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Appendix A
Definition of Buerger-reduced cells

For reference, the definitions of the Buerger- and the Niggli-reduced cells are stated; a cell is

Buerger-reduced if and only if its metric tensor belongs to the domain DBuerger:

(Buerger-reduced domain)

DBuerger := D+
B ∪D−

B , (61)

D+
B := {(sij)1≤i,j≤3 ∈ Sym3(R) : 0 < s11 ≤ s22 ≤ s33,

0 ≤ s12, s13 ≤ s11
2

, 0 ≤ s23 ≤ s22
2

}, (62)

D−
B := {(sij)1≤i,j≤3 ∈ Sym3(R) : 0 < s11 ≤ s22 ≤ s33,

0 ≤ −s12,−s13 ≤ s11
2

, 0 ≤ −s23 ≤ s22
2

,

−s12 − s13 − s23 ≤ s11 + s22
2

}. (63)

It is well known that DBuerger[g1] and DBuerger[g2] share interior points only when g1 = ±g2.

The Buerger-reduced cell is said to be normalized when it also satisfies the following boundary

conditions:

(sij) ∈ D+
B =⇒ s12 > 0, s13 > 0, s23 > 0, (64)

s11 = s22 =⇒ |s23| ≤ |s13|, (65)

s22 = s33 =⇒ |s13| ≤ |s12|. (66)

The following extra boundary conditions are added in the definition of the Niggli-reduced cell

(Niggli(1928), Hahn (1983)).
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1. (Case of s12 > 0, s13 > 0, s23 > 0)

s23 =
s22
2

⇒ s12 ≤ 2s13, (67)

s13 =
s11
2

⇒ s12 ≤ 2s23, (68)

s12 =
s11
2

⇒ s13 ≤ 2s23. (69)

2. (Case of s12 ≤ 0, s13 ≤ 0, s23 ≤ 0)

|s23| = s22
2

⇒ s12 = 0, (70)

|s13| = s11
2

⇒ s12 = 0, (71)

|s12| = s11
2

⇒ s13 = 0, (72)

|s12 + s13 + s23| = s11 + s22
2

⇒ s11 ≤ |s12 + 2s13|. (73)

The Niggli-reduced cell is determined uniquely for any 3-dimensional lattices.

Appendix B
Domains containing nearly Buerger-reduced cells

All the facets and the extreme rays of DBuerger are presented in the following tables.

Table 1. Facets of DBuerger.
Label Equation
a s11 = s22
b s22 = s33
c(±) ±2s12 = s11
d(±) ±2s13 = s11
e(±) ±2s23 = s22
c(0) s12 = 0

d(0) s13 = 0

e(0) s23 = 0
f s11 + s22 = −2s12 − 2s13 − 2s23
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Table 2. Extreme rays of DBuerger.
Label Generating matrix Rank Active constraints (Facets)
D+

B :

3-1 A3 :=

⎛
⎝2 1 1
1 2 1
1 1 2

⎞
⎠ 3 a, b, c(+), d(+), e(+)

3-2

⎛
⎝2 0 1
0 2 1
1 1 2

⎞
⎠ 3 a, b, c(0), d(+), e(+)

3-3

⎛
⎝2 1 0
1 2 1
0 1 2

⎞
⎠ 3 a, b, c(+), d(0), e(+)

3-4

⎛
⎝2 1 1
1 2 0
1 0 2

⎞
⎠ 3 a, b, c(+), d(+), e(0)

3-5 u3 :=

⎛
⎝2 1 0
1 2 0
0 0 2

⎞
⎠ 3 a, b, c(+), d(0), e(0)

3-6

⎛
⎝2 0 1
0 2 0
1 0 2

⎞
⎠ 3 a, b, c(0), d(+), e(0)

3-7

⎛
⎝2 0 0
0 2 1
0 1 2

⎞
⎠ 3 a, b, c(0), d(0), e(+)

2-1 A+
2 :=

⎛
⎝0 0 0
0 2 1
0 1 2

⎞
⎠ 2 b, c(±), c(0), d(±), d(0), e(+)

D−
B :

3-8

⎛
⎝ 2 0 −1

0 2 −1
−1 −1 2

⎞
⎠ 3 a, b, c(0), d(−), e(−)

3-9

⎛
⎝ 2 −1 0
−1 2 −1
0 −1 2

⎞
⎠ 3 a, b, c(−), d(0), e(−)

