Appendix A Definition of Buerger-reduced cells

For reference, the definitions of the Buerger- and the Niggli-reduced cells are stated; a cell is Buerger-reduced if and only if its metric tensor belongs to the domain $D_{Buerger}$:

(Buerger-reduced domain)

$$D_{Buerger} := D_B^+ \cup D_B^-,$$

$$D_B^+ := \{(s_{ij})_{1 \le i,j \le 3} \in Sym^3(\mathbb{R}) : 0 < s_{11} \le s_{22} \le s_{33},$$

$$0 \le s_{12}, s_{13} \le \frac{s_{11}}{2}, \ 0 \le s_{23} \le \frac{s_{22}}{2}\},$$

$$D_B^- := \{(s_{ij})_{1 \le i,j \le 3} \in Sym^3(\mathbb{R}) : 0 < s_{11} \le s_{22} \le s_{33},$$

$$0 \le -s_{12}, -s_{13} \le \frac{s_{11}}{2}, \ 0 \le -s_{23} \le \frac{s_{22}}{2},$$

$$-s_{12} - s_{13} - s_{23} \le \frac{s_{11} + s_{22}}{2}\}.$$

$$(61)$$

It is well known that $D_{Buerger}[g_1]$ and $D_{Buerger}[g_2]$ share interior points only when $g_1 = \pm g_2$.

The Buerger-reduced cell is said to be *normalized* when it also satisfies the following boundary conditions:

$$(s_{ij}) \in D_B^+ \implies s_{12} > 0, \ s_{13} > 0, \ s_{23} > 0,$$
 (64)

$$s_{11} = s_{22} \implies |s_{23}| \le |s_{13}|,$$
 (65)

$$s_{22} = s_{33} \implies |s_{13}| \le |s_{12}|.$$
 (66)

The following extra boundary conditions are added in the definition of the Niggli-reduced cell (Niggli(1928), Hahn (1983)).

1. (Case of $s_{12} > 0$, $s_{13} > 0$, $s_{23} > 0$)

$$s_{23} = \frac{s_{22}}{2} \Rightarrow s_{12} \le 2s_{13},$$
 (67)

$$s_{13} = \frac{s_{11}}{2} \Rightarrow s_{12} \le 2s_{23},$$
 (68)

$$s_{12} = \frac{s_{11}}{2} \Rightarrow s_{13} \le 2s_{23}.$$
 (69)

2. (Case of $s_{12} \leq 0, s_{13} \leq 0, s_{23} \leq 0$)

$$|s_{23}| = \frac{s_{22}}{2} \quad \Rightarrow \quad s_{12} = 0, \tag{70}$$

$$|s_{13}| = \frac{s_{11}}{2} \quad \Rightarrow \quad s_{12} = 0, \tag{71}$$

$$|s_{12}| = \frac{s_{11}}{2} \quad \Rightarrow \quad s_{13} = 0, \tag{72}$$

$$|s_{12} + s_{13} + s_{23}| = \frac{s_{11} + s_{22}}{2} \quad \Rightarrow \quad s_{11} \le |s_{12} + 2s_{13}|. \tag{73}$$

The Niggli-reduced cell is determined uniquely for any 3-dimensional lattices.

Appendix B Domains containing nearly Buerger-reduced cells

All the facets and the extreme rays of $D_{Buerger}$ are presented in the following tables.

Table 1. Facets of $D_{Buerger}$.

Label	Equation
a	$s_{11} = s_{22}$
b	$s_{22} = s_{33}$
$c^{(\pm)}$	$\pm 2s_{12} = s_{11}$
$d^{(\pm)}$	$\pm 2s_{13} = s_{11}$
$e^{(\pm)}$	$\pm 2s_{23} = s_{22}$
$c^{(0)}$	$s_{12} = 0$
$d^{(0)}$	$s_{13} = 0$
$e^{(0)}$	$s_{23} = 0$
f	$s_{11} + s_{22} = -2s_{12} - 2s_{13} - 2s_{23}$

Label Generating matrix D_B^+ :			Table 2. Extreme rays of D_{Buer} Active constraints (Facets)	
3-1 A	$A_3 := \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	3	$a,b,c^{(+)},d^{(+)},e^{(+)}$	
3-2	$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	3	$a,b,c^{(0)},d^{(+)},e^{(+)}$	
3-3	$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$	3	$a,b,c^{(+)},d^{(0)},e^{(+)}$	
3-4	$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$	3	$a,b,c^{(+)},d^{(+)},e^{(0)}$	
3-5 u	$u_3 := \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	3	$a,b,c^{(+)},d^{(0)},e^{(0)}$	
3-6	$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$	3	$a,b,c^{(0)},d^{(+)},e^{(0)}$	
3-7	$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$	3	$a,b,c^{(0)},d^{(0)},e^{(+)}$	
2-1 A	$A_2^+ := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$	2	$b,c^{(\pm)},c^{(0)},d^{(\pm)},d^{(0)},e^{(+)}$	
D_B^- :	· · · ·			
3-8	$\begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$	3	$a, b, c^{(0)}, d^{(-)}, e^{(-)}$	
3-9	$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$	3	$a,b,c^{(-)},d^{(0)},e^{(-)}$	
3-10	$\begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 & -1 \end{pmatrix}$	3	$a,b,c^{(-)},d^{(-)},e^{(0)}$	
3-11	$\begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	3	$a,b,c^{(-)},d^{(0)},e^{(0)}$	
3-12	$\begin{pmatrix} 0 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$		$a,b,c^{(0)},d^{(-)},e^{(0)}$	
3-13	$\begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 2 & -1 \end{pmatrix}$	3	$egin{array}{llllllllllllllllllllllllllllllllllll$	
2-2 A	$\begin{array}{cccc} \begin{pmatrix} 0 & -1 & 2 \end{pmatrix} \\ A_2^- & & := \end{array}$	2	$b,c^{(\pm)},c^{(0)},d^{(\pm)},d^{(0)},e^{(-)},f$	
	$ \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 4_{2}^{-} & & & \\ 0 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} := $			
D^+_{\pm} and D^{\pm}				
3-14 <i>I</i>	$\mathbf{f}_3 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$		$a, b, c^{(0)}, d^{(0)}, e^{(0)}$	
2-3 u	$ \begin{aligned} & \mathcal{L}_{B} \\ & \mathcal{L}_{3} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ & \mathcal{L}_{2} := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ & \mathcal{L}_{1} := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned} $	2	$b,c^{(\pm)},c^{(0)},d^{(\pm)},d^{(0)},e^{(0)}$	
1-1 u	$u_1 := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	1	$a,c^{(\pm)},c^{(0)},d^{(\pm)},d^{(0)},$	
	(0 0 1)		$e^{(\pm)},e^{(0)},f$	

