As seen from Lemma B.1, D(Φ) includes interior points. If Φ1,Φ2 ∈ V3 are distinct,
D(Φ1) and D(Φ2) cannot have common interior points, because they are separated by
the hyperplane defined by tk1Sk1 = tk2Sk2, where ki (1 ≤ i ≤ 2) are chosen from
Φi \ (Φ1 ∩ Φ2) so that they satisfy k1 − k2 ∈ 2L. (Such k1, k2 always exist because the
map Φi → L/2L given by l 7→ l + 2L is onto, and u1, u2 ∈ Φi are mapped to the same
class of L/2L if and only if u1 = ±u2.)

Proof of Lemma 1. From the assumption, there exist k1, k2 such that Φ1 = (Φ1 ∩Φ2)∪
{±k1} and Φ2 = (Φ1 ∩ Φ2) ∪ {±k2}. In this case, either of the following holds:

(a) k1 = ±li for some 1 ≤ i ≤ 4,

(b) k1 = ±(li + lj) for some 1 ≤ i < j ≤ 3.

In the former case, D(Φ2) ⊂ D(Φ1) follows from li + lj ∈ Φ2 (1 ≤ i < j ≤ 3) and
Lemma B.1. This is impossible because of Φ1 ̸= Φ2.

In the latter case, k1 = ±(li+ lj) = ±(lm+ ln) when 1 ≤ m,n ≤ 4 are chosen so that
i, j,m, n are distinct. We shall prove k2 = li − lj or lm − ln holds in this case; we define
Φi,j := (Φ1 \ {±(li+ lj)})∪{±(li− lj)} and Φm,n := (Φ1 \ {±(lm+ ln)})∪{±(lm− ln)}.
Φi,j then equals {±

∑3
i=1 ci l̃i : ci = 0, 1} with the following l̃i:

l̃1 := li, l̃2 := −lj , l̃3 := lj + lm, l̃4 := −l̃1 − l̃2 − l̃3 = lj + ln. (A.7)

Hence Φi,j belongs to V3. Φm,n ∈ V3 is also obtained by permuting l1, l2, l3, l4. In order
to prove k2 = li − lj or lm − ln, it is sufficient if D(Φ2) ⊂ D(Φ1) ∪D(Φi,j) ∪D(Φm,n)
is shown. If S ∈ D(Φ2) does not belong to D(Φ1),

tliSlj > 0 or tlmSln > 0 holds. We
assume tliSlj ≥ tlmSln and tliSlj > 0 by permuting l1, l2, l3, l4. From Lemma B.1, such
S belongs to D(Φi,j) if and only if

t̃l1Sl̃2 = − tliSlj ≤ 0, (A.8)

t̃l1Sl̃3 = tliS(lj + lm) =
tlnSln − t(ln − 2li)S(ln − 2li)

4
≤ 0, (A.9)

t̃l1Sl̃4 = tliS(lj + ln) =
tlmSlm − t(lm − 2li)S(lm − 2li)

4
≤ 0, (A.10)

t̃l2Sl̃3 = − tljS(lj + lm) =
tlmSlm − t(lm + 2lj)S(lm + 2lj)

4
≤ 0, (A.11)

t̃l2Sl̃4 = − tljS(lj + ln) =
tlnSln − t(ln + 2lj)S(ln + 2lj)

4
≤ 0, (A.12)

t̃l3Sl̃4 = (lj + lm)S(lj + ln) = − tliSlj +
tlmSln ≤ 0. (A.13)

S ∈ D(Φi,j) is obtained from the assumptions tliSlj ≥ tlmSln,
tliSlj > 0, S ∈ D(Φ2)

and l1, l2, l3, l4 ∈ Φ2. Therefore, D(Φ2) ⊂ D(Φ1) ∪D(Φi,j) ∪D(Φm,n).
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C Fundamental group of topographs for 3D lattices

Using a group presentation of GL(3,Z), it is proved that topographs for 3D lattices are
connected and their fundamental group is generated by the two circuits presented in
Figure 6 of Section 3.2.