3-10

⎛
⎝ 2 −1 −1
−1 2 0
−1 0 2

⎞
⎠ 3 a, b, c(−), d(−), e(0)

3-11

⎛
⎝ 2 −1 0
−1 2 0
0 0 2

⎞
⎠ 3 a, b, c(−), d(0), e(0)

3-12

⎛
⎝ 2 0 −1

0 2 0
−1 0 2

⎞
⎠ 3 a, b, c(0), d(−), e(0)

3-13

⎛
⎝2 0 0
0 2 −1
0 −1 2

⎞
⎠ 3 a, b, c(0), d(0), e(−)

2-2 A−
2 :=⎛

⎝0 0 0
0 2 −1
0 −1 2

⎞
⎠

2 b, c(±), c(0), d(±), d(0), e(−), f

D+
B and D−

B :

3-14 I3 :=

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ 3 a, b, c(0), d(0), e(0)

2-3 u2 :=

⎛
⎝0 0 0
0 1 0
0 0 1

⎞
⎠ 2 b, c(±), c(0), d(±), d(0), e(0)

1-1 u1 :=

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠ 1 a, c(±), c(0), d(±), d(0),

e(±), e(0), f

∗ Some extreme rays are not contained in DBuerger, but in its boundary.
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From a geometrical point of view, it is seen that the number of operations to search for nearly

Buerger-reduced cells in the sense of Andrews & Bernstein (1988) reaches its maximum when Sobs

is close to one of the extreme rays of DBuerger. Under the assumption (A0) that is derived from the

assumption (A), the generating matrix of the extreme ray close to Sobs must be positive definite:

(A0) An observed metric tensor Sobs is sufficiently far from any 3-by-3 symmetric matrix that is

not positive definite.

Therefore, the maximum is computed as the number of the change-of-basis matrices g such

that DBuerger[g] contains a fixed extreme ray in DBuerger of rank 3. (Note that it is impossible

to enumerate such g without assuming (A0), because infinitely many DBuerger[g] share a singular

matrix with DBuerger.)

In Table 2, every generating matrix of rank 3 other than I3 is equivalent to A3 or u3, i.e., equals

gA3g
T , gu3g

T for some change-of-basis matrix g. Such g is given as an element of U
(±)
B when the

matrix is equivalent to A3, and of W
(±)
B , otherwise.

U
(+)
B :=

{
I3,

⎛
⎝−1 0 1

0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝−1 1 0

0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝1 0 0
1 −1 0
0 0 1

⎞
⎠}

, (74)

U
(−)
B :=

{⎛
⎝−1 0 1

0 1 0
0 0 −1

⎞
⎠ ,

⎛
⎝−1 1 0

0 −1 0
0 0 1

⎞
⎠ ,

⎛
⎝−1 0 0

1 −1 0
0 0 1

⎞
⎠}

, (75)

W
(+)
B :=

{
I3,

⎛
⎝1 0 0
0 0 1
0 1 0

⎞
⎠ ,

⎛
⎝0 0 1
0 1 0
1 0 0

⎞
⎠

}
, (76)

W
(−)
B :=

{⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝−1 0 0

0 0 1
0 1 0

⎞
⎠ ,

⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠}

. (77)

In this case, the following proposition is proved:

Proposition 3. 1. A3 is contained in DBuerger[g
−1] if and only if g is an element of {g1g2 :

g1 ∈ U
(±)
B , g2 ∈ St(A3)}.

2. The matrix u3 is contained in DBuerger[g
−1] if and only if g is an element of {g1g2 : g1 ∈

W
(±)
B , g2 ∈ St(u3)}, where St(u3) is the stabilizer subgroup of u3 in GL(3,Z).
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3. I3 is contained in DBuerger[g
−1] if and only if g belongs to St(I3).

The elements of St(u3) are presented in 3. Using proposition 3, the cardinalities of change-of-

basis matrices g such that DBuerger[g] shares A3, u3 and I3 with DBuerger are calculated. They

equal 336, 144, and 48, respectively.

Now, DBuerger[g] = DBuerger holds if and only if g = ±I3. Therefore, the number of operations

necessary to obtain all nearly Buerger-reduced cells equals 336
2 = 168 at least in the worst case

(Consequently, more than 168 matrices are required to be checked.). Since this always occurs if

the metric tensor of a lattice is sufficiently close to A3, the maximum is reached regardless of the

magnitude of errors.

