Appendix A Definition of Buerger-reduced cells

For reference, the definitions of the Buerger- and the Niggli-reduced cells are stated; a cell is Buerger-reduced if and only if its metric tensor belongs to the domain $D_{\text {Buerger }}$:

(Buerger-reduced domain)

$$
\begin{gather*}
D_{\text {Buerger }}:=D_{B}^{+} \cup D_{B}^{-}, \tag{61}\\
D_{B}^{+}:=\left\{\left(s_{i j}\right)_{1 \leq i, j \leq 3} \in \operatorname{Sym}^{3}(\mathbb{R}): 0<s_{11} \leq s_{22} \leq s_{33}\right. \\
 \tag{62}\\
\left.0 \leq s_{12}, s_{13} \leq \frac{s_{11}}{2}, 0 \leq s_{23} \leq \frac{s_{22}}{2}\right\} \\
D_{B}^{-}:= \\
\left\{\left(s_{i j}\right)_{1 \leq i, j \leq 3} \in \operatorname{Sym}^{3}(\mathbb{R}): 0<s_{11} \leq s_{22} \leq s_{33}\right. \tag{63}\\
\\
0 \leq-s_{12},-s_{13} \leq \frac{s_{11}}{2}, 0 \leq-s_{23} \leq \frac{s_{22}}{2} \\
\\
\left.\quad-s_{12}-s_{13}-s_{23} \leq \frac{s_{11}+s_{22}}{2}\right\}
\end{gather*}
$$

It is well known that $D_{\text {Buerger }}\left[g_{1}\right]$ and $D_{\text {Buerger }}\left[g_{2}\right]$ share interior points only when $g_{1}= \pm g_{2}$.
The Buerger-reduced cell is said to be normalized when it also satisfies the following boundary conditions:

$$
\begin{align*}
\left(s_{i j}\right) \in D_{B}^{+} & \Longrightarrow s_{12}>0, s_{13}>0, s_{23}>0 \tag{64}\\
s_{11}=s_{22} & \Longrightarrow\left|s_{23}\right| \leq\left|s_{13}\right| \tag{65}\\
s_{22}=s_{33} & \Longrightarrow\left|s_{13}\right| \leq\left|s_{12}\right| \tag{66}
\end{align*}
$$

The following extra boundary conditions are added in the definition of the Niggli-reduced cell (Niggli(1928), Hahn (1983)).

1. (Case of $\left.s_{12}>0, s_{13}>0, s_{23}>0\right)$

$$
\begin{align*}
& s_{23}=\frac{s_{22}}{2} \Rightarrow s_{12} \leq 2 s_{13} \tag{67}\\
& s_{13}=\frac{s_{11}}{2} \Rightarrow s_{12} \leq 2 s_{23} \tag{68}\\
& s_{12}=\frac{s_{11}}{2} \Rightarrow s_{13} \leq 2 s_{23} \tag{69}
\end{align*}
$$

2. (Case of $\left.s_{12} \leq 0, s_{13} \leq 0, s_{23} \leq 0\right)$

$$
\begin{align*}
\left|s_{23}\right|=\frac{s_{22}}{2} & \Rightarrow s_{12}=0 \tag{70}\\
\left|s_{13}\right|=\frac{s_{11}}{2} & \Rightarrow s_{12}=0 \tag{71}\\
\left|s_{12}\right|=\frac{s_{11}}{2} & \Rightarrow s_{13}=0 \tag{72}\\
\left|s_{12}+s_{13}+s_{23}\right|=\frac{s_{11}+s_{22}}{2} & \Rightarrow s_{11} \leq\left|s_{12}+2 s_{13}\right| \tag{73}
\end{align*}
$$

The Niggli-reduced cell is determined uniquely for any 3-dimensional lattices.

Appendix B

Domains containing nearly Buerger-reduced cells

All the facets and the extreme rays of $D_{\text {Buerger }}$ are presented in the following tables.
Table 1. Facets of $D_{B u e r g e r}$.
Label Equation
$a \quad s_{11}=s_{22}$
$b \quad s_{22}=s_{33}$
$c^{(\pm)} \quad \pm 2 s_{12}=s_{11}$
$d^{(\pm)} \quad \pm 2 s_{13}=s_{11}$
$e^{(\pm)} \quad \pm 2 s_{23}=s_{22}$
$c^{(0)} \quad s_{12}=0$
$d^{(0)} \quad s_{13}=0$
$e^{(0)} \quad s_{23}=0$
$f \quad s_{11}+s_{22}=-2 s_{12}-2 s_{13}-2 s_{23}$

Table 2. Extreme rays of $D_{\text {Buerger }}$.

Label Generating matrix Rank Active constraints (Facets)

D_{B}^{+}:

3-1	$A_{3}:=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$	3	$a, b, c^{(+)}, d^{(+)}, e^{(+)}$
3-2	$\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$	3	$a, b, c^{(0)}, d^{(+)}, e^{(+)}$
3-3	$\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$	3	$a, b, c^{(+)}, d^{(0)}, e^{(+)}$
3-4	$\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right)$	3	$a, b, c^{(+)}, d^{(+)}, e^{(0)}$
3-5	$u_{3}:=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$	3	$a, b, c^{(+)}, d^{(0)}, e^{(0)}$
3-6	$\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right)$	3	$a, b, c^{(0)}, d^{(+)}, e^{(0)}$
3-7	$\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$	3	$a, b, c^{(0)}, d^{(0)}, e^{(+)}$
2-1	$A_{2}^{+}:=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$	2	$b, c^{(\pm)}, c^{(0)}, d^{(\pm)}, d^{(0)}, e^{(+)}$

$D_{B}^{-}:$

3-8	$\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)$	3	$a, b, c^{(0)}, d^{(-)}, e^{(-)}$
3-9	$\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$	3	$a, b, c^{(-)}, d^{(0)}, e^{(-)}$
3-10	$\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & 0 \\ -1 & 0 & 2\end{array}\right)$	3	$a, b, c^{(-)}, d^{(-)}, e^{(0)}$
3-11	$\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$	3	$a, b, c^{(-)}, d^{(0)}, e^{(0)}$
3-12	$\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2\end{array}\right)$	3	$a, b, c^{(0)}, d^{(-)}, e^{(0)}$
3-13	$\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$	3	$a, b, c^{(0)}, d^{(0)}, e^{(-)}$
2-2	$\begin{aligned} & A_{2}^{-} \\ & \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right) \end{aligned}$	2	$b, c^{(\pm)}, c^{(0)}, d^{(\pm)}, d^{(0)}, e^{(-)}, f$

D_{B}^{+}and D_{B}^{-}:
3-14 $\quad I_{3}:=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad 3 \quad a, b, c^{(0)}, d^{(0)}, e^{(0)}$
2-3 $\quad u_{2}:=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad 2 \quad b, c^{(\pm)}, c^{(0)}, d^{(\pm)}, d^{(0)}, e^{(0)}$
1-1 $\quad u_{1}:=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \quad 1 \quad a, c^{(\pm)}, c^{(0)}, d^{(\pm)}, d^{(0)}$,

$$
e^{(\pm)}, e^{(0)}, f
$$

* Some extreme rays are not contained in $D_{\text {Buerger }}$, but in its boundary.