For any two bases ⟨l1, l2, l3⟩, ⟨k1, k2, k3⟩ of a 3D lattice L, g ∈ GL(3,Z) satisfying
the following equation is uniquely determined:(

l1 l2 l3
)
g =

(
k1 k2 k3

)
(A.14)

It is easily checked that their corresponding nodes Φ1 := {±
∑3

i=1 cili : ci = 0, 1} and

Φ2 := {±
∑3

i=1 ciki : ci = 0, 1} are same if and only if g or −g gives a permutation of
the following vectors:

e1 :=

1
0
0

 , e2 :=

0
1
0

 , e3 :=

0
0
1

 , e4 :=

−1
−1
−1

 . (A.15)

This is equivalent to the condition that g belongs to the subgroup S̃4 ⊂ GL(3,Z)
generated by the following matrices:

(1 2) :=

0 1 0
1 0 0
0 0 1

 , (2 3) :=

1 0 0
0 0 1
0 1 0

 , (3 4) :=

1 0 −1
0 1 −1
0 0 −1

 , h :=

−1 0 0
0 −1 0
0 0 −1

 . (A.16)

The subgroup of S̃4 generated by the first three matrices can be identified with the
permutation group S4 of degree 4. S̃4 is the direct product of S4 and ⟨h⟩ generated by
h of order 2.

When a basis ⟨l1, l2, l3⟩ of L is fixed, a bijection between the set of left cosets
GL(3,Z)/S̃4 and V3 (the set of all the nodes) is provided by the following map:

gS̃4 7→

±
(
l1 l2 l3

)
g

c1c2
c3

 : ci = 0, 1

 . (A.17)

Furthermore, Φ1 := {±
∑3

i=1 cili : ci = 0, 1} and Φ2 := {±
∑3

i=1 ciki : ci = 0, 1} are
connected by an edge if and only if {k1, k2, k3,−k1−k2−k3} = ±{li,−lj , lj+ lm, lj+ ln}
for some distinct 1 ≤ i, j,m, n ≤ 4 (cf. the proof of Lemma 1 in Appendix B). This is
equivalent to the condition that g determined by the equation (A.14) belongs to S̃4τ S̃4,
where τ is the following matrix:

τ :=

1 0 0
0 −1 1
0 0 1

 (A.18)

Namely, two nodes corresponding to g1S̃4, g2S̃4 by the map (A.17) are connected by
an edge if and only if g−1

1 g2 is contained in S̃4τ S̃4.
The fundamental group of the topograph can be computed from a group presentation

of GL(3,Z) by using the above identifications. Recall that for any N > 0, SL(N,Z) is
generated by the matrices Tij (1 ≤ i, j ≤ N , i ̸= j) with 1’s on the diagonal or in the
(i, j)-entry and 0’s elsewhere. When [x, y] represents the commutator x−1y−1xy, the
following are the fundamental relations among Tij (cf. Corollary 10.3, Milnor(1971)).

(a) [Tij , Tmn] = 1 for i ̸= n and j ̸= m,
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(b) [Tij , Tjm] = Tim for i, j,m distinct,

(c) (T12T
−1
21 T12)

4 = 1.

The presentation of GL(3,Z) with generators τ and s ∈ S̃4 is obtained from these
relations. In the following, the element of S4 which exchanges ei, ej (1 ≤ i < j ≤ 4)
and fixes the other two vectors is represented as (i j). The free product of the groups
G1 and G2 is denoted by G1 ∗G2.

Proposition C.1. Let φ be the natural map G := S̃4 ∗ ⟨τ⟩ → GL(3,Z) induced by the
inclusion S̃4, ⟨τ⟩ ⊂ GL(3,Z). Then φ is onto, and the kernel of φ is the normal closure
K ⊂ G of the subgroup generated by

(hτ)2, (A.19)

((3 4)τ)2, (A.20)

((1 2)τ)2(3 4)h, (A.21)

(τ(1 3)(2 4))3h, (A.22)

((1 3)τ(1 3)τ(1 4)τ(1 4))2. (A.23)

(Hence the map G/K → GL(3,Z) induced by φ is an isomorphism.)

Proof. It is straightforward to check that K is contained in the kernel. In the following,
the map G/K → GL(3,Z) induced by φ is denoted by φ2. s ∈ S4 maps 1, 2, 4 to
j, i, 4 respectively, s(1 4)τ(1 4)τs−1 is mapped to Tij by φ. Hence φ2 is onto. We
define another map ψ : GL(3,Z) → G/K by h 7→ h and Tij 7→ s(1 4)τ(1 4)τs−1 with
the above s. In order to verify ψ is well-defined, we shall check that ψ([Tij , Tmn]) =
ψ((T12T

−1
21 T12)

4) = K and ψ([Tij , Tjm]) = ψ(Tim). For the proof, the following obtained
from (A.20) and (A.22) is used:

(τ(1 4)(2 3))3hK = (3 4)(τ(1 3)(2 4))3(3 4)hK = K. (A.24)

We shall also utilize (τ(2 3))6 = 1 obtained as follows:

τ(2 3)τ(2 3)K = (3 4)(1 2)τ(1 2)(2 3)(3 4)(1 2)τ(1 2)(2 3)K (∵ (A.21))

= (3 4)(1 2)τ(1 4)(1 3)τ(1 3)(1 2)K. (A.25)

Hence,

(τ(2 3))6K = (τ(2 3)τ(2 3))3K

= (3 4)(1 2)τ(1 4)(1 3)τ(1 3)(3 4)τ(1 4)(1 3)τ(1 3)(3 4)τ(1 4)(1 3)τ(1 3)(1 2)K

= (3 4)(1 2)τ(1 4)(1 3)τ(1 3)τ(1 3)(1 4)τ(1 4)τ(1 4)(1 3)τ(1 3)(1 2)K (∵ (A.20))

= (3 4)(1 2)τ(1 4)(1 3)(1 4)τ(1 4)(1 3)τ(1 3)(1 4)(1 3)τ(1 3)(1 2)K (∵ (A.23))

= (3 4)(1 2)τ(3 4)τ(1 4)(1 3)τ(3 4)τ(1 3)(1 2)K

= (3 4)(1 2)(3 4)(1 4)(1 3)(3 4)(1 3)(1 2)K (∵ (A.20))

= K. (A.26)

(a) ψ([Tij , Tmn]) = K (i ̸= n, j ̸= m); by replacing Tij , Tmn with sTijs
−1, sTmns

−1

(s ∈ S4) if necessary, it is sufficient for the proof if the relation is obtained in the
case of i = 2 and j = 1. In this case, m = 2 or n = 1 must hold. If m = 2 and
n = 1, ψ([T21, T21]) = K holds clearly. If m = 2 and n ̸= 1 (hence n = 3),

ψ(T−1
23 T21) = (1 3)τ(1 4)τ(1 4)(1 3)(1 4)τ(1 4)τK

= (1 3)τ(1 4)τ(3 4)τ(1 4)τK

= (1 3)τ(1 4)(3 4)(1 4)τK (∵ (A.20))

= (1 3)τ(1 3)τK. (A.27)
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Hence,

ψ(T−1
21 T

−1
23 T21T23) = τ(1 4)τ(1 4)(1 3)τ(1 3)τ(1 3)(1 4)τ(1 4)τ(1 3)K

= (1 3)τ(1 3)(1 4)τ(1 4)(1 3)(1 4)τ(1 4)τ(1 3)K (∵ (A.23))

= (1 3)τ(1 3)(1 4)τ(3 4)τ(1 4)τ(1 3)K

= (1 3)τ(1 3)(1 4)(3 4)(1 4)τ(1 3)K (∵ (A.20))

= K. (A.28)

If m ̸= 2 and n = 1 (hence m = 3), we have

ψ(T21T31) = (1 4)τ(1 4)τ(2 3)(1 4)τ(1 4)τ(2 3)K

= (1 4)τ(1 4)(2 3)(1 4)τ(2 3)(1 4)(1 4)τ(2 3)hK (∵ (A.24))

= (1 4)τ(2 3)τ(2 3)τ(2 3)hK. (A.29)

Hence

ψ(T−1
21 T

−1
31 ) = (2 3)ψ((T21T31)

−1)(2 3) = τ(2 3)τ(2 3)τ(1 4)(2 3)hK. (A.30)

Therefore,

ψ(T−1
21 T

−1
31 T21T31) = (τ(2 3))6K = K. (A.31)

(b) ψ([Tij , Tjm]) = ψ(Tim); it may be assumed i = 2, j = 1 and m = 3.

ψ(T13) = (1 3)(2 3)(1 4)τ(1 4)τ(2 3)(1 3)K

= (2 3)(2 4)(1 2)τ(1 2)(2 4)(1 2)τ(1 2)(2 3)K

= (2 3)(2 4)τ(3 4)(2 4)(3 4)τ(2 3)K (∵ (A.21))

= (2 3)(2 4)τ(2 3)τ(2 3)K

= (3 4)(2 3)τ(2 3)τ(2 3)K. (A.32)

Therefore,

ψ(T13T
−1
21 T

−1
13 ) = (3 4)(2 3)τ(2 3)τ(2 3)τ(1 4)τ(1 4)(2 3)τ(2 3)τ(2 3)(3 4)K

= (3 4)(2 3)τ(2 3)τ(2 3)τ(1 4)(1 4)(2 3)τ(1 4)(2 3)(2 3)τ(2 3)(3 4)hK (∵ (A.24))