Table 3. Elements of the stabilizer subgroup St(u3) in GL(3,Z).

±
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ ±

⎛
⎝0 1 0
1 0 0
0 0 1

⎞
⎠ ±

⎛
⎝1 0 0
0 1 0
0 0 −1

⎞
⎠±

⎛
⎝0 1 0
1 0 0
0 0 −1

⎞
⎠

±
⎛
⎝−1 1 0

0 1 0
0 0 1

⎞
⎠±

⎛
⎝1 −1 0
1 0 0
0 0 1

⎞
⎠±

⎛
⎝−1 1 0

0 1 0
0 0 −1

⎞
⎠±
⎛
⎝1 −1 0
1 0 0
0 0 −1

⎞
⎠

±
⎛
⎝ 0 1 0
−1 1 0
0 0 1

⎞
⎠±

⎛
⎝1 0 0
1 −1 0
0 0 1

⎞
⎠±

⎛
⎝ 0 1 0
−1 1 0
0 0 −1

⎞
⎠±
⎛
⎝1 0 0
1 −1 0
0 0 −1

⎞
⎠

Using Proposition 3, it is also possible to enumerate all g ∈ GL(3,Z) such that DBuerger[g]
contains nearly Buerger-reduced cells; DBuerger[g] contains nearly Buerger-reduced cells if only if
DBuerger[g] shares a positive definite matrix with DBuerger. As a result, the number of such g
(including ±I3) equals 1992. Among the 25 Gruber operations, 22 operations are contained in it.
The remaining three operations are as follows (The number was given by Gruber(1973)):

12 : (A,A+B + ζ, B + C + ξ, 2B + ξ + η + ζ, η + ζ, 2A+ ζ),

21 : (B,A+B − ζ, A+ C − η, 2A+ ξ − η − ζ,−ξ + ζ,−2B + ζ),

23 : (C,A +B − ζ, A+ C − η, 2A+ ξ − η − ζ,−2C + η,−ξ + η).

With regard to these operations, DBuerger and DBuerger[g] contain no positive definite matrix in

common.

Appendix C
Proofs of theorems
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Proof of Theorem 1. Let g be an element of GL3(Z) such that S ∈ D̃min[g]. Then, S[g
−1] belongs

to Vmono,p ∩ D̃min. By replacing g with gg0 for some g0 ∈ St(I3), it may be supposed that S[g−1]

is also contained in the following subset of Vmono,p,b.

Umono,p,b := {(sij)1≤i,j≤3 ∈ Vmono,p,b :

s11 ≤ s33, −s11 ≤ 2s13 ≤ 0}. (78)

The (i, j)-entries of S and gT g are denoted by sij and aij , respectively. The following inequality

is obtained from S[g−1] ∈ Umono,p,b:

〈S, I3〉 − 〈S[g−1], I3〉

=

〈⎛⎜⎝s11 0 s13
0 s22 0
s13 0 s33

⎞
⎟⎠ , gT g − I3

〉
(79)

= (a11 − 1)s11 + 2a13s13 + (a22 − 1)s22 + (a33 − 1)s33

≥ (a11 + a33 − 2− |a13|)s11 + (a22 − 1)s22

≥ 1

2
(a11 + a33 − 2)s11 + (a22 − 1)s22.

For the last inequality, a11+a33 ≥ 2|a13|+1 is used. Since gT g is an integer-valued positive definite

symmetric matrix, a11, a22, and a33 are positive integers. Hence, the coefficients of s11 and s22 are

not negative in the last line of (79).

On the other hand, 〈Sobs, I3〉− 〈Sobs[g−1], I3〉 ≤ 0 also holds because Sobs ∈ D̃min. Therefore, the

coefficients of s11 and s22 must be less than 1
2 from the assumption (A). Hence, we have

a11 = a22 = a33 = 1. (80)

Thus, it is proved that g belongs to Umono,p,b. From the assumption, S[g−1] ∈ Umono,p,b, therefore

S is an element of Vmono,p.

