
Computerization of the IUCr Editorial Office, Chester:
a Progress Report

The Technical Editor’s Office, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England

19 October 1990

Abstract

Recent acquisition of modern computer equipment has
enabled the Editorial Office of the International Union
of Crystallography to undertake various initiatives in
electronic publishing and data analysis. This report is
designed to inform Co-editors, members of the Execu-
tive Committee and other interested parties of the main
areas of development currently addressed, in order to
supply background information against which to debate
future policies and directions of change. The main topics
covered are the checking of structural data for structures
submitted to Acta Crystallographica (and JAC) and the
in-house composition of papers from author-supplied
electronic files. These applications have been developed
as part of the CIF project, which is nearing maturity and
should allow for files conforming to this standard to be
accepted as publication material within a few months.
The prospects of future development are also discussed.

I. Introduction

Crystallography has long relied on the power of digital
computers, and practitioners of the science have been
accustomed to using the most advanced hardware and
software in their work. Many crystallographers have
readily adopted word processors and other software on
personal computers, and are familiar with the use of
network electronic mail to communicate with their col-
leagues. It must therefore seem natural that the Editorial
Office of the IUCr should investigate the usefulness of
computers in the production of crystallographic journals
and books. Many initiatives in this area are now being
undertaken, and there appears to be good grounds for
believing that many advantages will follow from an
enthusiastic development of computerized production
procedures. However, the editorial staff of the Union
are small in number and have little direct experience
of the technologies and programming skills that may be
needed. Despite this, good progress has been made in
introducing various software systems that may radically
change the way in which the journals Acta Crystallo-
graphica and Journal of Applied Crystallography are
produced, and that will have substantial implications on
the future handling of crystallographic data in journals
and databases. It is important that we approach the
tasks in hand systematically and with a proper sense
of priorities.

The manner in which the efficient and productive im-
plementation of new methods and techniques is managed
will be of interest to various Committees and Commis-
sions of the Union. Some of these bodies will have direct
responsibility for overseeing these developments; others
will wish to make constructive suggestions. This report

has been prepared for the benefit of interested parties,
partly as a review of what has already been achieved,
partly as an indication of the options now available. It
is offered purely for the sake of information, and any
comments that might appear to reflect on matters of
policy are intended only to reflect the relevant technical
background, not to offer any judgements on the policies
themselves.

This report is lengthy and somewhat detailed because
it aims to discuss the major aspects of the computer-
ization of the Editorial Office in enough depth to be
of use to the Commissions and Committees who need
to make decisions on future directions. It comprises a
section reviewing the introduction of the new technology
and describing the hardware capabilities of the office;
a section on the procedures being developed for the
centralized checking of structural data; and a discussion
of text formatting issues. Some comments on possible
future directions are also offered.

II. Historical background

Computer-based operations in Chester began in 1984
with the acquisition of a Systems Group 2900 series
machine running under the OASIS operating system.
This machine had a 512 kB memory partitioned into
64 kB segments allowing access by up to 8 users,
and 34 MB of hard disk storage for a ‘flat’ (i.e. non-
directory-based filesystem). A system of programs in the
OASIS compilable BASIC language was commissioned
to maintain records of manuscripts being processed,
prepare and sort annual and cumulative indexes, store
formulae of structures reported in Acta and search for
duplicate submissions, and maintain a print spooler.
These programs, which shall be collectively referred to
as the journal housekeeping software, were reasonably
effective. A typical screen display from one of these pro-
grams is reproduced as Figure 1. However, the operating
system was temperamental and had a frequent tendency
to hang, and the hardware was unreliable. Further, the
operating system and i/o media formats were unusual,
and FORTRAN (and C) were not supported, so that there
was very limited scope for information interchange with
other systems.

In 1988, a desktop publishing graphics workstation
was acquired from Rank Xerox. This machine (the
Documenter) has various utilities available under the
Viewpoint operating system specifically for document
formatting and composition. It has a very user-friendly
interface, and the ability to handle moderately complex
document layouts. It was used to produce Fast Com-
munications in Acta throughout 1989 and for the first
half of 1990, and is still used for various types of in-
house documentation. Its main disadvantages are that it

2 COMPUTERIZATION OF THE EDITORIAL OFFICE

Fig. 1 Typical screen display for database entry as developed on
Systems Group machine and subsequently transferred to 3B2/500.

is relatively slow (it is based on the 80186 chip) and
output is limited to 300 dpi laser-printer copy, which
we have used as camera-ready copy in the journals. The
relative inadequacy of the quality of the final printed
page is apparent. The Documenter also provides an IBM-
PC emulator and can read DOS formatted 51/4" floppies,
which gave us our first opportunity for import of files
from other systems.