Table 2. Extreme rays of $D_{Buerger}$. nk Active constraints (Facets)

* Some extreme rays are not contained in $D_{Buerger}$, but in its boundary.

From a geometrical point of view, it is seen that the number of operations to search for nearly Buerger-reduced cells in the sense of Andrews & Bernstein (1988) reaches its maximum when S^{obs} is close to one of the extreme rays of $D_{Buerger}$. Under the assumption (A_0) that is derived from the assumption (A), the generating matrix of the extreme ray close to S^{obs} must be positive definite:

 (A_0) An observed metric tensor S^{obs} is sufficiently far from any 3-by-3 symmetric matrix that is not positive definite.

Therefore, the maximum is computed as the number of the change-of-basis matrices g such that $D_{Buerger}[g]$ contains a fixed extreme ray in $D_{Buerger}$ of rank 3. (Note that it is impossible to enumerate such g without assuming (A_0) , because infinitely many $D_{Buerger}[g]$ share a singular matrix with $D_{Buerger}$.)

In Table 2, every generating matrix of rank 3 other than I_3 is equivalent to A_3 or u_3 , *i.e.*, equals gA_3g^T , gu_3g^T for some change-of-basis matrix g. Such g is given as an element of $U_B^{(\pm)}$ when the matrix is equivalent to A_3 , and of $W_B^{(\pm)}$, otherwise.

$$U_B^{(+)} := \left\{ I_3, \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\},$$
(74)

$$U_B^{(-)} := \left\{ \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\},$$
(75)

$$W_B^{(+)} := \left\{ I_3, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\},$$
(76)

$$W_B^{(-)} := \left\{ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \right\}.$$
 (77)

In this case, the following proposition is proved:

Proposition 3. 1. A_3 is contained in $D_{Buerger}[g^{-1}]$ if and only if g is an element of $\{g_1g_2 : g_1 \in U_B^{(\pm)}, g_2 \in St(A_3)\}$.

2. The matrix u_3 is contained in $D_{Buerger}[g^{-1}]$ if and only if g is an element of $\{g_1g_2 : g_1 \in W_B^{(\pm)}, g_2 \in St(u_3)\}$, where $St(u_3)$ is the stabilizer subgroup of u_3 in $GL(3,\mathbb{Z})$.

3. I_3 is contained in $D_{Buerger}[g^{-1}]$ if and only if g belongs to $St(I_3)$.

The elements of $St(u_3)$ are presented in 3. Using proposition 3, the cardinalities of change-ofbasis matrices g such that $D_{Buerger}[g]$ shares A_3 , u_3 and I_3 with $D_{Buerger}$ are calculated. They equal 336, 144, and 48, respectively.

Now, $D_{Buerger}[g] = D_{Buerger}$ holds if and only if $g = \pm I_3$. Therefore, the number of operations necessary to obtain all nearly Buerger-reduced cells equals $\frac{336}{2} = 168$ at least in the worst case (Consequently, more than 168 matrices are required to be checked.). Since this always occurs if the metric tensor of a lattice is sufficiently close to A_3 , the maximum is reached regardless of the magnitude of errors.

$$\begin{array}{c} \text{Table 3. Elements of the stabilizer subgroup } St(u_3) \text{ in } GL(3,\mathbb{Z}).\\ \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \pm \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \pm \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \pm \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \pm \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \pm \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \pm \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \pm \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \end{array}$$

Using Proposition 3, it is also possible to enumerate all $g \in GL(3,\mathbb{Z})$ such that $D_{Buerger}[g]$ contains nearly Buerger-reduced cells; $D_{Buerger}[g]$ contains nearly Buerger-reduced cells if only if $D_{Buerger}[g]$ shares a positive definite matrix with $D_{Buerger}$. As a result, the number of such g (including $\pm I_3$) equals 1992. Among the 25 Gruber operations, 22 operations are contained in it. The remaining three operations are as follows (The number was given by Gruber(1973)):

$$\begin{array}{rcl} 12 & : & (A,A+B+\zeta,B+C+\xi,2B+\xi+\eta+\zeta,\eta+\zeta,2A+\zeta), \\ 21 & : & (B,A+B-\zeta,A+C-\eta,2A+\xi-\eta-\zeta,-\xi+\zeta,-2B+\zeta), \\ 23 & : & (C,A+B-\zeta,A+C-\eta,2A+\xi-\eta-\zeta,-2C+\eta,-\xi+\eta). \end{array}$$

With regard to these operations, $D_{Buerger}$ and $D_{Buerger}[g]$ contain no positive definite matrix in common.