From a geometrical point of view, it is seen that the number of operations to search for nearly Buerger-reduced cells in the sense of Andrews \& Bernstein (1988) reaches its maximum when $S^{\text {obs }}$ is close to one of the extreme rays of $D_{\text {Buerger }}$. Under the assumption $\left(A_{0}\right)$ that is derived from the assumption (A), the generating matrix of the extreme ray close to $S^{o b s}$ must be positive definite:
$\left(A_{0}\right)$ An observed metric tensor $S^{\text {obs }}$ is sufficiently far from any 3 -by- 3 symmetric matrix that is not positive definite.

Therefore, the maximum is computed as the number of the change-of-basis matrices g such that $D_{\text {Buerger }}[g]$ contains a fixed extreme ray in $D_{\text {Buerger }}$ of rank 3. (Note that it is impossible to enumerate such g without assuming $\left(A_{0}\right)$, because infinitely many $D_{\text {Buerger }}[g]$ share a singular matrix with $D_{\text {Buerger. }}$)

In Table 2, every generating matrix of rank 3 other than I_{3} is equivalent to A_{3} or u_{3}, i.e., equals $g A_{3} g^{T}, g u_{3} g^{T}$ for some change-of-basis matrix g. Such g is given as an element of $U_{B}^{(\pm)}$when the matrix is equivalent to A_{3}, and of $W_{B}^{(\pm)}$, otherwise.

$$
\begin{align*}
U_{B}^{(+)} & :=\left\{I_{3},\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}, \tag{74}\\
U_{B}^{(-)} & :=\left\{\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}, \tag{75}\\
W_{B}^{(+)} & :=\left\{I_{3},\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\right\}, \tag{76}\\
W_{B}^{(-)} & :=\left\{\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)\right\}, \tag{77}
\end{align*}
$$

In this case, the following proposition is proved:
Proposition 3. 1. A_{3} is contained in $D_{\text {Buerger }}\left[g^{-1}\right]$ if and only if g is an element of $\left\{g_{1} g_{2}\right.$: $\left.g_{1} \in U_{B}^{(\pm)}, g_{2} \in \operatorname{St}\left(A_{3}\right)\right\}$.
2. The matrix u_{3} is contained in $D_{\text {Buerger }}\left[g^{-1}\right]$ if and only if g is an element of $\left\{g_{1} g_{2}: g_{1} \in\right.$ $\left.W_{B}^{(\pm)}, g_{2} \in S t\left(u_{3}\right)\right\}$, where $S t\left(u_{3}\right)$ is the stabilizer subgroup of u_{3} in $G L(3, \mathbb{Z})$.
3. I_{3} is contained in $D_{\text {Buerger }}\left[g^{-1}\right]$ if and only if g belongs to $S t\left(I_{3}\right)$.

The elements of $S t\left(u_{3}\right)$ are presented in 3 . Using proposition 3, the cardinalities of change-ofbasis matrices g such that $D_{\text {Buerger }}[g]$ shares A_{3}, u_{3} and I_{3} with $D_{\text {Buerger }}$ are calculated. They equal 336,144 , and 48 , respectively.

Now, $D_{\text {Buerger }}[g]=D_{\text {Buerger }}$ holds if and only if $g= \pm I_{3}$. Therefore, the number of operations necessary to obtain all nearly Buerger-reduced cells equals $\frac{336}{2}=168$ at least in the worst case (Consequently, more than 168 matrices are required to be checked.). Since this always occurs if the metric tensor of a lattice is sufficiently close to A_{3}, the maximum is reached regardless of the magnitude of errors.

Table 3. Elements of the stabilizer subgroup $\operatorname{St}\left(u_{3}\right)$ in $G L(3, \mathbb{Z})$.

$$
\begin{aligned}
& \pm\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \pm\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \pm\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \pm\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& \pm\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \pm\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \pm\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \pm\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1 \\
-1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Using Proposition 3 , it is also possible to enumerate all $g \in G L(3, \mathbb{Z})$ such that $D_{\text {Buerger }}[g]$ contains nearly Buerger-reduced cells; $D_{\text {Buerger }}[g]$ contains nearly Buerger-reduced cells if only if $D_{\text {Buerger }}[g]$ shares a positive definite matrix with $D_{\text {Buerger }}$. As a result, the number of such g (including $\pm I_{3}$) equals 1992. Among the 25 Gruber operations, 22 operations are contained in it. The remaining three operations are as follows (The number was given by Gruber(1973)):

$$
\begin{aligned}
& 12:(A, A+B+\zeta, B+C+\xi, 2 B+\xi+\eta+\zeta, \eta+\zeta, 2 A+\zeta), \\
& 21:(B, A+B-\zeta, A+C-\eta, 2 A+\xi-\eta-\zeta,-\xi+\zeta,-2 B+\zeta), \\
& 23:(C, A+B-\zeta, A+C-\eta, 2 A+\xi-\eta-\zeta,-2 C+\eta,-\xi+\eta) .
\end{aligned}
$$

With regard to these operations, $D_{\text {Buerger }}$ and $D_{\text {Buerger }}[g]$ contain no positive definite matrix in common.