Proof of Theorem 2. Let g be an element of GL3(Z) with S̃ ∈ D̃del[g]. Then, S̃[g
−1] belongs to

ṼF ∩ D̃del. By replacing g with gg0 for some g0 ∈ St(A3), it may also be supposed that S̃[g−1]

belongs to the subset of ṼF,1,2 ∩ D̃del.
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The (i, j)-entry of gTA3g is denoted by aij and the entries of S̃ are denoted by⎛
⎜⎜⎜⎝
−s̃12 − 2s̃13 s̃12 s̃13 s̃13

s̃12 −s̃12 − 2s̃13 s̃13 s̃13
s̃13 s̃13 −2s̃13 − s̃34 s̃34
s̃13 s̃13 s̃34 −2s̃13 − s̃34

⎞
⎟⎟⎟⎠ . (81)

Then,

〈S̃[g−1], I4〉 − 〈S̃, I4〉

=

〈⎛
⎝−s̃12 − 2s̃13 s̃12 s̃13

s̃12 −s̃12 − 2s̃13 s̃13
s̃13 s̃13 −2s̃13 − s̃34

⎞
⎠ , gTA3g −A3

〉

= −(a11 + a22 − 2a12 − 2)s̃12

−2(a11 + a22 + a33 − a13 − a23 − 4)s̃13 − (a33 − 2)s̃34

≥ −2(a11 + a22 + a33 − a13 − a23 − 4)s̃13. (82)

For the last inequality, a11 + a22 − 2a12 ≥ 2 and a33 ≥ 2 are utilized. They follow from the fact

that

0 �= u ∈ Z
3 =⇒ uTA3u is positive and even. (83)

On the other hand, 〈S̃obs[g−1], I4〉 − 〈S̃obs, I4〉 ≤ 0 follows from S̃obs ∈ D̃del. Furthermore, from

−4s̃13 = (1, 1, 0, 0)S̃(1, 1, 0, 0)T and the assumption (A), the following inequality is obtained:

a11 + a22 + a33 − a13 − a23 < 5. (84)

Therefore, using (83),

a11 = a22 = a11 + a33 − 2a13 = a22 + a33 − 2a23 = 2. (85)

That is, the column vectors of g :=
(
g1 g2 g3

)
satisfy

gT1 A3g1 = gT2 A3g2 = (g1 − g3)
TA3(g1 − g3)

= (g2 − g3)
TA3(g2 − g3) = 2. (86)

Because g is a matrix of determinant ±1, g1, g2, g1 − g3, g2 − g3 are the elements of the following
set and they differ from one another:⎧⎨

⎩±
⎛
⎝1
0
0

⎞
⎠ ,±

⎛
⎝0
1
0

⎞
⎠ ,±

⎛
⎝0
0
1

⎞
⎠ ,±

⎛
⎝ 1
−1
0

⎞
⎠ ,±

⎛
⎝ 1

0
−1

⎞
⎠ ,±

⎛
⎝ 0

1
−1

⎞
⎠
⎫⎬
⎭ . (87)
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Hence, hdelg1, hdelg2, hdel(g1 − g3), hdel(g2 − g3) are different elements of the set⎧⎪⎪⎨
⎪⎪⎩±

⎛
⎜⎜⎝

1
0
0
−1

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

0
0
1
−1

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

1
0
−1
0

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ . (88)

Then, by direct computation, it is confirmed that hdel
(
g1 g2 g3

)
= ±p0h for a 4-by-4 permu-

tation matrix p0 and h equals one of the matrices:⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1
−1 −1 −1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
−1 0 0
0 1 0
1 0 1
0 −1 −1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 1
0 1 1
0 0 −1
−1 −1 −1

⎞
⎟⎟⎠ . (89)

Therefore, g is one of the following matrices:

g0, g0

⎛
⎜⎝−1 0 0

0 1 0
1 0 1

⎞
⎟⎠ , g0

⎛
⎜⎝1 0 1
0 1 1
0 0 −1

⎞
⎟⎠ (g0 ∈ St(A3)). (90)

As a result, it is proved that at least one g in (90) satisfies S̃[g−1] ∈ ṼF,1,2 ∩ D̃del. Now, ṼF,1,2[g0]

is contained in ṼF for any g0 ∈ St(A3). Furthermore, it is checked by direct calculation that the

following equations are true:

ṼF,1,2

⎡
⎢⎣
⎛
⎜⎝−1 0 0

0 1 0
1 0 1

⎞
⎟⎠
⎤
⎥⎦ = ṼF,1,2, (91)

ṼF,1,2

⎡
⎢⎣
⎛
⎜⎝1 0 1
0 1 1
0 0 −1

⎞
⎟⎠
⎤
⎥⎦ = ṼF,1,2. (92)

Therefore, S̃ belongs to ṼF .