= (3 4)(2 3)τ(2 3)τ(2 3)τ(2 3)τ(1 4)τ(2 3)(3 4)hK

= (3 4)τ(2 3)τ(2 3)(1 4)τ(2 3)(3 4)hK (∵ (A.26))

= (3 4)τ(2 3)(2 3)(1 4)τ(2 3)(1 4)(2 3)(3 4)K (∵ (A.24))

= (3 4)τ(1 4)τ(1 4)(3 4)K

= τ(1 3)τ(1 3)K (∵ (A.20)) (A.33)

= ψ(T−1
21 T23). (∵ (A.27)) (A.34)

Hence ψ([T21, T13]) = ψ(T23) follows from ψ([T21, T23]) = ψ([T13, T23]) = K.

(c) (T12T
−1
21 T12)

4 = 1;

ψ(T12T
−1
21 ) = (1 2)(1 4)τ(1 4)τ(1 2)τ(1 4)τ(1 4)K

= (1 2)(1 4)τ(1 4)(1 2)(3 4)h(1 4)τ(1 4)K (∵ (A.21))

= (1 2)(1 4)τ(1 3)(2 4)τ(1 4)hK

= (1 2)(1 4)(1 3)(2 4)τ(1 3)(2 4)(1 4)K (∵ (A.22))

= (1 3)(3 4)τ(3 4)(1 3)(1 2)K

= (1 3)τ(1 3)(1 2)K. (∵ (A.20)) (A.35)
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Hence,

ψ(T12T
−1
21 T12) = (1 3)τ(1 3)(1 4)τ(1 4)τ(1 2)K (A.36)

= τ(1 4)τ(1 4)(1 3)τ(1 3)(1 2)K. (∵ (A.23)) (A.37)

By the equalities (A.36) and (A.37),

ψ((T12T
−1
21 T12)

2) = (1 3)τ(1 3)(1 4)τ(1 4)τ(1 2)τ(1 4)τ(1 4)(1 3)τ(1 3)(1 2)K

= (1 3)τ(1 3)(1 4)τ(1 4)(1 2)(3 4)h(1 4)τ(1 4)(1 3)τ(1 3)(1 2)K (∵ (A.21))

= (1 3)τ(1 3)(1 4)τ(1 3)(2 4)τ(1 4)(1 3)τ(1 3)(1 2)hK

= (1 3)τ(1 3)(1 4)(1 3)(2 4)τ(1 3)(2 4)(1 4)(1 3)τ(1 3)(1 2)K (∵ (A.22))

= (1 3)τ(2 3)(3 4)τ(3 4)(2 3)τ(1 3)(1 2)K

= (1 3)τ(2 3)τ(2 3)τ(1 3)(1 2)K. (∵ (A.20)) (A.38)

Therefore,

ψ((T12T
−1
21 T12)

4) = (1 3)(τ(2 3))6(2 3)(1 3)(1 2)K = K. (A.39)

In order to prove φ2 is an isomorphism, it is only necessary to show that ψ is an
onto map because φ2 ◦ψ is the identity map on GL(3,Z). If s ∈ G belongs to the image
of ψ, (i j)s(i j) also does for any 1 ≤ i < j ≤ 3. Hence, ψ is onto if τK, (1 2)K and
(3 4)K belong to the image. From (A.38), we have

ψ((T13T
−1
31 T13)

2) = (2 3)(1 3)τ(2 3)τ(2 3)τ(1 3)(1 2)(2 3)K

= (1 2)(2 3)τ(2 3)τ(2 3)τ(2 3)(1 2)(1 3)K

= (1 2)τ(2 3)τ(2 3)τ(1 2)(1 3)K (∵ (A.26))

= τ(3 4)h(1 3)τ(3 4)h(1 3)τ(3 4)h(1 3)K (∵ (A.21))

= τ(3 4)(1 3)τ(1 4)τ(1 3)hK. (A.40)

Therefore,

ψ((T13T
−1
31 T13)

2T−1
23 h) = τ(3 4)(1 3)(1 4)(1 3)K

= τK. (A.41)

ψ((T13T
−1
31 T13)

2T12T
−1
21 T12h) = τ(3 4)(1 3)τ(1 4)(1 3)(1 4)τ(1 4)τ(1 2)K (∵ (A.36))

= τ(3 4)(1 3)(3 4)(1 4)τ(1 2)K (∵ (A.20))

= (1 2)K. (A.42)

Because (3 4) = ((1 2)τ)2 holds, (3 4)K is also in the image of ψ. Hence ψ is onto.