Appendix C

Proofs of theorems

Proof of Theorem 1. Let g be an element of $G L_{3}(\mathbb{Z})$ such that $S \in \tilde{D}_{\text {min }}[g]$. Then, $S\left[g^{-1}\right]$ belongs to $V_{\text {mono }, p} \cap \tilde{D}_{\text {min }}$. By replacing g with $g g_{0}$ for some $g_{0} \in \operatorname{St}\left(I_{3}\right)$, it may be supposed that $S\left[g^{-1}\right]$ is also contained in the following subset of $V_{\text {mono }, p, b}$.

$$
\begin{align*}
& U_{\text {mono }, p, b}:=\left\{\left(s_{i j}\right)_{1 \leq i, j \leq 3} \in V_{\text {mono }, p, b}\right. \\
&\left.s_{11} \leq s_{33},-s_{11} \leq 2 s_{13} \leq 0\right\} \tag{78}
\end{align*}
$$

The (i, j)-entries of S and $g^{T} g$ are denoted by $s_{i j}$ and $a_{i j}$, respectively. The following inequality is obtained from $S\left[g^{-1}\right] \in U_{\text {mono }, p, b}$:

$$
\begin{align*}
\langle S & \left.I_{3}\right\rangle-\left\langle S\left[g^{-1}\right], I_{3}\right\rangle \\
& =\left\langle\left(\begin{array}{ccc}
s_{11} & 0 & s_{13} \\
0 & s_{22} & 0 \\
s_{13} & 0 & s_{33}
\end{array}\right), g^{T} g-I_{3}\right\rangle \tag{79}\\
& =\left(a_{11}-1\right) s_{11}+2 a_{13} s_{13}+\left(a_{22}-1\right) s_{22}+\left(a_{33}-1\right) s_{33} \\
& \geq\left(a_{11}+a_{33}-2-\left|a_{13}\right|\right) s_{11}+\left(a_{22}-1\right) s_{22} \\
& \geq \frac{1}{2}\left(a_{11}+a_{33}-2\right) s_{11}+\left(a_{22}-1\right) s_{22}
\end{align*}
$$

For the last inequality, $a_{11}+a_{33} \geq 2\left|a_{13}\right|+1$ is used. Since $g^{T} g$ is an integer-valued positive definite symmetric matrix, a_{11}, a_{22}, and a_{33} are positive integers. Hence, the coefficients of s_{11} and s_{22} are not negative in the last line of (79).

On the other hand, $\left\langle S^{o b s}, I_{3}\right\rangle-\left\langle S^{o b s}\left[g^{-1}\right], I_{3}\right\rangle \leq 0$ also holds because $S^{\text {obs }} \in \tilde{D}_{\text {min }}$. Therefore, the coefficients of s_{11} and s_{22} must be less than $\frac{1}{2}$ from the assumption (A). Hence, we have

$$
\begin{equation*}
a_{11}=a_{22}=a_{33}=1 \tag{80}
\end{equation*}
$$

Thus, it is proved that g belongs to $U_{\text {mono }, p, b}$. From the assumption, $S\left[g^{-1}\right] \in U_{\text {mono }, p, b}$, therefore S is an element of $V_{\text {mono, } p}$.

Proof of Theorem 2. Let g be an element of $G L_{3}(\mathbb{Z})$ with $\tilde{S} \in \tilde{D}_{d e l}[g]$. Then, $\tilde{S}\left[g^{-1}\right]$ belongs to $\tilde{V}_{F} \cap \tilde{D}_{\text {del }}$. By replacing g with $g g_{0}$ for some $g_{0} \in \operatorname{St}\left(A_{3}\right)$, it may also be supposed that $\tilde{S}\left[g^{-1}\right]$ belongs to the subset of $\tilde{V}_{F, 1,2} \cap \tilde{D}_{d e l}$.

The (i, j)-entry of $g^{T} A_{3} g$ is denoted by $a_{i j}$ and the entries of \tilde{S} are denoted by

$$
\left(\begin{array}{cccc}
-\tilde{s}_{12}-2 \tilde{s}_{13} & \tilde{s}_{12} & \tilde{s}_{13} & \tilde{s}_{13} \tag{81}\\
\tilde{s}_{12} & -\tilde{s}_{12}-2 \tilde{s}_{13} & \tilde{s}_{13} & \tilde{s}_{13} \\
\tilde{s}_{13} & \tilde{s}_{13} & -2 \tilde{s}_{13}-\tilde{s}_{34} & \tilde{s}_{34} \\
\tilde{s}_{13} & \tilde{s}_{13} & \tilde{s}_{34} & -2 \tilde{s}_{13}-\tilde{s}_{34}
\end{array}\right) .
$$

Then,

$$
\begin{align*}
& \left\langle\tilde{S}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}, I_{4}\right\rangle \\
& \quad=\left\langle\left(\begin{array}{ccc}
-\tilde{s}_{12}-2 \tilde{s}_{13} & \tilde{s}_{12} & \tilde{s}_{13} \\
\tilde{s}_{12} & -\tilde{s}_{12}-2 \tilde{s}_{13} & \tilde{s}_{13} \\
\tilde{s}_{13} & \tilde{s}_{13} & -2 \tilde{s}_{13}-\tilde{s}_{34}
\end{array}\right), g^{T} A_{3} g-A_{3}\right\rangle \\
& \quad=\quad-\left(a_{11}+a_{22}-2 a_{12}-2\right) \tilde{s}_{12} \\
& \\
& \quad \geq-2\left(a_{11}+a_{22}+a_{33}-a_{13}-a_{23}-4\right) \tilde{s}_{13}-\left(a_{33}-2\right) \tilde{s}_{34} \tag{82}\\
& \quad \geq-2\left(a_{11}+a_{22}+a_{33}-a_{13}-a_{23}-4\right) \tilde{s}_{13} .
\end{align*}
$$

For the last inequality, $a_{11}+a_{22}-2 a_{12} \geq 2$ and $a_{33} \geq 2$ are utilized. They follow from the fact that

$$
\begin{equation*}
0 \neq u \in \mathbb{Z}^{3} \Longrightarrow u^{T} A_{3} u \text { is positive and even. } \tag{83}
\end{equation*}
$$

On the other hand, $\left\langle\tilde{S}^{\text {obs }}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}^{\text {obs }}, I_{4}\right\rangle \leq 0$ follows from $\tilde{S}^{\text {obs }} \in \tilde{D}_{\text {del }}$. Furthermore, from $-4 \tilde{s}_{13}=(1,1,0,0) \tilde{S}(1,1,0,0)^{T}$ and the assumption (A), the following inequality is obtained:

$$
\begin{equation*}
a_{11}+a_{22}+a_{33}-a_{13}-a_{23}<5 \tag{84}
\end{equation*}
$$