Proof of Theorem 3. Let g be an element of GL3(Z) with S̃ ∈ D̃del[g]. Then, S̃[g
−1] belongs to

ṼR ∩ D̃del. By replacing g with gg0 for some g0 ∈ St(A3), it may be supposed that S̃[g−1] belongs

to (Ṽ −
R,1,2,3 ∪ Ṽ +

R,3,4,1) ∩ D̃del.

Subsequently, the (i, j)-entry of gTA3g is denoted by aij.

(a) (Case of S̃[g−1] ∈ Ṽ −
R,1,2,3)
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The entries S̃[g−1] ∈ Ṽ −
R,1,2,3 are denoted by

⎛
⎜⎜⎜⎝
−2s̃12 − s̃14 s̃12 s̃12 s̃14

s̃12 −2s̃12 − s̃14 s̃12 s̃14
s̃12 s̃12 −2s̃12 − s̃14 s̃14
s̃14 s̃14 s̃14 −3s̃14

⎞
⎟⎟⎟⎠ . (93)

Then,

〈S̃[g−1], I4〉 − 〈S̃, I4〉

=

〈⎛
⎝−2s̃12 − s̃14 s̃12 s̃12

s̃12 −2s̃12 − s̃14 s̃12
s̃12 s̃12 −2s̃12 − s̃14

⎞
⎠ , gTA3g −A3

〉

= −2(a11 + a22 + a33 − a12 − a13 − a33 − 3)s̃12

−(a11 + a22 + a33 − 6)s̃14

≥ −(a11 + a22 + a33 − 6)s̃14. (94)

For the last inequality, aii + ajj − 2aij ≥ 2 obtained from (83).

On the other hand, 〈S̃obs[g−1], I4〉 − 〈S̃obs, I4〉 ≤ 0 follows from S̃obs ∈ D̃del. Furthermore,

a11 + a22 + a33 − 6 < 3
2 is required because −3s̃14 is the square of the length of a lattice vector.

As a result, aii = 2 (1 ≤ i ≤ 3) is obtained from (83).

As in the proof of Theorem 2, the column vectors of hdelg belong to⎧⎪⎪⎨
⎪⎪⎩±

⎛
⎜⎜⎝

1
0
0
−1

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

0
0
1
−1

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

1
0
−1
0

⎞
⎟⎟⎠ ,±

⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ . (95)

Hence, hdelg equals one of the matrices:

±p0

⎛
⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
−1 −1 −1

⎞
⎟⎟⎟⎠h0q0,±p0

⎛
⎜⎜⎜⎝
−1 0 0
0 1 0
1 0 −1
0 −1 1

⎞
⎟⎟⎟⎠h1q0, (96)

where p0 is a 4-by-4 permutation matrix, q0 is a 3-by-3 permutation matrix, h0 = I3, t001, and

h1 = I3, t010, t001.

Therefore, g equals one of the following matrices for some g0 ∈ St(A3):

g0h0q0, g0T
+
R h1q0. (97)
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From the assumption that S̃ belongs to V −
R,1,2,3[g], S̃ is an element of the set:

⋃
g0∈St(A3)

Ṽ −
R,1,2,3[g0] ∪

⋃
g0∈St(A3)

Ṽ −
R,1,2,3[g0T

+
R ] (98)

∪
⋃

g0∈St(A3)

Ṽ −
R,1,2,3[g0t001] ∪

⋃
g0∈St(A3),
h=t010,t001

Ṽ −
R,1,2,3[g0T

+
R h].

Now, Ṽ −
R,1,2,3[T

+
R ] = Ṽ +

R,3,4,1 is obtained by the equation:

hdelT
+
R

⎛
⎜⎝−s̃12 − r −s̃12 −s̃12

−s̃12 −s̃12 − r −s̃12
−s̃12 −s̃12 −s̃12 − r

⎞
⎟⎠ (hdelT

+
R )T

=

⎛
⎜⎜⎜⎝
−s̃12 − r s̃12 r 0

s̃12 −s̃12 − r 0 r
r 0 −2r r
0 r r −2r

⎞
⎟⎟⎟⎠ . (99)

Therefore, the statement of the theorem is true in this case.

