
Supplementary Materials 
 
Appendix A 

Mathematical consequences of placing the origin at the center of mass of the structure 

The one-dimensional crystal structure determination problem is substantially simplified by 

defining the origin at the center of mass of the structure (Shkel et al., 2011), as summarized in 

this section. In this case, the coordinates of all atoms are related: 
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This relationship preserves the symmetry of equations (1) and (2) in the main text with respect to 

any permutation of the atomic coordinates. Owing to this symmetry, we can drastically reduce 

the degree of equations (2) in the main text and (A1) by substituting coordinates ! j  with the 

following elementary symmetric polynomials eh, each of which is defined as a sum of products 

of all possible combinations of h distinct ! j : 
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Note that eN = 1 according to the choice of origin. Owing to this equality, we obtain 

e!h = eh = eN!h ,               (A3) 



where the “-h” subscript denotes that ! j
!1  are used in equations (A2) and the bar represents a 

complex conjugate. The variable substitution is then achieved through the relationships between 

structure factors (called power sums in algebra) and elementary symmetric polynomials, 

otherwise known as Newton’s identities. The Newton’s identities can be expressed in a recursive 

form: 

!1( )h Fh = !1( )k!1 eh!k
k=1

h!1

" Fk ! heh             (A4) 

The expressions for intensities Ih (h = 1, 2, …, N-1) in terms of the elementary symmetric 

polynomials (A2) can now be readily obtained as a product of Fh given by equation (A4) applied 

recursively by its complex conjugate given by the same equation where each eh is replaced by eN-

h according to equation (A3). For example, the first three intensities are: 

I1 = e1eN!1  

I2 = e1
2 ! 2e2( ) eN!12 ! 2eN!2( )
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I3 = e1
3 !3e1e2 +3e3( ) eN!13 !3eN!1eN!2 +3eN!3( )  , etc 

The first N-1 equations for I1,…,IN-1 constitute the minimum lowest-degree system of polynomial 

equations with N-1 unknowns e1,…,eN-1 sufficient for determination of the N-atom structure. 

Each set of eh (h = 1, 2, …, N-1) determined by solving this polynomial system yields one 

structure, i.e. one set of the N atomic coordinates, as the N roots of the following univariate 

polynomial equation, by the mulivariate version of the Vieta’s theorem: 
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where e0 = 1. 



In summary, we demonstrated that all one-dimensional crystal structures consistent with the 

minimum set of N-1 intensities can be obtained by solving system of N-1 equations (A5) and 

then for each of its solutions (e1,…,eN-1) solving a univariate polynomial equation (A6). 

Univariate polynomial equations can be solved by a robust algorithm (Aberth, 1973; Ehrlich, 

1967; Bini, 1996), whereas a generally high-order polynomial system of many equations like 

system (A5) is a very difficult problem of modern algebra that requires investigation in each 

case. Prerequisite to solving system (A5) is an analysis of the number of its solutions, or crystal 

structures, that can be obtained from the N-1 intensities, as described in Section 2.2 of the main 

text. 

 

Appendix B 

Newton polytopes and the Bernstein’s theorem on the number of roots of polynomial 

systems 

This Appendix contains the algebraic terminology and the Bernstein’s theorem used in the main 

text.  

A Laurent polynomial is a function of N independent complex variables !1 ,…,!N

defined as a sum of monomial terms ak!1
" ,k...!N

"N ,k  , where ak  are complex coefficients and 

β1,k,…, βN,k are integer powers, which can be positive, zero or negative. This means that for each 

monomial there is one point in Euclidian space RN whose coordinates are (β1,k, …, βN,k). For a 

given Laurent polynomial, these points define vertices of a polytope in RN. The convex hull of 

this polytope is called the Newton polytope of this polynomial. (A geometrical object is convex 

when a line segment between any two points that belong to this object lies entirely in that object. 

A convex hull of a polytope is a minimal convex polytope that contains the given polytope.) The 



Minkowski sum of two polytopes A and B is a polytope, whose vertices are defined by vector 

sums of each vertex of polytope A and each vertex of polytope B.  

The Bernstein’s theorem states that a system of d Laurent polynomial equations with d 

unknowns has at most the number of roots equal to the so-called mixed volume of this system, 

Vmix, defined by the following linear combination of d-dimensional volumes VM,p: 

Vmix = !1( )d!p
p=1

d

" VM ,p
                       

(B1) 

where for a given p, VM,p are volumes of convex hulls of the Minkowski sums of all 

combinations of p different Newton polytopes of this system. For example, for a system of 3 

polynomial equations with 3 unknowns: 

Vmix =V (conv(A1 + A2 + A3))!V (conv(A1 + A2 ))!V (conv(A1 + A3))!V (conv(A2 + A3))  

+V (A1)+V (A2 )+V (A3) ,             (B2) 

where Ak is the Newton polytope of the k-th polynomial in the system, the “+” symbol applied to 

the polytopes denotes their Minkowski addition, “conv” is the convex hull operator. 

In practical cases where monomial coefficients are sufficiently generic (e.g. the 

monomial terms do not cancel out and the polynomials are not linearly dependent), the above 

mixed volume is known to be equal to the number of roots of the polynomial system. Therefore, 

the Bernstein’s theorem provides a general approach to analyzing the number of roots of a 

multivariate polynomial system of d equations with d unknowns when variable elimination is not 

possible. 

 

 

 



Appendix C 

Properties of h-polytopes 

In the main text, an M-dimensional h-polytope is defined by its M(M+1) vertices: 2M vertices 

with one of their M coordinates equal to either h or -h and the others equal to 0 and M(M-1) 

vertices with two of their M coordinates equal to h and -h and the others equal to 0. Examples of 

h-polytopes are given in Fig. 2 in the main text. Here, we will prove three remarkable properties 

of h-polytopes. 