Appendix C Proofs of theorems

Proof of Theorem 1. Let g be an element of $GL_3(\mathbb{Z})$ such that $S \in \tilde{D}_{min}[g]$. Then, $S[g^{-1}]$ belongs to $V_{mono,p} \cap \tilde{D}_{min}$. By replacing g with gg_0 for some $g_0 \in St(I_3)$, it may be supposed that $S[g^{-1}]$ is also contained in the following subset of $V_{mono,p,b}$.

$$U_{mono,p,b} := \{ (s_{ij})_{1 \le i,j \le 3} \in V_{mono,p,b} :$$

$$s_{11} \le s_{33}, \ -s_{11} \le 2s_{13} \le 0 \}.$$
(78)

The (i, j)-entries of S and $g^T g$ are denoted by s_{ij} and a_{ij} , respectively. The following inequality is obtained from $S[g^{-1}] \in U_{mono,p,b}$:

$$\langle S, I_3 \rangle - \langle S[g^{-1}], I_3 \rangle$$

$$= \left\langle \left\langle \begin{pmatrix} s_{11} & 0 & s_{13} \\ 0 & s_{22} & 0 \\ s_{13} & 0 & s_{33} \end{pmatrix}, g^T g - I_3 \right\rangle$$

$$= (a_{11} - 1)s_{11} + 2a_{13}s_{13} + (a_{22} - 1)s_{22} + (a_{33} - 1)s_{33}$$

$$\geq (a_{11} + a_{33} - 2 - |a_{13}|)s_{11} + (a_{22} - 1)s_{22}$$

$$\geq \frac{1}{2}(a_{11} + a_{33} - 2)s_{11} + (a_{22} - 1)s_{22}.$$

$$(79)$$

For the last inequality, $a_{11} + a_{33} \ge 2|a_{13}| + 1$ is used. Since $g^T g$ is an integer-valued positive definite symmetric matrix, a_{11} , a_{22} , and a_{33} are positive integers. Hence, the coefficients of s_{11} and s_{22} are not negative in the last line of (79).

On the other hand, $\langle S^{obs}, I_3 \rangle - \langle S^{obs}[g^{-1}], I_3 \rangle \leq 0$ also holds because $S^{obs} \in \tilde{D}_{min}$. Therefore, the coefficients of s_{11} and s_{22} must be less than $\frac{1}{2}$ from the assumption (A). Hence, we have

$$a_{11} = a_{22} = a_{33} = 1. \tag{80}$$

Thus, it is proved that g belongs to $U_{mono,p,b}$. From the assumption, $S[g^{-1}] \in U_{mono,p,b}$, therefore S is an element of $V_{mono,p}$.

Proof of Theorem 2. Let g be an element of $GL_3(\mathbb{Z})$ with $\tilde{S} \in \tilde{D}_{del}[g]$. Then, $\tilde{S}[g^{-1}]$ belongs to $\tilde{V}_F \cap \tilde{D}_{del}$. By replacing g with gg_0 for some $g_0 \in St(A_3)$, it may also be supposed that $\tilde{S}[g^{-1}]$ belongs to the subset of $\tilde{V}_{F,1,2} \cap \tilde{D}_{del}$.

The (i, j)-entry of $g^T A_3 g$ is denoted by a_{ij} and the entries of \tilde{S} are denoted by

Then,

$$\tilde{S}[g^{-1}], I_4 \rangle - \langle \tilde{S}, I_4 \rangle
= \left\langle \begin{pmatrix} -\tilde{s}_{12} - 2\tilde{s}_{13} & \tilde{s}_{12} & \tilde{s}_{13} \\ \tilde{s}_{12} & -\tilde{s}_{12} - 2\tilde{s}_{13} & \tilde{s}_{13} \\ \tilde{s}_{13} & \tilde{s}_{13} & -2\tilde{s}_{13} - \tilde{s}_{34} \end{pmatrix}, g^T A_3 g - A_3 \right\rangle
= -(a_{11} + a_{22} - 2a_{12} - 2)\tilde{s}_{12} \\ -2(a_{11} + a_{22} + a_{33} - a_{13} - a_{23} - 4)\tilde{s}_{13} - (a_{33} - 2)\tilde{s}_{34} \\ \ge -2(a_{11} + a_{22} + a_{33} - a_{13} - a_{23} - 4)\tilde{s}_{13}.$$
(82)

For the last inequality, $a_{11} + a_{22} - 2a_{12} \ge 2$ and $a_{33} \ge 2$ are utilized. They follow from the fact that

$$0 \neq u \in \mathbb{Z}^3 \Longrightarrow u^T A_3 u$$
 is positive and even. (83)