Therefore, using (83),

$$
\begin{equation*}
a_{11}=a_{22}=a_{11}+a_{33}-2 a_{13}=a_{22}+a_{33}-2 a_{23}=2 . \tag{85}
\end{equation*}
$$

That is, the column vectors of $g:=\left(\begin{array}{lll}g_{1} & g_{2} & g_{3}\end{array}\right)$ satisfy

$$
\begin{align*}
g_{1}^{T} A_{3} g_{1} & =g_{2}^{T} A_{3} g_{2}=\left(g_{1}-g_{3}\right)^{T} A_{3}\left(g_{1}-g_{3}\right) \\
& =\left(g_{2}-g_{3}\right)^{T} A_{3}\left(g_{2}-g_{3}\right)=2 . \tag{86}
\end{align*}
$$

Because g is a matrix of determinant $\pm 1, g_{1}, g_{2}, g_{1}-g_{3}, g_{2}-g_{3}$ are the elements of the following set and they differ from one another:

$$
\left\{ \pm\left(\begin{array}{l}
1 \tag{87}\\
0 \\
0
\end{array}\right), \pm\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \pm\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \pm\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \pm\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \pm\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)\right\} .
$$

Hence, $h_{\text {del }} g_{1}, h_{\text {del }} g_{2}, h_{\text {del }}\left(g_{1}-g_{3}\right), h_{\text {del }}\left(g_{2}-g_{3}\right)$ are different elements of the set

$$
\left\{ \pm\left(\begin{array}{c}
1 \tag{88}\\
0 \\
0 \\
-1
\end{array}\right), \pm\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), \pm\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right), \pm\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right), \pm\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right), \pm\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)\right\}
$$

Then, by direct computation, it is confirmed that $h_{\text {del }}\left(\begin{array}{lll}g_{1} & g_{2} & g_{3}\end{array}\right)= \pm p_{0} h$ for a 4 -by- 4 permutation matrix p_{0} and h equals one of the matrices:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \tag{89}\\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & -1 & -1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1 \\
-1 & -1 & -1
\end{array}\right) .
$$

Therefore, g is one of the following matrices:

$$
g_{0}, g_{0}\left(\begin{array}{ccc}
-1 & 0 & 0 \tag{90}\\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), g_{0}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right) \quad\left(g_{0} \in S t\left(A_{3}\right)\right)
$$

As a result, it is proved that at least one g in (90) satisfies $\tilde{S}\left[g^{-1}\right] \in \tilde{V}_{F, 1,2} \cap \tilde{D}_{\text {del }}$. Now, $\tilde{V}_{F, 1,2}\left[g_{0}\right]$ is contained in \tilde{V}_{F} for any $g_{0} \in S t\left(A_{3}\right)$. Furthermore, it is checked by direct calculation that the following equations are true:

$$
\begin{align*}
& \tilde{V}_{F, 1,2}\left[\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\right]=\tilde{V}_{F, 1,2} \tag{91}\\
& \tilde{V}_{F, 1,2}\left[\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)\right]=\tilde{V}_{F, 1,2} \tag{92}
\end{align*}
$$

Therefore, \tilde{S} belongs to \tilde{V}_{F}.

Proof of Theorem 3. Let g be an element of $G L_{3}(\mathbb{Z})$ with $\tilde{S} \in \tilde{D}_{\text {del }}[g]$. Then, $\tilde{S}\left[g^{-1}\right]$ belongs to $\tilde{V}_{R} \cap \tilde{D}_{\text {del }}$. By replacing g with $g g_{0}$ for some $g_{0} \in S t\left(A_{3}\right)$, it may be supposed that $\tilde{S}\left[g^{-1}\right]$ belongs to $\left(\tilde{V}_{R, 1,2,3}^{-} \cup \tilde{V}_{R, 3,4,1}^{+}\right) \cap \tilde{D}_{d e l}$.

Subsequently, the (i, j)-entry of $g^{T} A_{3} g$ is denoted by $a_{i j}$.
(a) (Case of $\left.\tilde{S}\left[g^{-1}\right] \in \tilde{V}_{R, 1,2,3}^{-}\right)$

The entries $\tilde{S}\left[g^{-1}\right] \in \tilde{V}_{R, 1,2,3}^{-}$are denoted by

$$
\left(\begin{array}{cccc}
-2 \tilde{s}_{12}-\tilde{s}_{14} & \tilde{s}_{12} & \tilde{s}_{12} & \tilde{s}_{14} \tag{93}\\
\tilde{s}_{12} & -2 \tilde{s}_{12}-\tilde{s}_{14} & \tilde{s}_{12} & \tilde{s}_{14} \\
\tilde{s}_{12} & \tilde{s}_{12} & -2 \tilde{s}_{12}-\tilde{s}_{14} & \tilde{s}_{14} \\
\tilde{s}_{14} & \tilde{s}_{14} & \tilde{s}_{14} & -3 \tilde{s}_{14}
\end{array}\right)
$$

Then,

$$
\begin{align*}
& \left\langle\tilde{S}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}, I_{4}\right\rangle \\
& \quad=\left\langle\left(\begin{array}{ccc}
-2 \tilde{s}_{12}-\tilde{s}_{14} & \tilde{s}_{12} & \tilde{s}_{12} \\
\tilde{s}_{12} & -2 \tilde{s}_{12}-\tilde{s}_{14} & \tilde{s}_{12} \\
\tilde{s}_{12} & \tilde{s}_{12} & -2 \tilde{s}_{12}-\tilde{s}_{14}
\end{array}\right), g^{T} A_{3} g-A_{3}\right\rangle \\
& \quad=-2\left(a_{11}+a_{22}+a_{33}-a_{12}-a_{13}-a_{33}-3\right) \tilde{s}_{12} \\
& \\
& \quad \geq-\left(a_{11}+a_{22}+a_{33}-6\right) \tilde{s}_{14} \tag{94}\\
& \quad-\left(a_{11}+a_{22}+a_{33}-6\right) \tilde{s}_{14} .
\end{align*}
$$

For the last inequality, $a_{i i}+a_{j j}-2 a_{i j} \geq 2$ obtained from (83).
On the other hand, $\left\langle\tilde{S}^{o b s}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}^{o b s}, I_{4}\right\rangle \leq 0$ follows from $\tilde{S}^{o b s} \in \tilde{D}_{d e l}$. Furthermore, $a_{11}+a_{22}+a_{33}-6<\frac{3}{2}$ is required because $-3 \tilde{s}_{14}$ is the square of the length of a lattice vector.