Corollary C.1. The fundamental group of topographs for 3D lattices is generated by
the two circuits of lengths 3 and 6 presented in Figure 6 of Section 3.2.

Proof. By the identification between V3 and GL(3,Z)/S̃4, topographs for 3D lattices
are connected because S̃4 and τ generate GL(3,Z). The relations (A.22) and (A.23)
correspond to the circuits of lengths 3 and 6 respectively. The other relations correspond
to contractible circuits because they have a length less than 3.

D Proofs of theorems (Case of 3D lattices)

In the following, we fix a type of systematic absence corresponding to a space group G
and a site symmetry group H ⊂ G. Let M be the order of the point group RG of G,
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Γext, H and Ω ⊂ L∗/ML∗ be as described in Fact 1 of Section 2. From the definition,
we have

Ω = {l∗ +ML∗ : l∗ ∈ Γext \ H} . (A.43)

In powder auto-indexing, it may be assumed that L∗ is generated by elements of
L∗ \Γext. It is not difficult to prove our theorems if Γext ⊂ H holds. (This is always true
for 2D lattices.) As a result, it is sufficient if all the types in Table 1 are considered as
special cases. Because too many case-by-case considerations are required for the cases,
the most difficult part of the theorems was confirmed by direct computation by executing
a program using the space group library of Z-Rietveld code (Oishi-Tomiyasu et. al.,
2012). We verified that the program outputs exactly the same list as the International
Tables.

In the following, for a lattice L of dimension N and an integer 1 ≤ m ≤ N , the set
of all the primitive set {l1, . . . , lm} of L is denoted by Pm(L). The following lemma is
proved for the proofs of the theorems:

Lemma D.1. Let L ⊂ RN be a lattice of dimension N , and 1 ≤ m ≤ N be an
integer. Then, any open cone C ⊂ RN contains a primitive set {l1, . . . , lm} ∈ Pm(L).
Furthermore, if M > 0 is a positive integer and {k1, . . . , km} ∈ Pm(L), C contains
infinitely many {l1, . . . , lm} ∈ Pm(L) satisfying li − ki ∈ML for any 1 ≤ i ≤ m.

Proof. We prove the first statement by induction. Since {al : a ∈ Q, l ∈ L} = {al : 0 ̸=
a ∈ Q, l ∈ P1(L)} is dense in RN , there exist 0 ̸= a ∈ Q and l ∈ P1(L) such that al ∈ C.
Hence, l ∈ C is obtained. Next suppose that m < N and there is T ∈ Pm contained
in C. Then there exists l ∈ L such that T ∪ {l} ∈ Pm+1. For any arbitrarily fixed

l2 ∈ T , there is ϵ > 0 such that C2 := {x ∈ RN : (1− ϵ)|x|2|l2|2 ≤ (x · l2)2} is contained
in C. In this case, l + sl2 ∈ C2 holds for sufficiently large integer s > 0. As a result,
T ∪ {l + sl2} is a subset of C and primitive. In order to prove the second statement, it
is sufficient if some {l1, . . . , lm} ∈ Pm(L) satisfies the desired property. We fix a basis
l1, . . . , lN ∈ C of L and g ∈ GL(N,Z) satisfying ki = gli for any 1 ≤ i ≤ m. When the
subgroup of GL(N,Z) with positive entries is denoted by GL+(N,Z), the natural map
GL+(N,Z) −→ G := {g ∈ GL(N,Z/MZ) : det g = ±1 mod M} is an epimorphism.
Let g0 ∈ GL+(N,Z) be an element belonging to the inverse image of g mod M . Then
g0l1, . . . , g0lN are all contained in C and satisfy g0li − ki ∈ML (1 ≤ i ≤ m).

Because Theorem 2 is obtained from Theorem 3, it is sufficient if Theorems 3 and 4
are proved.

Proof of Theorem 3. By Lemma D.1, for any open convex cone C ⊂ RN satisfying
C ∩ H = ∅, there exists {l∗1, l∗2, l∗3} ∈ P3(L

∗) such that {
∑3

i=1mil
∗
i : mi ∈ Z≥0} ⊂ C

holds. In this case, {l∗1, l∗2 + kl∗3} ∈ P2(L
∗) is included in C for any integer k ≥ 0, and

their expanding 2D lattices are different from each other. If Γext ⊂ H holds, every such
{l∗1, l∗2 +kl∗3} satisfies the property stated in the theorem. (Here, l∗ ∈ Γext ⇔ −l∗ ∈ Γext

was used.)
Hence, it may be assumed that systematic absence is one of the types in Table 1.