On the other hand, $\langle \tilde{S}^{obs}[g^{-1}], I_4 \rangle - \langle \tilde{S}^{obs}, I_4 \rangle \leq 0$ follows from $\tilde{S}^{obs} \in \tilde{D}_{del}$. Furthermore, from $-4\tilde{s}_{13} = (1, 1, 0, 0)\tilde{S}(1, 1, 0, 0)^T$ and the assumption (A), the following inequality is obtained:

$$a_{11} + a_{22} + a_{33} - a_{13} - a_{23} < 5.$$

$$(84)$$

Therefore, using (83),

$$a_{11} = a_{22} = a_{11} + a_{33} - 2a_{13} = a_{22} + a_{33} - 2a_{23} = 2.$$
(85)

That is, the column vectors of $g := \begin{pmatrix} g_1 & g_2 & g_3 \end{pmatrix}$ satisfy

$$g_1^T A_3 g_1 = g_2^T A_3 g_2 = (g_1 - g_3)^T A_3 (g_1 - g_3)$$
$$= (g_2 - g_3)^T A_3 (g_2 - g_3) = 2.$$
(86)

Because g is a matrix of determinant ± 1 , $g_1, g_2, g_1 - g_3, g_2 - g_3$ are the elements of the following set and they differ from one another:

$$\left\{ \pm \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \pm \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \pm \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \pm \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \pm \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \pm \begin{pmatrix} 0\\1\\-1 \end{pmatrix} \right\}.$$
(87)

Hence, $h_{del}g_1, h_{del}g_2, h_{del}(g_1 - g_3), h_{del}(g_2 - g_3)$ are different elements of the set

$$\left\{ \pm \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}, \pm \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}, \pm \begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix}, \pm \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix}, \pm \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}, \pm \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix} \right\}.$$
(88)

Then, by direct computation, it is confirmed that $h_{del} \begin{pmatrix} g_1 & g_2 & g_3 \end{pmatrix} = \pm p_0 h$ for a 4-by-4 permutation matrix p_0 and h equals one of the matrices:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{pmatrix}.$$
(89)

Therefore, g is one of the following matrices:

$$g_0, \ g_0 \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \ g_0 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \ (g_0 \in St(A_3)).$$
(90)

As a result, it is proved that at least one g in (90) satisfies $\tilde{S}[g^{-1}] \in \tilde{V}_{F,1,2} \cap \tilde{D}_{del}$. Now, $\tilde{V}_{F,1,2}[g_0]$ is contained in \tilde{V}_F for any $g_0 \in St(A_3)$. Furthermore, it is checked by direct calculation that the following equations are true:

$$\tilde{V}_{F,1,2} \begin{bmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \end{bmatrix} = \tilde{V}_{F,1,2},$$
(91)

$$\tilde{V}_{F,1,2} \begin{bmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \end{bmatrix} = \tilde{V}_{F,1,2}.$$
(92)

Therefore, \tilde{S} belongs to \tilde{V}_F .

Proof of Theorem 3. Let g be an element of $GL_3(\mathbb{Z})$ with $\tilde{S} \in \tilde{D}_{del}[g]$. Then, $\tilde{S}[g^{-1}]$ belongs to $\tilde{V}_R \cap \tilde{D}_{del}$. By replacing g with gg_0 for some $g_0 \in St(A_3)$, it may be supposed that $\tilde{S}[g^{-1}]$ belongs to $(\tilde{V}_{R,1,2,3}^- \cup \tilde{V}_{R,3,4,1}^+) \cap \tilde{D}_{del}$.

Subsequently, the (i, j)-entry of $g^T A_3 g$ is denoted by a_{ij} .

(a) (Case of $\tilde{S}[g^{-1}] \in \tilde{V}_{R,1,2,3}^{-}$)

The entries $\tilde{S}[g^{-1}]\in \tilde{V}^{-}_{R,1,2,3}$ are denoted by

$$\begin{pmatrix} -2\tilde{s}_{12} - \tilde{s}_{14} & \tilde{s}_{12} & \tilde{s}_{12} & \tilde{s}_{14} \\ \tilde{s}_{12} & -2\tilde{s}_{12} - \tilde{s}_{14} & \tilde{s}_{12} & \tilde{s}_{14} \\ \tilde{s}_{12} & \tilde{s}_{12} & -2\tilde{s}_{12} - \tilde{s}_{14} & \tilde{s}_{14} \\ \tilde{s}_{14} & \tilde{s}_{14} & \tilde{s}_{14} & -3\tilde{s}_{14} \end{pmatrix}.$$
(93)

Then,

For the last inequality, $a_{ii} + a_{jj} - 2a_{ij} \ge 2$ obtained from (83).

On the other hand, $\langle \tilde{S}^{obs}[g^{-1}], I_4 \rangle - \langle \tilde{S}^{obs}, I_4 \rangle \leq 0$ follows from $\tilde{S}^{obs} \in \tilde{D}_{del}$. Furthermore, $a_{11} + a_{22} + a_{33} - 6 < \frac{3}{2}$ is required because $-3\tilde{s}_{14}$ is the square of the length of a lattice vector.

As a result, $a_{ii} = 2$ $(1 \le i \le 3)$ is obtained from (83). As in the proof of Theorem 2, the column vectors of $h_{del}g$ belong to

$$\left\{ \pm \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}, \pm \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}, \pm \begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix}, \pm \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix}, \pm \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}, \pm \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix} \right\}.$$
(95)

Hence, $h_{del}g$ equals one of the matrices:

$$\pm p_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix} h_0 q_0, \pm p_0 \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix} h_1 q_0, \tag{96}$$

where p_0 is a 4-by-4 permutation matrix, q_0 is a 3-by-3 permutation matrix, $h_0 = I_3, t_{001}$, and $h_1 = I_3, t_{010}, t_{001}$.