As a result, $a_{i i}=2(1 \leq i \leq 3)$ is obtained from (83).
As in the proof of Theorem 2, the column vectors of $h_{\text {del }} g$ belong to

$$
\left\{ \pm\left(\begin{array}{c}
1 \tag{95}\\
0 \\
0 \\
-1
\end{array}\right), \pm\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), \pm\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right), \pm\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right), \pm\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right), \pm\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)\right\}
$$

Hence, $h_{d e l} g$ equals one of the matrices:

$$
\pm p_{0}\left(\begin{array}{ccc}
1 & 0 & 0 \tag{96}\\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right) h_{0} q_{0}, \pm p_{0}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & -1 \\
0 & -1 & 1
\end{array}\right) h_{1} q_{0}
$$

where p_{0} is a 4 -by- 4 permutation matrix, q_{0} is a 3 -by- 3 permutation matrix, $h_{0}=I_{3}, t_{001}$, and $h_{1}=I_{3}, t_{010}, t_{001}$.

Therefore, g equals one of the following matrices for some $g_{0} \in S t\left(A_{3}\right)$:

$$
\begin{equation*}
g_{0} h_{0} q_{0}, g_{0} T_{R}^{+} h_{1} q_{0} \tag{97}
\end{equation*}
$$

From the assumption that \tilde{S} belongs to $V_{R, 1,2,3}^{-}[g], \tilde{S}$ is an element of the set:

$$
\begin{align*}
& \bigcup_{g_{0} \in S t\left(A_{3}\right)} \tilde{V}_{R, 1,2,3}^{-}\left[g_{0}\right] \cup \bigcup_{g_{0} \in S t\left(A_{3}\right)} \tilde{V}_{R, 1,2,3}^{-}\left[g_{0} T_{R}^{+}\right] \tag{98}\\
& \quad \cup \bigcup_{g_{0} \in S t\left(A_{3}\right)} \tilde{V}_{R, 1,2,3}^{-}\left[g_{0} t_{001}\right] \cup \bigcup_{\substack{g_{0} \in S t\left(A_{3}\right), h=t_{010}, t_{001}}} \tilde{V}_{R, 1,2,3}^{-}\left[g_{0} T_{R}^{+} h\right] .
\end{align*}
$$

Now, $\tilde{V}_{R, 1,2,3}^{-}\left[T_{R}^{+}\right]=\tilde{V}_{R, 3,4,1}^{+}$is obtained by the equation:

$$
\begin{align*}
& h_{d e l} T_{R}^{+}\left(\begin{array}{ccc}
-\tilde{s}_{12}-r & -\tilde{s}_{12} & -\tilde{s}_{12} \\
-\tilde{s}_{12} & -\tilde{s}_{12}-r & -\tilde{s}_{12} \\
-\tilde{s}_{12} & -\tilde{s}_{12} & -\tilde{s}_{12}-r
\end{array}\right)\left(h_{\text {del }} T_{R}^{+}\right)^{T} \\
& \quad=\left(\begin{array}{cccc}
-\tilde{s}_{12}-r & \tilde{s}_{12} & r & 0 \\
\tilde{s}_{12} & -\tilde{s}_{12}-r & 0 & r \\
r & 0 & -2 r & r \\
0 & r & r & -2 r
\end{array}\right) \tag{99}
\end{align*}
$$

Therefore, the statement of the theorem is true in this case.
(b) (Case of $\left.\tilde{S}\left[g^{-1}\right] \in \tilde{V}_{R, 3,4,1}^{+}\right)$

The entries of $\tilde{S}\left[g^{-1}\right] \in \tilde{V}_{R, 1,2,3}^{-}$are denoted by

$$
\left(\begin{array}{cccc}
-\tilde{s}_{12}-\tilde{s}_{13} & \tilde{s}_{12} & \tilde{s}_{13} & 0 \tag{100}\\
\tilde{s}_{12} & -\tilde{s}_{12}-\tilde{s}_{13} & 0 & \tilde{s}_{13} \\
\tilde{s}_{13} & 0 & -2 \tilde{s}_{13} & \tilde{s}_{13} \\
0 & \tilde{s}_{13} & \tilde{s}_{13} & -2 \tilde{s}_{13}
\end{array}\right)
$$

Then,

$$
\begin{align*}
& \left\langle\tilde{S}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}, I_{4}\right\rangle \\
& \quad=\quad\left\langle\left(\begin{array}{ccc}
-\tilde{s}_{12}-\tilde{s}_{13} & \tilde{s}_{12} & \tilde{s}_{13} \\
\tilde{s}_{12} & -\tilde{s}_{12}-\tilde{s}_{13} & 0 \\
\tilde{s}_{13} & 0 & -2 \tilde{s}_{13}
\end{array}\right), g^{T} A_{3} g-A_{3}\right\rangle \\
& \quad=\quad-\left(a_{11}+a_{22}-2 a_{12}-2\right) \tilde{s}_{12} \\
& \\
& \quad-\left(a_{11}+a_{22}+2 a_{33}-2 a_{13}-6\right) \tilde{s}_{13} \tag{101}\\
& \geq
\end{align*} \quad-\left(a_{11}+a_{22}+2 a_{33}-2 a_{13}-6\right) \tilde{s}_{13} . \quad .
$$

For the last inequality, $a_{11}+a_{22}-2 a_{12} \geq 2$ is utilized. Now, $-2 \tilde{s}_{13}$ is the square of the length of a lattice vector. As a result, $a_{11}+a_{33}-2 a_{13}=a_{22}=a_{33}=2$ is obtained from $\left\langle\tilde{S}^{\text {obs }}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}^{o b s}, I_{4}\right\rangle \leq 0$ and the assumption (A).

The equalities hold if and only if

$$
\begin{aligned}
\left(\tilde{a}_{i j}\right)_{1 \leq i, j \leq 3}:= & \left(g T_{R}^{+}\right)^{T} A_{3} g T_{R}^{+} \text {satisfies } \tilde{a}_{11}=\tilde{a}_{22}=\tilde{a}_{33}=2 \\
& \Longleftrightarrow g T_{R}^{+} \text {equals one of the matrices in }(97)
\end{aligned}
$$

Since we have $\tilde{S} \in \tilde{V}_{R, 3,4,1}^{+}[g]=\tilde{V}_{R, 1,2,3}^{-}\left[g T_{R}^{+}\right]$, the statement is proved as in the case of (a).