We define

P2,M (L∗) := {{l∗1 +ML∗, l∗2 +ML∗} : {l∗1, l∗2} ∈ P2(L
∗)} , (A.44)

P̃2,M (L∗) := {{l∗1 +ML∗, l∗2 +ML∗} ∈ P2,M (L∗) : ml∗1 + (m− 1)l∗2 +ML∗ /∈ Ω for any m ∈ Z} .(A.45)

By direct calculation, it is verified that P̃2,M (L∗) ̸= ∅ holds for any type of systematic
absence in Table 1 (see Table 2). Therefore, from Lemma D.1, there exists {l∗1, l∗2, l∗3} ∈
P3(L

∗) contained in Csuch that {l∗1 +ML∗, l∗2 +ML∗} ∈ P̃2,M (L∗) holds. In this case,
{l∗1, l∗2 +kMl∗3} ∈ P2(L

∗) is included in C for any integer k ≥ 0, and their expanding 2D
latices satisfy the required property.
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Table 2: Density of L∗ \ Γext in L
∗.

Type P̃2,M (L∗) in P2,M (L∗) P̃3,M (L∗) in P3,M (L∗)
A 0.321 0.286
B 0.286 0.143
C 0.476 0.190
D 0.341 0.209
E 0.736 0.604
F 0.714 0.571
G 0.214 0.027
H 0.429 0.058
I 0.714 0.571
J 0.071 0.022
K 0.857 0.786
L 0.107 0.004
M 0.036 0.004
N 0.036 0.004

aHere, the densities are computed by dividing the number of elements of P̃i,M (L∗) by that of
Pi,M (L∗) (i = 2, 3).

bThe densities of G, H, J, L, M, N, which consist of only primitive and body-centered cubic lattices,
are rather small. As a practical measure against small densities, Conograph also uses Ito’s equation

to enumerate powder auto-indexing solutions, in addition to 3
∣∣l∗1∣∣2 +

∣∣l∗1 + 2l∗2
∣∣2 =

∣∣2l∗1 + l∗2
∣∣2 + 3

∣∣l∗2∣∣2.
(This is effective except for the category N, owing to Fact A.1.) Furthermore, the condition (b) of
Theorem 4 is not required to hold for infinitely many m in the actual algorithm. Subgraphs with
relatively many edges are given priority.

Proof of Theorem 4. By Lemma D.1, any open convex cone C ⊂ RN \H contains some
{l∗1,−l∗1 + l∗2,−l∗1 + l∗3} ∈ P3(L

∗). In this case, C also includes ±l∗1 + l∗2 + l∗3, (m+1)l∗1 +
m(−l1+l∗i ), ml∗1+(m+1)(−l∗1+l∗i ) andml∗1+(−l∗1+l∗i ) for anym ∈ Z≥0. Consequently,
if Γext is contained in H, the statement is obtained immediately.

When systematic absence is one of the types in Table 1, we define

P3,M (L∗) := {(l∗1 +ML∗, l∗2 +ML∗, l∗3 +ML∗) : {l∗1 , l∗2 , l∗3} ∈ P3(L
∗)} , (A.46)

P̃3,M (L∗) :=

(l∗1 +ML∗, l∗2 +ML∗, l∗3 +ML∗) ∈ P3,M (L∗) :

±l∗1 + l∗2 + l∗3 +ML∗ ∈ Ω,
{l∗1 +ML∗,−l∗1 − l∗i +ML∗}
or {l∗i +ML∗,−l∗1 − l∗i +ML∗}

belongs to P̃2,M (L∗) for both i = 2, 3

 . (A.47)

By direct calculation, it is verified that P̃3,M (L∗) ̸= ∅, regardless of the type of sys-
tematic absence (see Table 2). From Lemma D.1, there exist infinitely many {l∗1,−l∗1 +
l∗2,−l∗1 + l∗3} ∈ P3(L

∗) contained in C such that {l∗1 +ML∗, l∗2 +ML∗, l∗3 +ML∗} ∈
P̃3,M (L∗) holds. In this case, l∗1, l

∗
2, l

∗
3 satisfy the property stated in the theorem.
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