Therefore, g equals one of the following matrices for some $g_0 \in St(A_3)$:

$$g_0 h_0 q_0, \ g_0 T_R^+ h_1 q_0. \tag{97}$$

From the assumption that \tilde{S} belongs to $V^-_{R,1,2,3}[g],\,\tilde{S}$ is an element of the set:

$$\bigcup_{g_0 \in St(A_3)} \tilde{V}^{-}_{R,1,2,3}[g_0] \cup \bigcup_{g_0 \in St(A_3)} \tilde{V}^{-}_{R,1,2,3}[g_0T^+_R]$$

$$\cup \bigcup_{g_0 \in St(A_3)} \tilde{V}^{-}_{R,1,2,3}[g_0t_{001}] \cup \bigcup_{g_0 \in St(A_3), \atop h=t_{010},t_{001}} \tilde{V}^{-}_{R,1,2,3}[g_0T^+_Rh].$$
(98)

Now, $\tilde{V}^-_{R,1,2,3}[T^+_R] = \tilde{V}^+_{R,3,4,1}$ is obtained by the equation:

$$h_{del}T_R^+ \begin{pmatrix} -\tilde{s}_{12} - r & -\tilde{s}_{12} & -\tilde{s}_{12} \\ -\tilde{s}_{12} & -\tilde{s}_{12} - r & -\tilde{s}_{12} \\ -\tilde{s}_{12} & -\tilde{s}_{12} & -\tilde{s}_{12} - r \end{pmatrix} (h_{del}T_R^+)^T \\ = \begin{pmatrix} -\tilde{s}_{12} - r & \tilde{s}_{12} & r & 0 \\ \tilde{s}_{12} & -\tilde{s}_{12} - r & 0 & r \\ r & 0 & -2r & r \\ 0 & r & r & -2r \end{pmatrix}.$$
(99)

Therefore, the statement of the theorem is true in this case.

(b) (Case of $\tilde{S}[g^{-1}] \in \tilde{V}^+_{R,3,4,1}$)

The entries of $\tilde{S}[g^{-1}] \in \tilde{V}_{R,1,2,3}^{-}$ are denoted by

$$\begin{pmatrix} -\tilde{s}_{12} - \tilde{s}_{13} & \tilde{s}_{12} & \tilde{s}_{13} & 0\\ \tilde{s}_{12} & -\tilde{s}_{12} - \tilde{s}_{13} & 0 & \tilde{s}_{13}\\ \tilde{s}_{13} & 0 & -2\tilde{s}_{13} & \tilde{s}_{13}\\ 0 & \tilde{s}_{13} & \tilde{s}_{13} & -2\tilde{s}_{13} \end{pmatrix}.$$
(100)

Then,

$$\langle \tilde{S}[g^{-1}], I_4 \rangle - \langle \tilde{S}, I_4 \rangle = \left\langle \begin{pmatrix} -\tilde{s}_{12} - \tilde{s}_{13} & \tilde{s}_{12} & \tilde{s}_{13} \\ \tilde{s}_{12} & -\tilde{s}_{12} - \tilde{s}_{13} & 0 \\ \tilde{s}_{13} & 0 & -2\tilde{s}_{13} \end{pmatrix}, g^T A_3 g - A_3 \right\rangle = -(a_{11} + a_{22} - 2a_{12} - 2)\tilde{s}_{12} -(a_{11} + a_{22} + 2a_{33} - 2a_{13} - 6)\tilde{s}_{13} \ge -(a_{11} + a_{22} + 2a_{33} - 2a_{13} - 6)\tilde{s}_{13}.$$
 (101)

For the last inequality, $a_{11} + a_{22} - 2a_{12} \ge 2$ is utilized. Now, $-2\tilde{s}_{13}$ is the square of the length of a lattice vector. As a result, $a_{11} + a_{33} - 2a_{13} = a_{22} = a_{33} = 2$ is obtained from $\langle \tilde{S}^{obs}[g^{-1}], I_4 \rangle - \langle \tilde{S}^{obs}, I_4 \rangle \le 0$ and the assumption (A).

The equalities hold if and only if

$$(\tilde{a}_{ij})_{1 \le i,j \le 3} := (gT_R^+)^T A_3 gT_R^+$$
 satisfies $\tilde{a}_{11} = \tilde{a}_{22} = \tilde{a}_{33} = 2$
 $\iff gT_R^+$ equals one of the matrices in (97).

Since we have $\tilde{S} \in \tilde{V}^+_{R,3,4,1}[g] = \tilde{V}^-_{R,1,2,3}[gT^+_R]$, the statement is proved as in the case of (a).

Proof of Theorem 4. Let g be an element of $GL_3(\mathbb{Z})$ with $\tilde{S} \in \tilde{D}_{del}[g]$. Then, $\tilde{S}[g^{-1}]$ belongs to $\tilde{V}_B \cap \tilde{D}_{del}$. By replacing g with gg_0 for some $g_0 \in St(A_3)$, it may be supposed that $\tilde{S}[g^{-1}]$ belongs to $(\tilde{V}_{B,1,2}^{(1)} \cup \tilde{V}_{B,1,2}^{(2)} \cup \tilde{V}_{B,3,2}^{(3)}) \cap \tilde{D}_{del}$. Furthermore, it may be assumed that $\tilde{S}[g^{-1}]$ belongs to $(\tilde{U}_{B,1,2}^{(1)} \cup \tilde{U}_{B,3,2}^{(2)}) \cap \tilde{D}_{del}$, where $\tilde{U}_{B,1,2}^{(1)}, \tilde{U}_{B,3,2}^{(2)}$ are defined by