(b) (Case of S̃[g−1] ∈ Ṽ +
R,3,4,1)

The entries of S̃[g−1] ∈ Ṽ −
R,1,2,3 are denoted by

⎛
⎜⎜⎜⎝
−s̃12 − s̃13 s̃12 s̃13 0

s̃12 −s̃12 − s̃13 0 s̃13
s̃13 0 −2s̃13 s̃13
0 s̃13 s̃13 −2s̃13

⎞
⎟⎟⎟⎠ . (100)

Then,

〈S̃[g−1], I4〉 − 〈S̃, I4〉

=

〈⎛
⎝−s̃12 − s̃13 s̃12 s̃13

s̃12 −s̃12 − s̃13 0
s̃13 0 −2s̃13

⎞
⎠ , gTA3g −A3

〉

= −(a11 + a22 − 2a12 − 2)s̃12

−(a11 + a22 + 2a33 − 2a13 − 6)s̃13

≥ −(a11 + a22 + 2a33 − 2a13 − 6)s̃13. (101)

For the last inequality, a11 + a22 − 2a12 ≥ 2 is utilized. Now, −2s̃13 is the square of the

length of a lattice vector. As a result, a11 + a33 − 2a13 = a22 = a33 = 2 is obtained from

〈S̃obs[g−1], I4〉 − 〈S̃obs, I4〉 ≤ 0 and the assumption (A).
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The equalities hold if and only if

(ãij)1≤i,j≤3 := (gT+
R )TA3gT

+
R satisfies ã11 = ã22 = ã33 = 2

⇐⇒ gT+
R equals one of the matrices in (97).

Since we have S̃ ∈ Ṽ +
R,3,4,1[g] = Ṽ −

R,1,2,3[gT
+
R ], the statement is proved as in the case of (a).

Proof of Theorem 4. Let g be an element of GL3(Z) with S̃ ∈ D̃del[g]. Then, S̃[g
−1] belongs to

ṼB ∩ D̃del. By replacing g with gg0 for some g0 ∈ St(A3), it may be supposed that S̃[g−1] belongs

to (Ṽ
(1)
B,1,2 ∪ Ṽ

(2)
B,1,2∪ Ṽ

(3)
B,3,2)∩ D̃del. Furthermore, it may be assumed that S̃[g−1] belongs to (Ũ

(1)
B,1,2 ∪

Ũ
(2)
B,1,2 ∪ Ũ

(3)
B,3,2) ∩ D̃del, where Ũ

(1)
B,1,2, Ũ

(2)
B,1,2, Ũ

(3)
B,3,2 are defined by

Ũ
(1)
B,1,2 := {s̃ij ∈ Ṽ

(1)
B,1,2 : s̃14 ≤ s̃13}, (102)

Ũ
(2)
B,1,2 := {s̃ij ∈ Ṽ

(2)
B,1,2 : s̃13 ≤ s̃14, s̃34 ≤ s̃12}, (103)

Ũ
(3)
B,3,2 := {s̃ij ∈ Ṽ

(3)
B,3,2 : s̃24 ≤ s̃12}. (104)

These domains consist of elements that are transformed into the standard form of base-centered

cells (i.e., 0 ≤ −d ≤ min{a
2 , c}) by the transforms in (38)–(40).

Subsequently, the (i, j)-entry of gTA3g is denoted by aij.

(a) (Case of S̃[g−1] ∈ Ũ
(1)
B,1,2)

The entries of S̃[g−1] ∈ Ũ
(1)
B,1,2 are denoted by

⎛
⎜⎜⎝
−∑4

i=2 s̃1i s̃12 s̃13 s̃14
s̃12 −∑4

i=2 s̃1i s̃13 s̃14
s̃13 s̃13 −2s̃13 − s̃34 s̃34
s̃14 s̃14 s̃34 −2s̃14 − s̃34

⎞
⎟⎟⎠ . (105)
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Then

〈S̃[g−1], I4〉 − 〈S̃, I4〉

=

〈⎛
⎝−∑4

i=2 s̃1i s̃12 s̃13
s̃12 −∑4

i=2 s̃1i s̃13
s̃13 s̃13 −2s̃13 − s̃34

⎞
⎠ , gTA3g −A3

〉

= −(a11 + a22 − 2a12 − 2)s̃12

−(a11 + a22 + 2a33 − 2a13 − 2a23 − 4)s̃13 (106)

−(a11 + a22 − 4)s̃14 − (a33 − 2)s̃34.