Proof of Theorem 4. Let g be an element of $G L_{3}(\mathbb{Z})$ with $\tilde{S} \in \tilde{D}_{\text {del }}[g]$. Then, $\tilde{S}\left[g^{-1}\right]$ belongs to $\tilde{V}_{B} \cap \tilde{D}_{\text {del }}$. By replacing g with $g g_{0}$ for some $g_{0} \in S t\left(A_{3}\right)$, it may be supposed that $\tilde{S}\left[g^{-1}\right]$ belongs to $\left(\tilde{V}_{B, 1,2}^{(1)} \cup \tilde{V}_{B, 1,2}^{(2)} \cup \tilde{V}_{B, 3,2}^{(3)}\right) \cap \tilde{D}_{d e l}$. Furthermore, it may be assumed that $\tilde{S}\left[g^{-1}\right]$ belongs to $\left(\tilde{U}_{B, 1,2}^{(1)} \cup\right.$ $\left.\tilde{U}_{B, 1,2}^{(2)} \cup \tilde{U}_{B, 3,2}^{(3)}\right) \cap \tilde{D}_{d e l}$, where $\tilde{U}_{B, 1,2}^{(1)}, \tilde{U}_{B, 1,2}^{(2)}, \tilde{U}_{B, 3,2}^{(3)}$ are defined by

$$
\begin{align*}
\tilde{U}_{B, 1,2}^{(1)} & :=\left\{\tilde{s}_{i j} \in \tilde{V}_{B, 1,2}^{(1)}: \tilde{s}_{14} \leq \tilde{s}_{13}\right\} \tag{102}\\
\tilde{U}_{B, 1,2}^{(2)} & :=\left\{\tilde{s}_{i j} \in \tilde{V}_{B, 1,2}^{(2)}: \tilde{s}_{13} \leq \tilde{s}_{14}, \tilde{s}_{34} \leq \tilde{s}_{12}\right\} \tag{103}\\
\tilde{U}_{B, 3,2}^{(3)} & :=\left\{\tilde{s}_{i j} \in \tilde{V}_{B, 3,2}^{(3)}: \tilde{s}_{24} \leq \tilde{s}_{12}\right\} \tag{104}
\end{align*}
$$

These domains consist of elements that are transformed into the standard form of base-centered cells (i.e., $0 \leq-d \leq \min \left\{\frac{a}{2}, c\right\}$) by the transforms in (38)-(40).

Subsequently, the (i, j)-entry of $g^{T} A_{3} g$ is denoted by $a_{i j}$.
(a) (Case of $\left.\tilde{S}\left[g^{-1}\right] \in \tilde{U}_{B, 1,2}^{(1)}\right)$

The entries of $\tilde{S}\left[g^{-1}\right] \in \tilde{U}_{B, 1,2}^{(1)}$ are denoted by

$$
\left(\begin{array}{cccc}
-\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{12} & \tilde{s}_{13} & \tilde{s}_{14} \tag{105}\\
\tilde{s}_{12} & -\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{13} & \tilde{s}_{14} \\
\tilde{s}_{13} & \tilde{s}_{13} & -2 \tilde{s}_{13}-\tilde{s}_{34} & \tilde{s}_{34} \\
\tilde{s}_{14} & \tilde{s}_{14} & \tilde{s}_{34} & -2 \tilde{s}_{14}-\tilde{s}_{34}
\end{array}\right)
$$

Then

$$
\begin{align*}
&\left\langle\tilde{S}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}, I_{4}\right\rangle \\
&= \\
&=\left\langle\left(\begin{array}{ccc}
-\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{12} & \tilde{s}_{13} \\
\tilde{s}_{12} & -\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{13} \\
\tilde{s}_{13} & \tilde{s}_{13} & -2 \tilde{s}_{13}-\tilde{s}_{34}
\end{array}\right), g^{T} A_{3} g-A_{3}\right\rangle \\
&-\left(a_{11}+a_{22}-2 a_{12}-2\right) \tilde{s}_{12} \tag{106}\\
&-\left(a_{11}+a_{22}+2 a_{33}-2 a_{13}-2 a_{23}-4\right) \tilde{s}_{13} \\
&-\left(a_{11}+a_{22}-4\right) \tilde{s}_{14}-\left(a_{33}-2\right) \tilde{s}_{34} .
\end{align*}
$$

From $\tilde{S}\left[g^{-1}\right] \in \tilde{U}_{B, 1,2}^{(1)}$, we have $-4 s_{14} \geq-2\left(s_{13}+s_{14}\right)=(1,1,0,0) \tilde{S}(1,1,0,0)^{T}$, and $-2 s_{13}-s_{34}$ is also the square of the length of a lattice vector. Therefore, the following equations are obtained from (83) and the assumption (A):
(i) $\quad a_{11}=a_{22}=2$,
(ii) $a_{11}+a_{33}-2 a_{13}=a_{22}+a_{33}-2 a_{23}=2$,
or $a_{33}=2$.

From the discussion in the proof of Theorem $2, g$ is one of the matrices in (90) if $a_{11}=a_{22}=$ $a_{11}+a_{33}-2 a_{13}=a_{22}+a_{33}-2 a_{23}=2$. On the other hand, as shown in the proof of Theorem $3, g$ is one of the matrices in (97) if $a_{11}=a_{22}=a_{33}=2$.
Let h_{B} be the matrix defined by (40). $\tilde{V}_{B, 1,2}^{(1)}[g]=\tilde{V}_{B, 1,2}^{(1)}$ holds if and only if $g \in G L(3, \mathbb{Z})$ belongs to the group:

$$
S t\left(\tilde{V}_{B, 1,2}^{(1)}\right):=\left\{g: h_{B}^{-1} g h_{B}=\left(\begin{array}{ccc}
c_{11} & 0 & c_{13} \tag{109}\\
0 & c_{22} & 0 \\
c_{13} & 0 & c_{33}
\end{array}\right) \quad\left(c_{i j} \in \mathbb{R}\right)\right\}
$$

For example, the following matrices are contained in $\operatorname{St}\left(\tilde{V}_{B, 1,2}^{(1)}\right)$.

$$
-I_{3}, t_{110}, t_{001}, \sigma_{12}:=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{110}\\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

