
1

Supplementary Material
for the article

Equivalence of superspace groups

Sander van Smaalen,a* Branton J. Campbellb and Harold T. Stokesb

aLaboratory of Crystallography, University of Bayreuth, Bayreuth, Germany, and

bDepartment of Physics and Astronomy, Brigham Young University, Provo, Utah

84602, USA. E-mail: smash@uni-bayreuth.de

(Received 0 XXXXXXX 0000; accepted 0 XXXXXXX 0000)

Abstract

A detailed discussion is provided of the algorithm for determination of the transfor-

mation S between two settings of (3+d)-dimensional superspace groups (d = 1, 2, 3).

PREPRINT: Acta Crystallographica Section A A Journal of the International Union of Crystallography



2

1. Algorithm for determination of the transformation S.

Equivalence of two superspace groups is established by finding the transformation S

between them as defined in Eq. (9) of the manuscript:

A(g1) = S A(g2)S−1 . (9)

Failure to find such a transformation is considered proof that two superspace groups

are inequivalent.

As a general strategy, we will select an appropriate range limit Nk for each of the

independent variables S̃sk in Eq. (15),

S̃sj = −
(3+d)2−3d∑
k=j+1

Bik

Bij
S̃sk , (15)

and try all possible combinations of independent integers such that −Nk ≤ S̃sk ≤ Nk.

For each trial set, we then calculate each of the dependent variables S̃sj , check they

are all integers, check that det(SR) = 1 and det(Sϵ) = ±1, and finally check if there

is a solution to Eq. (12)

Svi −
3+d∑
j=1

Rs
1l
ij Svj = vs

1l
i −

3+d∑
j=1

Ssij vs
2l
j (mod 1) . (12)

It is important that each of the Nk be sufficiently large that a solution to Eqs. (12) and

(15) will be found whenever one exists. The following are our rules for determining

the values of Nk.

Rule 1. The value of Nk must be greater than or equal to 1 for all independent

variables capable of affecting the search for a solution (not all variables matter).

Rule 2. For a given j in Eq. (15), we can ensure that the dependent component S̃sj

has the opportunity to take on non-zero integer values by requiring that each of the

Nk be greater than or equal to the least common denominator of all of the coefficients

B′
ik/B

′
ij , some of which may be rational fractions.

IUCr macros version 2.1.4: 2010/12/07



3

Rule 3. The last term in Eq. (12) can be written as:

(3+d)2−3d∑
k=1

independent

ClikS̃sk (S1)

where the sum is only over the independent components of S̃s. For a given l and i,

let mli be the least common denominator of the nonzero coefficients Cli1, C1i2, . . .,

and let m be the least common multiple of all of the mli. Since Eq. (12) only needs

to be satisfied to within an integer (mod 1), we can allow the full range of possible

solutions by ensuring that its last term is able to take on nonzero integer values. This

is accomplished by requiring that all of the Nk be greater than or equal to 1
2m.

Rule 4. Before performing an equivalence test, we always begin by transforming

the 3-dimensional (i.e. basic space group) parts of the two superspace groups into a

common simple setting. This means that both groups have the same set of R matrices

and v3 translations, so that the identity transformation (SR = 1 and Sv = 0) relates

their basic space groups. However, the two superspace groups may still differ in ϵ, M ,

and vd, such that there exists no overall solution for S with SR = 1. In such a case, a

solution with SR ̸= 1 may still exist, which involves a simple permutation or mixing

of the external lattice vectors. Due to this preprocessing of the operators, we can use

Nk = 1 for each independent variable in SR, even if the previous rules say otherwise.

Rule 5. Let mϵ be the maximum value of Nk among the independent variables in

Sϵ. In order to allow solutions for which det(Sϵ) = ±1, we require that all values of

Nk for the independent variables in Sϵ must greater than or equal to mϵ − 1.

Based on the independent-variable range limits described above, the total number

of independent-variable trials will be

(3+d)2−3d∏
k=1

independent

(2Nk + 1). (S2)

IUCr macros version 2.1.4: 2010/12/07



4

For large numbers of independent variables and/or for large values of Nk, it is often

impractical to conduct so many trials. We must therefore increase the efficiency of the

search by recognizing situations in which the values of certain higher-priority variables

fail a critical test, making it unnecessary to explore the values of any other variables

until the higher-priority variables have been changed.

To facilitate this approach, we first classify the independent variables as follows:

XR: The independent variables in S̃R.

Xϵ: The independent variables in S̃ϵ.

XM : The independent variables in S̃M .

XI : The independent variables of S̃s that have non-integer rational fractions for coef-

ficients in Eq. (15). The values of these independent variables can cause the

dependent variables to have non-integer values.

XT : The independent variables in S̃s that have nonzero coefficients in Eq. (S1). The

values of these independent variables might make the last term in Eq. (12) too

small to permit (mod 1) equivalence.

XI : The independent variables of S̃s that are not included in XI .

XT : The independent variables of S̃s that are not included in XT .

Consider that in Eq. (13),

S̃s =

 S̃M

S̃R

S̃ϵ

 , (13)

we put S̃R and S̃ϵ below S̃M . When we bring B to row echelon form, this arrangement

guarantees that dependent variables in Sϵ will only depend on independent variables

in Xϵ. And because of the zeros that occur by definition in the upper right corner of

IUCr macros version 2.1.4: 2010/12/07



5

Ss, it also guarantees that dependent variables in SR will only depend on independent

variables in XR.

Intersections with XT and XI split the variables of the XR, Xϵ and XM classes into

four subclasses each.