From S̃[g−1] ∈ Ũ
(1)
B,1,2, we have −4s14 ≥ −2(s13+s14) = (1, 1, 0, 0)S̃(1, 1, 0, 0)T , and −2s13−s34

is also the square of the length of a lattice vector. Therefore, the following equations are obtained

from (83) and the assumption (A):

(i) a11 = a22 = 2, (107)

(ii) a11 + a33 − 2a13 = a22 + a33 − 2a23 = 2,

or a33 = 2. (108)

From the discussion in the proof of Theorem 2, g is one of the matrices in (90) if a11 = a22 =

a11 + a33 − 2a13 = a22 + a33 − 2a23 = 2. On the other hand, as shown in the proof of Theorem

3, g is one of the matrices in (97) if a11 = a22 = a33 = 2.

Let hB be the matrix defined by (40). Ṽ
(1)
B,1,2[g] = Ṽ

(1)
B,1,2 holds if and only if g ∈ GL(3,Z)

belongs to the group:

St(Ṽ
(1)
B,1,2) :=

⎧⎨
⎩g : h−1

B ghB =

⎛
⎝c11 0 c13

0 c22 0
c13 0 c33

⎞
⎠ (cij ∈ R)

⎫⎬
⎭ . (109)

For example, the following matrices are contained in St(Ṽ
(1)
B,1,2).

−I3, t110, t001, σ12 :=

⎛
⎜⎝0 1 0
1 0 0
0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝1 0 1
0 1 1
0 0 −1

⎞
⎟⎠ . (110)

Furthermore, T+
R = T

(2)
B t001 = T

(3)
B σ23t010. Thus, g is one of the following matrices for some
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g0 ∈ St(A3) and q0 ∈ St(Ṽ
(1)
B,1,2):

g0q0, g0T
(2)
B q0, g0T

(3)
B q0, g0t001σ13q0, g0t001σ23q0,

g0T
(2)
B t001σ13q0, g0T

(2)
B t001σ23q0, (111)

g0T
(3)
B σ23q0, g0T

(2)
B t011σ13q0, g0T

(2)
B σ13q0, g0T

(2)
B σ23q0,

where

σ13 :=

⎛
⎜⎝0 0 1
0 1 0
1 0 0

⎞
⎟⎠ . (112)

In addition, we have

Ṽ
(1)
B,1,2[T

(i)
B ] = Ṽ

(i)
B,1,2 (i = 2, 3), (113)

t010 = σ13t001σ13t110 ∈ St(A3)t001σ13St(Ṽ
(1)
B,1,2),

= σ23t001σ23 ∈ St(A3)t001σ23St(Ṽ
(1)
B,1,2), (114)

T
(2)
B t001σ13 = hT

(2)
B t001σ23σ12 ∈ St(A3)T

(2)
B t001σ23St(Ṽ

(1)
B,1,2)

= hT
(3)
B t001σ12 ∈ St(A3)T

(3)
B St(Ṽ

(1)
B,1,2), (115)

T
(2)
B t011σ13 = T

(2)
B σ13t110 ∈ St(A3)T

(2)
B σ13St(Ṽ

(1)
B,1,2) (116)

= hT
(2)
B σ23σ12t110 ∈ St(A3)T

(2)
B σ23St(Ṽ

(1)
B,1,2),

where

h := T
(2)
B σ12(T

(2)
B )−1 =

⎛
⎜⎝ 0 −1 0
−1 0 0
1 1 1

⎞
⎟⎠ ∈ St(A3). (117)

From all these equations, the assertion of the theorem is obtained.

(b) (Case of S̃[g−1] ∈ Ũ
(2)
B,1,2)

The entries of S̃[g−1] ∈ Ũ
(1)
B,1,2 are denoted by

⎛
⎜⎜⎝
−∑4

i=2 s̃1i s̃12 s̃13 s̃14
s̃12 −∑4

i=2 s̃1i s̃14 s̃13
s̃13 s̃14 −s̃13 − s̃14 − s̃34 s̃34
s̃14 s̃13 s̃34 −s̃13 − s̃14 − s̃34

⎞
⎟⎟⎠ . (118)
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Hence,

〈S̃[g−1], I4〉 − 〈S̃, I4〉

=

〈⎛
⎝−∑4

i=2 s̃1i s̃12 s̃13
s̃12 −∑4

i=2 s̃1i s̃14
s̃13 s̃14 −s̃13 − s̃14 − s̃34

⎞
⎠ , gTA3g − A3

〉

= −(a11 + a22 − 2a12 − 2)s̃12 − (a11 + a22 + a33 − 2a13 − 4)s̃13

−(a11 + a22 + a33 − 2a23 − 4)s̃14 − (a33 − 2)s̃34. (119)