In October 1988, an 80386 DOS machine (Olivetti
M380/C) was purchased with 640 kB memory and 80
MB hard disk. This can read and write high-density
51/4" and 31/2" diskettes and has a VGA colour screen.
Thus we now have full compatibility with the DOS-
based personal computer community. The machine has
a BASIC interpreter and runs a variety of applications
written in FORTRAN. Until the middle of 1990 its main
function was to run the structural checking programs
used in the pilot scheme to carry out checking in Chester.
This machine was also used to carry out initial tests with
the TEX programming package.

At the same time as the PC was delivered, an AT&T
3B2/500 minicomputer was installed to act as the main
office computer. This machine has 4MB of memory, 147
MB hard disk, and can support multiple users (currently
up to 18 serial ports may be used) under the UNIX op-
erating system. Data transfer is possible via 51/4" floppy
disk (formatted in a machine-specific way), 1/4" cartridge
tape unit and a Hayes-protocol asynchronous dial-up
modem rated at 2400 baud. There is also an Olivetti
PG303 PostScript laser printer (which is functionally
similar to an Apple Laserwriter). The operating system
is standard AT&T System V.3 UNIX, and the languages
supported are C, FORTRAN and UX-BASIC. This last
is compatible with OASIS BASIC, and allowed the
transfer of the journal housekeeping software from the
Systems Group machine with remarkably few problems.
The transfer of programs and data was complete by
early 1989, when the old machine was shut down.
The journal housekeeping programs were enhanced and
complemented by procedures to format the annual in-
dexes in the PostScript language, to maintain on-line
indexes, generate form letters and statistical summaries,
and various other utilities. Figure 2 illustrates one of
the menus available to users for navigating through the
filesystem and performing desired tasks. Most of these
procedures were written in the UNIX shell language
and using operating-system text management utilities
(sed, grep, cut, paste, awk), because these were the
only programming tools available to us at first. C and

FORTRAN compilers were ordered, but the length of
time required to ship these to us was scandalous (almost
18 months for the FORTRAN). It is primarily for this
reason that structural checking was done on the PC.
The 3B2 continues to give good service, its reliability
is excellent, and it is a tool shared in common by the
entire office staff.

Fig. 2 User menu on the 3B2/500 giving access to online index files
and to utility programs for manipulating these files.

In 1990, an Apple Macintosh IIcx was purchased to
allow receipt of files from the Mac-based community
of personal computer users, and as a general secretar-
ial machine. This is used for word processing using
Microsoft WORD. It has its own Laserwriter, another
PostScript machine. Most recently, a cluster of four SUN
computers was purchased, comprising a SPARCserver
330 with 8 MB memory, 667 MB hard disk, and
three SPARCstation 1+ graphical workstations, each
with 12 MB memory and 208 MB hard disk. These are
networked on an Ethernet bus, and share a 150 MB 1/4"
cartridge tape unit and a 1/2" 1600/6250 bpi tape deck.
This last gives us full access to the academic community
for data transfer by tape. We also have a synchronous
modem and Kilostream link to Daresbury Laboratory
which will allow us access to the UK JANET academic
network in the near future (and thence via gateways to
EARN, BITNET, USENET etc etc). These machines run
under Sun OS 4.1 (an enhanced version of Berkeley
4.3 and System V UNIX) and are fast, employing
RISC architecture. The graphics screens (1 colour, 2
monochrome) allow windowing operations under the
SUNVIEW and OPENWINDOWS windowing systems.
All machines have C and FORTRAN compilers, the
latter of which is said to be highly compatible with VAX
FORTRAN. These machines will be used to take the full
burden of checking and electronic publishing. Already,
Fast Communications are being set on a SUN work-
station using the Publisher package, and the checking
programs have been transferred to the SUN cluster and
expanded.