$$\tilde{U}_{B,1,2}^{(1)} := \{ \tilde{s}_{ij} \in \tilde{V}_{B,1,2}^{(1)} : \tilde{s}_{14} \le \tilde{s}_{13} \},$$
(102)

$$\tilde{U}_{B,1,2}^{(2)} := \{ \tilde{s}_{ij} \in \tilde{V}_{B,1,2}^{(2)} : \tilde{s}_{13} \le \tilde{s}_{14}, \ \tilde{s}_{34} \le \tilde{s}_{12} \},$$
(103)

$$\tilde{U}_{B,3,2}^{(3)} := \{ \tilde{s}_{ij} \in \tilde{V}_{B,3,2}^{(3)} : \tilde{s}_{24} \le \tilde{s}_{12} \}.$$
(104)

These domains consist of elements that are transformed into the standard form of base-centered cells (*i.e.*, $0 \le -d \le \min\{\frac{a}{2}, c\}$) by the transforms in (38)–(40).

Subsequently, the (i, j)-entry of $g^T A_3 g$ is denoted by a_{ij} .

(a) (Case of $\tilde{S}[g^{-1}] \in \tilde{U}_{B,1,2}^{(1)}$)

The entries of $\tilde{S}[g^{-1}] \in \tilde{U}_{B,1,2}^{(1)}$ are denoted by

$$\begin{pmatrix} -\sum_{i=2}^{4} \tilde{s}_{1i} & \tilde{s}_{12} & \tilde{s}_{13} & \tilde{s}_{14} \\ \tilde{s}_{12} & -\sum_{i=2}^{4} \tilde{s}_{1i} & \tilde{s}_{13} & \tilde{s}_{14} \\ \tilde{s}_{13} & \tilde{s}_{13} & -2\tilde{s}_{13} - \tilde{s}_{34} & \tilde{s}_{34} \\ \tilde{s}_{14} & \tilde{s}_{14} & \tilde{s}_{34} & -2\tilde{s}_{14} - \tilde{s}_{34} \end{pmatrix}.$$

$$(105)$$

Then

$$\langle \tilde{S}[g^{-1}], I_4 \rangle - \langle \tilde{S}, I_4 \rangle = \left\langle \begin{pmatrix} -\sum_{i=2}^4 \tilde{s}_{1i} & \tilde{s}_{12} & \tilde{s}_{13} \\ \tilde{s}_{12} & -\sum_{i=2}^4 \tilde{s}_{1i} & \tilde{s}_{13} \\ \tilde{s}_{13} & \tilde{s}_{13} & -2\tilde{s}_{13} - \tilde{s}_{34} \end{pmatrix}, g^T A_3 g - A_3 \right\rangle = -(a_{11} + a_{22} - 2a_{12} - 2)\tilde{s}_{12} -(a_{11} + a_{22} + 2a_{33} - 2a_{13} - 2a_{23} - 4)\tilde{s}_{13} -(a_{11} + a_{22} - 4)\tilde{s}_{14} - (a_{33} - 2)\tilde{s}_{34}.$$
 (106)

From $\tilde{S}[g^{-1}] \in \tilde{U}_{B,1,2}^{(1)}$, we have $-4s_{14} \ge -2(s_{13}+s_{14}) = (1,1,0,0)\tilde{S}(1,1,0,0)^T$, and $-2s_{13}-s_{34}$ is also the square of the length of a lattice vector. Therefore, the following equations are obtained from (83) and the assumption (A):

(i)
$$a_{11} = a_{22} = 2,$$
 (107)
(ii) $a_{11} + a_{33} - 2a_{13} = a_{22} + a_{33} - 2a_{23} = 2,$
or $a_{33} = 2.$ (108)

From the discussion in the proof of Theorem 2, g is one of the matrices in (90) if $a_{11} = a_{22} = a_{11} + a_{33} - 2a_{13} = a_{22} + a_{33} - 2a_{23} = 2$. On the other hand, as shown in the proof of Theorem 3, g is one of the matrices in (97) if $a_{11} = a_{22} = a_{33} = 2$. Let h_B be the matrix defined by (40). $\tilde{V}_{B,1,2}^{(1)}[g] = \tilde{V}_{B,1,2}^{(1)}$ holds if and only if $g \in GL(3,\mathbb{Z})$ belongs to the group:

$$St(\tilde{V}_{B,1,2}^{(1)}) := \left\{ g : h_B^{-1}gh_B = \begin{pmatrix} c_{11} & 0 & c_{13} \\ 0 & c_{22} & 0 \\ c_{13} & 0 & c_{33} \end{pmatrix} \ (c_{ij} \in \mathbb{R}) \right\}.$$
 (109)

For example, the following matrices are contained in $St(\tilde{V}_{B,1,2}^{(1)})$.

$$-I_3, t_{110}, t_{001}, \sigma_{12} := \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}.$$
 (110)

Furthermore, $T_R^+ = T_B^{(2)} t_{001} = T_B^{(3)} \sigma_{23} t_{010}$. Thus, g is one of the following matrices for some