Since −4s13 ≥ −2(s13+s14) = (1, 1, 0, 0)S̃(1, 1, 0, 0)T and −2(s̃14+ s̃34) ≥ −(s̃12+2s̃14+ s̃34) =

(1, 0, 1, 0)S̃(1, 0, 1, 0)T , the following are required by (83) and the assumption (A):

(iii) a11 + a33 − 2a13 = a22 = 2, (120)

(iv) a11 = a22 + a33 − 2a23 = 2 or a33 = 2. (121)

These equations hold if and only if

(ãij)1≤i,j≤3 := (gT
(2)
B )TA3gT

(2)
B satisfies (i), (ii) in (a),

⇐⇒ gT
(2)
B equals one of the matrices in (111).

It has been already shown that the statement of the theorem holds in the case of (a). Therefore,

the statement is also true in this case because S̃ is assumed to belong to Ṽ
(2)
B,1,2[g] = Ṽ

(1)
B,1,2[gT

(2)
B ].

(c) (Case of S̃[g−1] ∈ Ũ
(3)
B,3,2)

The entries of S̃[g−1] ∈ Ũ
(1)
B,1,2 are denoted by

⎛
⎜⎜⎝
−∑4

i=2 s̃1i s̃12 s̃13 s̃14
s̃12 −s̃12 − s̃24 0 s̃24
s̃13 0 −2s̃13 s̃13
s̃14 s̃24 s̃13 −s̃13 − s̃14 − s̃24

⎞
⎟⎟⎠ . (122)

Then,

〈S̃[g−1], I4〉 − 〈S̃, I4〉

=

〈⎛
⎝−∑4

i=2 s̃1i s̃12 s̃13
s̃12 −s̃12 − s̃24 0
s̃13 0 −2s̃13

⎞
⎠ , gTA3g −A3

〉

= −(a11 + a22 − 2a12 − 2)s̃12 − (a11 + 2a33 − 2a13 − 4)s̃13

−(a11 − 2)s̃14 − (a22 − 2)s̃24. (123)
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Now, −2s̃13 and −2s̃24 ≥ −s̃12 − s̃24 are not smaller than the square of the length of a lattice

vector. From the assumption (A), it follows that a11 + 2a33 − 2a13 = 4 and a22 = 2. From

these equations, (ãij)1≤i,j≤3 := (gT
(3)
B )TA3gT

(3)
B satisfies (i), (ii) in (a). Therefore, gT

(3)
B equals

one of the matrices in (111). Hence, the statement of the theorem follows from S̃ ∈ Ṽ
(3)
B,3,2[g] =

Ṽ
(1)
B,1,2[gT

(3)
B ] as in the case of (b).

Appendix D
Proofs of propositions

Proof of Proposition 1. For any 3-by-3 symmetric matrix Sobs and g ∈ St(A3), hdelS
obs[g]hT del ∈

D̃del if and only if hdelS
obshT del ∈ D̃del. Therefore, it is enough if the inequalities are proved when

g is an identity matrix. Now, the (i, j)-entry sij of hdelS
obshTdel is not negative. Hence, the assertion

follows from the following formulas obtained by direct calculation:

δR(S
obs[t−1

001])− δR(S
obs) =

4rs12(s13 + s23)

9
, (124)

δR(S
obs[(T+

R t001)
−1])− δR(S

obs[(T+
R )−1]) =

4rs12(2s12 + s14 + s23)

3
, (125)

δR(S
obs[(T+

R t010)
−1])− δR(S

obs[(T+
R t001)

−1]) =
4r(s12 + s23)s14

3
. (126)

Proof of Proposition 2. By the same reason described in the proof of Proposition 1, it may be
assumed that g is an identity matrix. The assertion follows from the following formulas:

δB(S
obs[t−1

010])− δB(S
obs) = 2rs13s23, (127)

δB(S
obs[(T

(3)
B σ23)

−1])− δB(S
obs[(T

(2)
B )−1]) = 2rs12(s12 + s14 + s23)

+2rs14s23, (128)

δB(S
obs[(T

(2)
B σ23)

−1])− δB(S
obs[(T

(3)
B )−1]) = 2rs12(s12 + s23). (129)