At present, the 3B2 is linked to the PC, Mac and the
SUN cluster by RS-232C connections and can transfer
data using Kermit (da Cruz, 1987), PC-Interface or
uucp, as appropriate. From an operational point of view,
it would be useful to have a networking connection
between the 3B2 and the SUN machines (ideally the
NFS protocol which already links the SUN machines),
but consideration of this has been deferred on grounds

COMPUTERIZATION OF THE EDITORIAL OFFICE 3

of cost (the relevant hardware and software for the 3B2
would amount to something in the region of £6000).
At present data transfer between the UNIX systems is
satisfactorily achieved by the uucp protocol, so that the
3B2 can supply print spooling services to the SUN
machines, for example.

III. Centralized checking
In a sense the entire editorial process has to do with
checking—checking for clarity, consistency and style of
presentation. It is a logical extension to check wherever
possible the accuracy of the manuscript. For some
considerable time, a number of checks have been per-
formed that go beyond the usual editorial concerns of a
publisher. These have included checks for resubmission
by an author of a paper already rejected by one of
the Co-editors, and searches for previous reporting of
identical or similar structures in the literature. These
are reviewed briefly below. We are now beginning
to investigate the scientific accuracy of the reported
structure, and our procedures for doing this will be
presented at some length.

Duplicate author resubmission
A list of rejected papers is maintained and a simple
test is run to see whether authors of newly submitted
papers match any in that list. This is a simple check to
guard against submission to one Co-editor of a paper
rejected by another. The criterion for a ‘hit’ (that there
should be a match of at least one author’s name) is
very conservative, but if this check is run regularly, it
involves very little work to eliminate the large majority
of cases which do not represent a resubmission.

Duplicate structure reporting
Structures reported in Acta
A database is maintained of formulae for structures
published in Acta, and new compounds are tested against
this. The formulae are represented in a simplified man-
ner, by residue for organic compounds and by elements
for inorganic. Similar as well as identical structures are
found. The database is not complete, extending back
only to about 1982. This check is run manually when
each updated Co-editor’s status list reaches us, and is
fast.

Structures reported elsewhere (and in Acta before 1982)
Possible earlier reports are searched for in the Cam-
bridge Structural Database and in the Inorganic Crystal
Structure Database. These are currently accessed via the
CSSR software on the crystallographic VAX at Dares-
bury Laboratories, on which we have a guest username.
Connection to this machine is via dial-up modem, and
early work was hampered by noisy telephone lines which
restricted the data communications rate to 300 baud.
Subsequent digitization of the telephone exchanges now
allows us to operate at 2400 baud, which makes it
feasible to widen the search criteria used and to examine
graphical representations of structures on Tektronix-type
screens. It is anticipated that the Cambridge Database
will be accessed directly across the network using a
graphics-based interface in the near future. This form
of checking has been carried out routinely over the last
two years.

Structure checking

The major innovation in checking procedures is the
introduction of programs that will allow geometry and
symmetry checking to be performed in Chester. A pilot
scheme involving some half-dozen Co-editors has been
operating since summer 1989. A modified and enlarged
version of this scheme is now in place and undergo-
ing further development. It is expected that centralized
checking of structures will be offered to all Co-editors
in the near future, as soon as staffing levels make this
possible. The intention will be to provide an assessment
of the structure to the Co-editor. Since the Co-editor
retains the responsibility for deciding whether a structure
should be accepted, it will probably be useful to give a
detailed description of the procedure currently used.

Input of data

The information required by the checking programs
we use is entered into a crystallographic information
file (CIF) by secretarial and editorial staff, from the
submitted typescript. Only the information required for
checking is entered in this way; however, the motivation
behind the use of a CIF is to allow exactly the same
procedures to be run on a CIF supplied directly by an
author. In this latter case, the subset of data in the CIF
corresponding to the data we enter for checking can be
extracted automatically by the same software as is used
on our ‘home-made’ CIFs. For the sake of convenience,
our checking CIFs are constructed on the 3B2 computer
and e-mailed to a dedicated login on a SUN workstation;
this will again parallel the treatment of author-generated
CIFs submitted by e-mail.

The user interface

The dedicated login on the SUN machines has a cus-
tomized execution environment and a graphical interface
that are designed to provide a robust and easy-to-use
procedure. Incoming CIFs are represented by crystal-
like icons in a reception directory CIF_IN. A mouse is
used to move a pointer over one of these icons. Double-
clicking a mouse button initiates a procedure which
creates a subdirectory for each structure recorded in the
CIF, places in that subdirectory a series of input files
containing the relevant data correctly formatted for each
program used, and runs the programs with pre-defined
default parameters. Figure 3 illustrates the display to the
screen during this process.

