Supplementary material 4:

Pitsch rotations A and B, disclinations and dislocations.

The concept was first introduced by Volterra (1907) who considered two types of dislocations: rotational dislocations (disclinations) and translational dislocation (simply referred as dislocations nowadays). The disclination strength is given by an axial vector \boldsymbol{w} , called Frank vector, encoding the rotation needed to close the system, such as the dislocation strength is given by its Burgers vector \boldsymbol{b} encoding the translation needed to close the Burgers circuit. If dislocations constitute a fundamental part of metallurgy, disclinations remain less used, with theories developed by Romanov (2003), Friedel and Kleman (2008), and applications mainly limited to highly deformed metals by cold-work (Klimanek *et al.*, 2001) or mechanical milling (Murayama *et al.*, 2002).

Rotation A

The 60° to 70.5° distortion associated to rotation A can be represented by a wedge disclination of Frank axial vector $\mathbf{w}_{2A} = (-10.5^{\circ}, [110]_{\gamma})$, and can be decomposed into two equal closing wedge disclinations $w_A = (-5.25^\circ, [110]_{\gamma})$ on each face of the α nucleus. A microscopic scale, the wedge disclinations can result from pile-ups on the $(\bar{1}10)_{\gamma}$ plane of edge sessile dislocations of line $[110]_{\gamma}$ and Burgers vectors $\mathbf{b} = [\bar{1}10]_{\gamma}$ lying on the $(001)_{\gamma}$ plane (Fig. S4_1b). In that case, they could be associated to Lomer-Cottrell locks (Lomer, 1951; Cottrell, 1952). By simplification, the dissociation into Shockley partials introduced by Cottrell is not taken into account. The glide planes $(\bar{1}11)_{\gamma}$ and $(1\bar{1}1)_{\gamma}$ intersect into the x = $[110]_{\gamma}$ line. The Lomer locks can be obtained as follows: the $\frac{1}{2}$ $[0\bar{1}1]_{\gamma}$ dislocation lying on the former plane combines with the $\frac{1}{2}$ [$10\overline{1}$] $_{\gamma}$ dislocation lying on the latter plane to form an edge $\frac{1}{2}$ [110]_{γ} dislocation on the (001)_{γ} plane, which is not a slip plane for γ lattice, (Fig. S4_1d). Kajiwara, Ogawa & Kikuchi (1996) and Ogawa & Kajiwara (2007) have shown by High Resolution TEM images along the electron beam direction $x = [111]_{\alpha} = [110]_{\gamma}$ that the $(111)_{\gamma}$ plane is gradually curved into a $(\bar{1}10)_{\alpha}$ plane, with the existence of a transient lattice and sets extra-half $(\bar{1}11)_{\gamma}$ planes at the γ/α interface. These interesting features seem in agreement with the disclination \mathbf{w}_{A} .

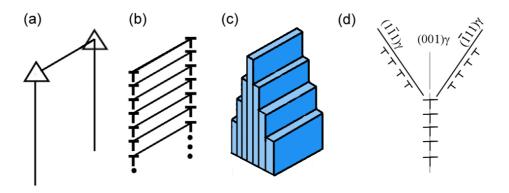


Fig. S4_1. Wedge disclination viewed (a) by its symbolic representation, (b) as a pile-up of edge dislocations, (c) as series of additional planes, freely adapted from Romanov (2003). (d)

Creation of the dislocation pile-up by Lomer-Cottrell lock.

Rotation B

The closing rotation is the rotation B, and the pair of associated wedge disclinations are $w_B = (-5.25^{\circ}, [\bar{1}11]_{\gamma})$. Such disclinations can probably be obtained by a superposition of pairs or triplets of screw dislocations on the $(\bar{1}11)_{\gamma}$ plane. The two sets of screw dislocations with Burgers vectors $b_1 = \frac{1}{2} [111]_{\alpha} = \frac{1}{2} [110]_{\gamma}$ and $b_2 = \frac{1}{2} [\bar{1}11]_{\alpha}$ shown by Shibata et *al.* (2010) on HRTEM images along the electron beam $[\bar{1}10]_{\alpha} = [001]_{\gamma}$ could correspond to the disclination $\mathbf{w}_{\rm B}$.

The exact nature and structure of dislocations at the austenite/martensite interface is beyond the scope of the paper. A theoretical approach based on disconnections and named topological model has been developed by Pond, Ma & Hirth (2008). Future work is required to establish a link between the mesoscale one step model and the microscale topological model.