XR ∩XT ∩XI Xϵ ∩XT ∩XI XM ∩XT ∩XI

XR ∩XT ∩XI Xε ∩XT ∩XI XM ∩XT ∩XI

XR ∩XT ∩XI Xε ∩XT ∩XI XM ∩XT ∩XI

XR ∩XT ∩XI Xε ∩XT ∩XI XM ∩XT ∩XI

(S3)

The simplest way to construct an algorithm would be to have 12 successively nested

loops to iterate the variables of each these subclasses (XR subclasses first, Xϵ sub-

classes next, and XM subclasses last), such that we perform tests in each loop that

have the potential to skip all inner loops as soon as a failure is detected. For exam-

ple, a dependent-variable test (must be integers) can be performed on S̃R as soon as

values have been assigned to all variables in XR ∩XI , and a determinant test can be

performed as soon as values have been assigned to all variables in XR.

In practice, we find it convenient to group some of the subclasses together, while

keeping others separate. See the algorithm pseudo-code at the end of the appendix

for details. In the outermost loop (#1), we systematically iterate over all variables in

XR ∩ XT . For each outer-loop trial, loops #2 and #3 iterate over the XR variables

that don’t affect the translation test, and accumulate a list of candidates that pass

the dependent-variable and determinant tests (called the RT list). Note that for each

candidate in XR ∩XT ∩XI that passes the independent variable test, we only need

one candidate in XR ∩XT ∩XI that passes the determinant test—all candidates of

this type are equivalent with respect to the tests that remain to be performed.

Provided that at least one successful candidate turns up in the RT list, we nest

inward with a loop (#4) that iterates over Xϵ ∩XT , which contains additional loops

(#5 and #6) that accumulate a comparable list of successful ϵT candidates.

Provided that at least one successful candidate turns up in the ϵT list, we run

IUCr macros version 2.1.4: 2010/12/07



6

another loop (#7) that iterates over XM ∩XT . These trials each complete the assign-

ment of variables in XT , so that we are able to perform the translation test of Eq.

(12). Each successful candidate is accumulated in the MT list. Note that the variables

in XM are not subject to a determinant test.

Nested loops #8, #9 and #10 now iterate over the accumulated lists of successful

candidates from previous tests on specific variables. Taking XR ∩ XT and Xϵ ∩ XT

values from the loop #1 and loop #4 iterators, together with XR ∩XT values from

the RT list, Xϵ ∩XT values from the ϵT list, and XM ∩XT values from the MT list,

we finally iterate over the XM ∩ XT ∩ XI variables, and perform the last test: the

dependent-variable on S̃M . Only one success within this innermost loop proves the two

groups to be equivalent. Observe that we never explore the variables in XM ∩XT ∩XI

because they don’t impact the outcomes of any of the tests performed—we simply set

these variables to zero.

The accumulation of the RT , ϵT and MT lists was convenient but not necessary.

Their creation did not eliminate nested loops, but merely delayed the nesting until

the last step of the algorithm (loops #8-#11). We accumulated these lists because the

overhead associated with the tests relevant to each list were expensive. In the current

algorithm, we get many valid candidates for a specific variable subclass after paying

this expense only once.

Our algorithm is still a brute force exploratory approach to establishing superspace-

group equivalence based on two sets of group operators. But it is also robust and highly

efficient. Efficiency was enhanced in at least four ways: (1) separating dependent and

independent variables, (2) keeping variable dependencies isolated within S̃R and S̃ϵ,

(3) aggressively performing outer-loop tests that bypassed large numbers of inner-

loop iterations, (4) and keeping the independent-variable ranges as small as possible

without precluding viable solutions.

IUCr macros version 2.1.4: 2010/12/07



7

2. Algorithm pseudo-code

Set all values in the intersection XM ∩ XT ∩ XI equal to zero, since they have no

influence on the solution.

Loop (1): Iterate over XR ∩XT .

Clear the RT list.

Loop (2): Iterate over XR ∩XT ∩XI .

Calculate the dependent variables in SR.

If any of them are not integers, cycle Loop (2).

Loop (3): Iterate over XR ∩XT ∩XI .

Calculate the dependent variables in SR.

If det(SR) = 1, store the values for XR ∩XT in

the RT list and cycle Loop (2).

End Loop (3)

End Loop (2)

If the RT list is empty, cycle Loop (1).

Loop (4): Iterate over Xε ∩XT .

Clear the εT list.

Loop (5): Iterate over Xϵ ∩XT ∩XI .

Calculate the dependent variables in Sϵ.

If any of them are not integers, cycle Loop (5).

Loop (6): Iterate over Xϵ ∩XT ∩XI .

Calculate the dependent variables in Sε.

If det(Sϵ) = ±1, store the values for

Xϵ ∩XT in the ϵT list and cycle Loop (5).

End Loop (6)

End Loop (5)

IUCr macros version 2.1.4: 2010/12/07



8

If the ϵT list is empty, cycle Loop (4).

Clear the MT list.

Loop (7): Iterate over XM ∩XT .

If a solution for St exists, store the values for

XM ∩XT in the MT list.

End Loop (7)

If the MT list is empty, cycle Loop (4).

Loop (8): Iterate over entries in the RT list.

Loop (9): Iterate over entries in the ϵT list.

Loop (10): Iterate over entries in MT list.

Loop (11): Iterate over XM ∩XT ∩XI .

Calculate the dependent variables in

SM . If any of them are not integers,

cycle Loop (11).

Else we have found a solution. The

two groups are equivalent.

Exit algorithm.

End Loop (11).

End Loop (10).

End Loop (9).

End Loop (8).

End Loop (4).

End Loop (1).

There is no solution. The two groups are not equivalent.

Exit algorithm.

IUCr macros version 2.1.4: 2010/12/07