Furthermore, $T_{R}^{+}=T_{B}^{(2)} t_{001}=T_{B}^{(3)} \sigma_{23} t_{010}$. Thus, g is one of the following matrices for some
$g_{0} \in S t\left(A_{3}\right)$ and $q_{0} \in S t\left(\tilde{V}_{B, 1,2}^{(1)}\right):$

$$
\begin{gather*}
g_{0} q_{0}, g_{0} T_{B}^{(2)} q_{0}, g_{0} T_{B}^{(3)} q_{0}, g_{0} t_{001} \sigma_{13} q_{0}, g_{0} t_{001} \sigma_{23} q_{0}, \\
g_{0} T_{B}^{(2)} t_{001} \sigma_{13} q_{0}, g_{0} T_{B}^{(2)} t_{001} \sigma_{23} q_{0} \tag{111}\\
g_{0} T_{B}^{(3)} \sigma_{23} q_{0}, g_{0} T_{B}^{(2)} t_{011} \sigma_{13} q_{0}, g_{0} T_{B}^{(2)} \sigma_{13} q_{0}, g_{0} T_{B}^{(2)} \sigma_{23} q_{0},
\end{gather*}
$$

where

$$
\sigma_{13}:=\left(\begin{array}{lll}
0 & 0 & 1 \tag{112}\\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

In addition, we have

$$
\begin{align*}
\tilde{V}_{B, 1,2}^{(1)}\left[T_{B}^{(i)}\right] & =\tilde{V}_{B, 1,2}^{(i)}(i=2,3), \tag{113}\\
t_{010} & =\sigma_{13} t_{001} \sigma_{13} t_{110} \in \operatorname{St}\left(A_{3}\right) t_{001} \sigma_{13} S t\left(\tilde{V}_{B, 1,2}^{(1)}\right), \\
& =\sigma_{23} t_{001} \sigma_{23} \in \operatorname{St}\left(A_{3}\right) t_{001} \sigma_{23} S t\left(\tilde{V}_{B, 1,2}^{(1)}\right), \tag{114}\\
T_{B}^{(2)} t_{001} \sigma_{13} & =h T_{B}^{(2)} t_{001} \sigma_{23} \sigma_{12} \in S t\left(A_{3}\right) T_{B}^{(2)} t_{001} \sigma_{23} S t\left(\tilde{V}_{B, 1,2}^{(1)}\right) \\
& =h T_{B}^{(3)} t_{001} \sigma_{12} \in S t\left(A_{3}\right) T_{B}^{(3)} \operatorname{St}\left(\tilde{V}_{B, 1,2}^{(1)}\right), \tag{115}\\
T_{B}^{(2)} t_{011} \sigma_{13} & =T_{B}^{(2)} \sigma_{13} t_{110} \in \operatorname{St}\left(A_{3}\right) T_{B}^{(2)} \sigma_{13} S t\left(\tilde{V}_{B, 1,2}^{(1)}\right) \tag{116}\\
& =h T_{B}^{(2)} \sigma_{23} \sigma_{12} t_{110} \in S t\left(A_{3}\right) T_{B}^{(2)} \sigma_{23} S t\left(\tilde{V}_{B, 1,2}^{(1)}\right),
\end{align*}
$$

where

$$
h:=T_{B}^{(2)} \sigma_{12}\left(T_{B}^{(2)}\right)^{-1}=\left(\begin{array}{ccc}
0 & -1 & 0 \tag{117}\\
-1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right) \in \operatorname{St}\left(A_{3}\right) .
$$

From all these equations, the assertion of the theorem is obtained.
(b) (Case of $\tilde{S}\left[g^{-1}\right] \in \tilde{U}_{B, 1,2}^{(2)}$)

The entries of $\tilde{S}\left[g^{-1}\right] \in \tilde{U}_{B, 1,2}^{(1)}$ are denoted by

$$
\left(\begin{array}{cccc}
-\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{12} & \tilde{s}_{13} & \tilde{s}_{14} \tag{118}\\
\tilde{s}_{12} & -\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{14} & \tilde{s}_{13} \\
\tilde{s}_{13} & \tilde{s}_{14} & -\tilde{s}_{13}-\tilde{s}_{14}-\tilde{s}_{34} & \tilde{s}_{34} \\
\tilde{s}_{14} & \tilde{s}_{13} & -\tilde{s}_{13}-\tilde{s}_{14}-\tilde{s}_{34}
\end{array}\right)
$$

Hence,

$$
\begin{align*}
& \left\langle\tilde{S}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}^{\prime}, I_{4}\right\rangle \\
& \quad=\quad\left\langle\left(\begin{array}{ccc}
-\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{12} & \tilde{s}_{13} \\
\tilde{s}_{12} & -\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{14} \\
\tilde{s}_{13} & \tilde{s}_{14} & -\tilde{s}_{13}-\tilde{s}_{14}-\tilde{s}_{34}
\end{array}\right), g^{T} A_{3} g-A_{3}\right\rangle \\
& \quad=\quad-\left(a_{11}+a_{22}-2 a_{12}-2\right) \tilde{s}_{12}-\left(a_{11}+a_{22}+a_{33}-2 a_{13}-4\right) \tilde{s}_{13} \\
& \tag{119}\\
& \quad-\left(a_{11}+a_{22}+a_{33}-2 a_{23}-4\right) \tilde{s}_{14}-\left(a_{33}-2\right) \tilde{s}_{34} .
\end{align*}
$$

Since $-4 s_{13} \geq-2\left(s_{13}+s_{14}\right)=(1,1,0,0) \tilde{S}(1,1,0,0)^{T}$ and $-2\left(\tilde{s}_{14}+\tilde{s}_{34}\right) \geq-\left(\tilde{s}_{12}+2 \tilde{s}_{14}+\tilde{s}_{34}\right)=$ $(1,0,1,0) \tilde{S}(1,0,1,0)^{T}$, the following are required by (83) and the assumption (A) :

$$
\begin{align*}
& \text { (iii) } a_{11}+a_{33}-2 a_{13}=a_{22}=2 \tag{120}\\
& \text { (iv) } a_{11}=a_{22}+a_{33}-2 a_{23}=2 \text { or } a_{33}=2 \tag{121}
\end{align*}
$$