 $g_0 \in St(A_3)$ and $q_0 \in St(\tilde{V}^{(1)}_{B,1,2})$:

$$g_{0}q_{0}, \ g_{0}T_{B}^{(2)}q_{0}, \ g_{0}T_{B}^{(3)}q_{0}, \ g_{0}t_{001}\sigma_{13}q_{0}, \ g_{0}t_{001}\sigma_{23}q_{0},$$

$$g_{0}T_{B}^{(2)}t_{001}\sigma_{13}q_{0}, \ g_{0}T_{B}^{(2)}t_{001}\sigma_{23}q_{0},$$

$$(111)$$

$$g_{0}T_{B}^{(3)}\sigma_{23}q_{0}, \ g_{0}T_{B}^{(2)}t_{011}\sigma_{13}q_{0}, \ g_{0}T_{B}^{(2)}\sigma_{13}q_{0}, \ g_{0}T_{B}^{(2)}\sigma_{23}q_{0},$$

where

$$\sigma_{13} := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$
(112)

In addition, we have

$$\tilde{V}_{B,1,2}^{(1)}[T_B^{(i)}] = \tilde{V}_{B,1,2}^{(i)} \ (i = 2, 3),$$

$$t_{010} = \sigma_{13} t_{001} \sigma_{13} t_{110} \in St(A_3) t_{001} \sigma_{13} St(\tilde{V}_{B,1,2}^{(1)}),$$

$$= \sigma_{23} t_{001} \sigma_{23} \in St(A_3) t_{001} \sigma_{23} St(\tilde{V}_{B,1,2}^{(1)}),$$
(113)
(113)
(114)

$$T_{B}^{(2)}t_{001}\sigma_{13} = hT_{B}^{(2)}t_{001}\sigma_{23}\sigma_{12} \in St(A_{3})T_{B}^{(2)}t_{001}\sigma_{23}St(\tilde{V}_{B,1,2}^{(1)})$$

$$= hT_{B}^{(3)}t_{001}\sigma_{12} \in St(A_{3})T_{B}^{(3)}St(\tilde{V}_{B,1,2}^{(1)}), \qquad (115)$$

$$T_B^{(2)} t_{011} \sigma_{13} = T_B^{(2)} \sigma_{13} t_{110} \in St(A_3) T_B^{(2)} \sigma_{13} St(\tilde{V}_{B,1,2}^{(1)})$$

$$= h T_B^{(2)} \sigma_{23} \sigma_{12} t_{110} \in St(A_3) T_B^{(2)} \sigma_{23} St(\tilde{V}_{B,1,2}^{(1)}),$$
(116)

where

$$h := T_B^{(2)} \sigma_{12} (T_B^{(2)})^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \in St(A_3).$$
(117)

From all these equations, the assertion of the theorem is obtained.

(b) (Case of
$$\tilde{S}[g^{-1}] \in \tilde{U}_{B,1,2}^{(2)}$$
)
The entries of $\tilde{S}[g^{-1}] \in \tilde{U}^{(1)}$

The entries of $\tilde{S}[g^{-1}] \in \tilde{U}_{B,1,2}^{(1)}$ are denoted by

$$\begin{pmatrix} -\sum_{i=2}^{4} \tilde{s}_{1i} & \tilde{s}_{12} & \tilde{s}_{13} & \tilde{s}_{14} \\ \tilde{s}_{12} & -\sum_{i=2}^{4} \tilde{s}_{1i} & \tilde{s}_{14} & \tilde{s}_{13} \\ \tilde{s}_{13} & \tilde{s}_{14} & -\tilde{s}_{13} - \tilde{s}_{14} - \tilde{s}_{34} & \tilde{s}_{34} \\ \tilde{s}_{14} & \tilde{s}_{13} & \tilde{s}_{34} & -\tilde{s}_{13} - \tilde{s}_{14} - \tilde{s}_{34} \end{pmatrix}.$$
 (118)

Hence,

$$\langle \tilde{S}[g^{-1}], I_4 \rangle - \langle \tilde{S}, I_4 \rangle = \left\langle \begin{pmatrix} -\sum_{i=2}^4 \tilde{s}_{1i} & \tilde{s}_{12} & \tilde{s}_{13} \\ \tilde{s}_{12} & -\sum_{i=2}^4 \tilde{s}_{1i} & \tilde{s}_{14} \\ \tilde{s}_{13} & \tilde{s}_{14} & -\tilde{s}_{13} - \tilde{s}_{14} - \tilde{s}_{34} \end{pmatrix}, g^T A_3 g - A_3 \right\rangle = -(a_{11} + a_{22} - 2a_{12} - 2)\tilde{s}_{12} - (a_{11} + a_{22} + a_{33} - 2a_{13} - 4)\tilde{s}_{13} \\ -(a_{11} + a_{22} + a_{33} - 2a_{23} - 4)\tilde{s}_{14} - (a_{33} - 2)\tilde{s}_{34}.$$
 (119)

Since $-4s_{13} \ge -2(s_{13}+s_{14}) = (1,1,0,0)\tilde{S}(1,1,0,0)^T$ and $-2(\tilde{s}_{14}+\tilde{s}_{34}) \ge -(\tilde{s}_{12}+2\tilde{s}_{14}+\tilde{s}_{34}) = (1,0,1,0)\tilde{S}(1,0,1,0)^T$, the following are required by (83) and the assumption (A):

(iii)
$$a_{11} + a_{33} - 2a_{13} = a_{22} = 2,$$
 (120)

(iv)
$$a_{11} = a_{22} + a_{33} - 2a_{23} = 2$$
 or $a_{33} = 2$. (121)

These equations hold if and only if

$$\begin{split} (\tilde{a}_{ij})_{1 \leq i,j \leq 3} &:= (gT_B^{(2)})^T A_3 gT_B^{(2)} \text{ satisfies (i), (ii) in } (a), \\ &\iff gT_B^{(2)} \text{ equals one of the matrices in (111).} \end{split}$$

It has been already shown that the statement of the theorem holds in the case of (a). Therefore, the statement is also true in this case because \tilde{S} is assumed to belong to $\tilde{V}_{B,1,2}^{(2)}[g] = \tilde{V}_{B,1,2}^{(1)}[gT_B^{(2)}]$.