 First, an M-dimensional h-polytope is a centrosymmetric convex hull. This follows from 

the fact that the h-polytope can be formed by cutting off parts of the hypercube (a convex hull) 

centered at the origin with the edge length of 2h, by M-1 dimensional hyperplanes. This cutting 

procedure yields the M(M+1) vertices of the h-polytope. This follows from the observation that 

the facets of the hypercube are cut so that each facet is defined by M vertices, a minimum needed 

to specify a facet. The coordinates of these M vertices for one facet all contain h or -h for one of 

the M dimensions. In the other M-1 dimensions, the coordinates of the vertices are either contain 

all zeros, or contain -h or h, respectively, thus describing the M vertices. We conclude the proof 

by noting that each of the vertices of the h-polytope is accounted for as a vertex of one of these 

facets. An h-polytope is centrocymmetric with the center of symmetry at the coordinate origin, 

because its vertex set is centrosymmetric. 

 Second, the convex hull of the Minkowski sum of an h1-polytope and an h2-polytope is an 

(h1+h2)-polytope. We proved above that these three polytopes are convex hulls. Note that the 

Minkowski sum contains the vertices of an (h1+h2)-polytope by construction. Therefore, owing 

to the convexity of an (h1+h2)-polytope, in order to prove the original statement it is sufficient to 

demonstrate that the rest of the points in the Minkowski sum belong to the (h1+h2)-polytope, i.e 



lie inside of it, or on its facets or edges. It can be demonstrated that each of the Minkowski sum 

points either lies on a line connecting two of the vertices of the (h1+h2)-polytope or on a line 

connecting the origin with one of its vertices. For the sake of brevity, we will illustrate this proof 

for some of the points. The coordinate origin belongs to this sum and lies in the (h1+h2)-polytope 

due to its centrosymmetry. The vertices of the h1- and the h2-polytopes belong to the (h1+h2)-

polytope as they lie on the lines connecting the origin with the vertices of the (h1+h2)-polytope 

whose respective non-zero coordinates are at the same positions and have the same sign. Some of 

the sum points have coordinates that are equal to h1 and h2 at positions i1 and i2, respectively, to -

h1 and –h2 at positions j1 and j2, respectively, and to 0 at the other M-4 positions. A point of this 

type lies on the line between two vertices of an (h1+h2)-polytope, one vertex with the i1-th 

coordinate equal to h1+h2, the j1-th coordinate equal to -h1-h2 and with the rest of the coordinates 

equal to zero and the other vertex with the i2-th coordinate equal to h1+h2, the j2-th coordinate 

equal to –h1-h2 and the rest of the coordinates equal to zero. Therefore, owing to the convexity of 

an (h1+h2)-polytope, such points belong to this polytope. Another set of Minkowski sum points 

have coordinates equal to h1+h2, -h1 and -h2 at positions i1, i2 and i3, respectively and 0 at the 

other positions. These points lie on the line connecting a vertex with coordinates equal to h1+h2 

and -h1-h2 at positions i1 and i2, respectively, and 0 at the rest of the positions and a vertex with 

the coordinates to h1+h2 and -h1-h2 at positions i1 and i3, respectively, and 0 at the rest of the 

positions. An analogous rationale applies to the Minkowski sum points whose three non-zero 

coordinates are equal to -h1-h2, h1, h2. The proof proceeds similarly for the rest of the points of 

the Minkowski sum. 

 Third, the volume of an M-dimensional h-polytope is equal to hM 2M( )!/ M !( )3  (equation 

(5) in the main text). The M coordinate axes and the origin divide the M dimensional space into 



2M hyperquadrants, each bounded by M-1 half-axes, either positive or negative, converging at the 

origin. The intersections of the h-polytope with these quadrants divide the polytope into non-

overlapping objects whose total volume is the volume of the h-polytope. We will consider a 

hyperquadrant in which m coordinates are positive and M-m coordinates are negative. Now we 

will consider an intersection of an m-dimensional sub-space of this hyperquadrant in which the 

former m coordinates are positive and the other coordinates are zero with the h-polytope. 

Because no two coordinates of any vertex of the h-polytope are simultaneously positive, this 

intersection is formed by the origin and the m vertices lying on the respective axis at a distance h 

from the origin. This object is an m-dimensional pyramid (hyperpyramid) whose m-dimensional 

volume is equal to h
m /m! . By analogy, the (M-m)-dimensional volume of the intersection of the 

h-polytope with the space in which the other M-m coordinates are negative is equal to  

hM!m / M !m( )! . Because for each of the former m positive directions and each of the latter M-m 

negative directions there is a vertex of the h-polytope whose respective coordinates are equal to h 

and –h and the rest of the coordinates are equal to 0, the intersection of the original 

hyperquadrant with the h-polytope is a Cartesian product of the two hyperpyramids. The volume 

v of the intersection is then equal to the product of the two hyperpyramid volumes: 

v = hM

m! M !m( )! 	   	   	   	   	   	   	   	   	   	   	  	  	  	  	  
(C1) 

The number of such intersections is equal to the number of m-combinations in the set of M axes, 

i.e. M !/ m! M !m( )!( ) . Now, the volume of the h-polytope is obtained by summation over all 

intersection volumes: 
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The last sum in equation (C2) can be written in the closed form by using the Chu-Vandermonde 

identity to yield the initial expression: 

VM ,h =
hM

M !
2M( )!
M !( )2

= hM
2M( )!
M !( )3 	  	   	   	   	   	   	   	   	   	  	  	  	  

(C3) 
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