These equations hold if and only if

$$
\begin{aligned}
&\left(\tilde{a}_{i j}\right)_{1 \leq i, j \leq 3}:=\left(g T_{B}^{(2)}\right)^{T} A_{3} g T_{B}^{(2)} \text { satisfies (i), (ii) in }(a) \\
& \Longleftrightarrow g T_{B}^{(2)} \text { equals one of the matrices in (111) }
\end{aligned}
$$

It has been already shown that the statement of the theorem holds in the case of (a). Therefore, the statement is also true in this case because \tilde{S} is assumed to belong to $\tilde{V}_{B, 1,2}^{(2)}[g]=\tilde{V}_{B, 1,2}^{(1)}\left[g T_{B}^{(2)}\right]$.
(c) (Case of $\left.\tilde{S}\left[g^{-1}\right] \in \tilde{U}_{B, 3,2}^{(3)}\right)$

The entries of $\tilde{S}\left[g^{-1}\right] \in \tilde{U}_{B, 1,2}^{(1)}$ are denoted by

$$
\left(\begin{array}{cccc}
-\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{12} & \tilde{s}_{13} & \tilde{s}_{14} \tag{122}\\
\tilde{s}_{12} & -\tilde{s}_{12}-\tilde{s}_{24} & 0 & \tilde{s}_{24} \\
\tilde{s}_{13} & 0 & -2 \tilde{s}_{13} & \tilde{s}_{13} \\
\tilde{s}_{14} & \tilde{s}_{24} & \tilde{s}_{13} & -\tilde{s}_{13}-\tilde{s}_{14}-\tilde{s}_{24}
\end{array}\right)
$$

Then,

$$
\begin{align*}
& \left\langle\tilde{S}\left[g^{-1}\right], I_{4}\right\rangle-\left\langle\tilde{S}, I_{4}\right\rangle \\
& \quad=\quad\left\langle\left(\begin{array}{ccc}
-\sum_{i=2}^{4} \tilde{s}_{1 i} & \tilde{s}_{12} & \tilde{s}_{13} \\
\tilde{s}_{12} & -\tilde{s}_{12}-\tilde{s}_{24} & 0 \\
\tilde{s}_{13} & 0 & -2 \tilde{s}_{13}
\end{array}\right), g^{T} A_{3} g-A_{3}\right\rangle \\
& \quad= \\
& \quad-\left(a_{11}+a_{22}-2 a_{12}-2\right) \tilde{s}_{12}-\left(a_{11}+2 a_{33}-2 a_{13}-4\right) \tilde{s}_{13} \tag{123}\\
& \\
& \quad-\left(a_{11}-2\right) \tilde{s}_{14}-\left(a_{22}-2\right) \tilde{s}_{24} .
\end{align*}
$$

Now, $-2 \tilde{s}_{13}$ and $-2 \tilde{s}_{24} \geq-\tilde{s}_{12}-\tilde{s}_{24}$ are not smaller than the square of the length of a lattice vector. From the assumption (A), it follows that $a_{11}+2 a_{33}-2 a_{13}=4$ and $a_{22}=2$. From these equations, $\left(\tilde{a}_{i j}\right)_{1 \leq i, j \leq 3}:=\left(g T_{B}^{(3)}\right)^{T} A_{3} g T_{B}^{(3)}$ satisfies (i), (ii) in (a). Therefore, $g T_{B}^{(3)}$ equals one of the matrices in (111). Hence, the statement of the theorem follows from $\tilde{S} \in \tilde{V}_{B, 3,2}^{(3)}[g]=$ $\tilde{V}_{B, 1,2}^{(1)}\left[g T_{B}^{(3)}\right]$ as in the case of (b).

Appendix D Proofs of propositions

Proof of Proposition 1. For any 3-by-3 symmetric matrix $S^{\text {obs }}$ and $g \in S t\left(A_{3}\right), h_{\text {del }} S^{o b s}[g] h^{T}$ del \in $\tilde{D}_{d e l}$ if and only if $h_{d e l} S^{o b s} h^{T}{ }_{d e l} \in \tilde{D}_{d e l}$. Therefore, it is enough if the inequalities are proved when g is an identity matrix. Now, the (i, j)-entry $s_{i j}$ of $h_{d e l} S^{o b s} h_{d e l}^{T}$ is not negative. Hence, the assertion follows from the following formulas obtained by direct calculation:

$$
\begin{align*}
\delta_{R}\left(S^{o b s}\left[t_{001}^{-1}\right]\right)-\delta_{R}\left(S^{o b s}\right) & =\frac{4 r s_{12}\left(s_{13}+s_{23}\right)}{9}, \tag{124}\\
\delta_{R}\left(S^{o b s}\left[\left(T_{R}^{+} t_{001}\right)^{-1}\right]\right)-\delta_{R}\left(S^{o b s}\left[\left(T_{R}^{+}\right)^{-1}\right]\right) & =\frac{4 r s_{12}\left(2 s_{12}+s_{14}+s_{23}\right)}{3}, \tag{125}\\
\delta_{R}\left(S^{o b s}\left[\left(T_{R}^{+} t_{010}\right)^{-1}\right]\right)-\delta_{R}\left(S^{o b s}\left[\left(T_{R}^{+} t_{001}\right)^{-1}\right]\right) & =\frac{4 r\left(s_{12}+s_{23}\right) s_{14}}{3} . \tag{126}
\end{align*}
$$

Proof of Proposition 2. By the same reason described in the proof of Proposition 1, it may be assumed that g is an identity matrix. The assertion follows from the following formulas:

$$
\begin{align*}
\delta_{B}\left(S^{o b s}\left[t_{010}^{-1}\right]\right)-\delta_{B}\left(S^{o b s}\right)= & 2 r s_{13} s_{23} \tag{127}\\
\delta_{B}\left(S^{o b s}\left[\left(T_{B}^{(3)} \sigma_{23}\right)^{-1}\right]\right)-\delta_{B}\left(S^{o b s}\left[\left(T_{B}^{(2)}\right)^{-1}\right]\right)= & 2 r s_{12}\left(s_{12}+s_{14}+s_{23}\right) \\
& +2 r s_{14} s_{23}, \tag{128}\\
\delta_{B}\left(S^{o b s}\left[\left(T_{B}^{(2)} \sigma_{23}\right)^{-1}\right]\right)-\delta_{B}\left(S^{o b s}\left[\left(T_{B}^{(3)}\right)^{-1}\right]\right)= & 2 r s_{12}\left(s_{12}+s_{23}\right) . \tag{129}
\end{align*}
$$