(c) (Case of $\tilde{S}[g^{-1}] \in \tilde{U}_{B,3,2}^{(3)}$) The entries of $\tilde{S}[g^{-1}] \in \tilde{U}_{B,1,2}^{(1)}$ are denoted by

$$\begin{pmatrix} -\sum_{i=2}^{4} \tilde{s}_{1i} & \tilde{s}_{12} & \tilde{s}_{13} & \tilde{s}_{14} \\ \tilde{s}_{12} & -\tilde{s}_{12} - \tilde{s}_{24} & 0 & \tilde{s}_{24} \\ \tilde{s}_{13} & 0 & -2\tilde{s}_{13} & \tilde{s}_{13} \\ \tilde{s}_{14} & \tilde{s}_{24} & \tilde{s}_{13} & -\tilde{s}_{13} - \tilde{s}_{14} - \tilde{s}_{24} \end{pmatrix}.$$
(122)

Then,

$$\langle \tilde{S}[g^{-1}], I_4 \rangle - \langle \tilde{S}, I_4 \rangle$$

$$= \left\langle \left\langle \begin{pmatrix} -\sum_{i=2}^{4} \tilde{s}_{1i} & \tilde{s}_{12} & \tilde{s}_{13} \\ \tilde{s}_{12} & -\tilde{s}_{12} - \tilde{s}_{24} & 0 \\ \tilde{s}_{13} & 0 & -2\tilde{s}_{13} \end{pmatrix}, g^T A_3 g - A_3 \right\rangle$$

$$= -(a_{11} + a_{22} - 2a_{12} - 2)\tilde{s}_{12} - (a_{11} + 2a_{33} - 2a_{13} - 4)\tilde{s}_{13}$$

$$-(a_{11} - 2)\tilde{s}_{14} - (a_{22} - 2)\tilde{s}_{24}.$$

$$(123)$$

Now, $-2\tilde{s}_{13}$ and $-2\tilde{s}_{24} \ge -\tilde{s}_{12} - \tilde{s}_{24}$ are not smaller than the square of the length of a lattice vector. From the assumption (A), it follows that $a_{11} + 2a_{33} - 2a_{13} = 4$ and $a_{22} = 2$. From these equations, $(\tilde{a}_{ij})_{1\le i,j\le 3} := (gT_B^{(3)})^T A_3 gT_B^{(3)}$ satisfies (i), (ii) in (a). Therefore, $gT_B^{(3)}$ equals one of the matrices in (111). Hence, the statement of the theorem follows from $\tilde{S} \in \tilde{V}_{B,3,2}^{(3)}[g] = \tilde{V}_{B,1,2}^{(1)}[gT_B^{(3)}]$ as in the case of (b).

Appendix D Proofs of propositions

Proof of Proposition 1. For any 3-by-3 symmetric matrix S^{obs} and $g \in St(A_3)$, $h_{del}S^{obs}[g]h^T_{del} \in \tilde{D}_{del}$ if and only if $h_{del}S^{obs}h^T_{del} \in \tilde{D}_{del}$. Therefore, it is enough if the inequalities are proved when g is an identity matrix. Now, the (i, j)-entry s_{ij} of $h_{del}S^{obs}h^T_{del}$ is not negative. Hence, the assertion follows from the following formulas obtained by direct calculation:

$$\delta_R(S^{obs}[t_{001}^{-1}]) - \delta_R(S^{obs}) = \frac{4rs_{12}(s_{13} + s_{23})}{9}, \qquad (124)$$

$$\delta_R(S^{obs}[(T_R^+ t_{001})^{-1}]) - \delta_R(S^{obs}[(T_R^+)^{-1}]) = \frac{4rs_{12}(2s_{12} + s_{14} + s_{23})}{3},$$
(125)

$$\delta_R(S^{obs}[(T_R^+ t_{010})^{-1}]) - \delta_R(S^{obs}[(T_R^+ t_{001})^{-1}]) = \frac{4r(s_{12} + s_{23})s_{14}}{3}.$$
(126)

Proof of Proposition 2. By the same reason described in the proof of Proposition 1, it may be assumed that g is an identity matrix. The assertion follows from the following formulas:

$$\delta_B(S^{obs}[t_{010}^{-1}]) - \delta_B(S^{obs}) = 2rs_{13}s_{23}, \qquad (127)$$

$$\delta_B(S^{obs}[(T_B^{(3)}\sigma_{23})^{-1}]) - \delta_B(S^{obs}[(T_B^{(2)})^{-1}]) = 2rs_{12}(s_{12} + s_{14} + s_{23})$$

$$+2rs_{14}s_{23},$$
 (128)

$$\delta_B(S^{obs}[(T_B^{(2)}\sigma_{23})^{-1}]) - \delta_B(S^{obs}[(T_B^{(3)})^{-1}]) = 2rs_{12}(s_{12} + s_{23}).$$
(129)