If all runs successfully, the CIF is moved to a
CIF_OUT directory for archiving or further processing.
In the directory created for each structure, the output
files are available for inspection, the input files may be
edited and ‘double-clicked’ to rerun individual programs
with different parameters, and additional programs are
available from a pull-down menu (see Figure 4). Dif-
ferent icons are used both to differentiate the various
categories of files and to associate with each a different
application. Thus, selecting an input file (represented as
a deck of punched cards!) runs the associated program;
selecting an output file opens it in a screen-based editor;
selecting a ‘CD’ binary file invokes the relevant binary
file editor; selecting a PostScript file (indicated by the
PostScript logo) opens a PostScript previewer and source
editor; and so on. All i/o redirection and file assignments
are handled automatically, and need not trouble the user.

4 COMPUTERIZATION OF THE EDITORIAL OFFICE

Fig. 3 The user has double-clicked his left mouse button while
holding the cursor over the icon representing file ab0168.cif. A
command tool appears on screen, to which comments are written as
the file is processed. This provides a means of monitoring the checking
in real time, and summaries of some of the checking results may be
read as they are produced. Full results are stored in a set of files within
directories constructed for each reported structure.

Fig. 4 The graphics program PLUTO has been selected from the Your
Commands option of the File Manager’s File menu. When the (right)
mouse button is released, a full-screen Tektronix emulator will be
created, in which the chosen program will start up. This particular
application is a SUNVIEW tool, showing how the two windowing
systems available on the workstation can coexist. Other checking
programs can be started up by double-clicking on the icons (decks
of punched cards) representing their input files.

The process of constructing input files and running
programs with standard defaults could, of course, be
done entirely automatically and in batch mode. This
is likely to be done as the checking load increases. At
present, however, it is felt to be useful to staff to monitor
the entire procedure automatically.

Programs in use

Geometry checking

PARST The Parma structural package (Nardelli, 1983),
developed for the checking of structures reported in
Crystal Structure Communications, has been supplied to

us through the kindness of Professor Nardelli. This pro-
gram provides facilities for checking essentially every
aspect of the geometrical relationships between atoms
in an input coordinate list. By default, lists are produced
of orthogonal coordinates, bond distances and angles
and torsion angles, interatomic contacts, intermolecular
contacts and possible hydrogen bonds. The reduced
(Niggli) matrix is also output.

Options exist for calculating H-atom positions, least-
squares weighted planes and straight lines, ring pucker-
ing coordinates and stereographic projections and com-
parison of subsets of atoms. None of these options is at
present exercised on a regular basis. The principal axes
of thermal ellipsoids may also be calculated.

One frequent fault in submitted structures is the pre-
sentation of a set of coordinates describing the asymmet-
ric unit which contains atoms from separate molecules in
the unit cell. PARST does not try to build a unique mol-
ecule in these circumstances, which can be a nuisance
to us in trying to recognize the connected molecule.
Nevertheless, most of the bond distances in such a case
can be found in the list of intermolecular distances,
which contains symmetry-generated atoms. However,
in the case of a non-connected molecular unit, bond
angles cannot be retrieved by the program. Despite this
limitation, PARST is one of our most useful checking
tools because of the very wide range of geometrical
relations which it generates.

BONDLA (XTAL) The routine BONDLA within the
XTAL crystallographic system (Hall & Stewart, 1990)
also generates geometrical relationships, but is restricted
to consideration of bond distances and angles, contact
distances and torsion angles.* Its advantage over PARST
is that it does seek and report the coordinates of sets of
atoms comprising connected residues. This routine has
only recently been implemented and is currently under
evaluation. Another advantage it has over PARST is that
atomic radii may be redefined in the input list; at present
the default atomic radii are chosen for compatibility to
be those compiled in to PARST.

DATCHK/UNIMOL The Cambridge Crystallographic
Data Centre (CCDC) has recently supplied us with the
source code for their checking programs (Allen et al.,
1974). These are very comprehensive and powerful, and
check every aspect of the data that will be entered into
the Cambridge Structural Database. As such, they are
more detailed than we require for our present purposes.
However, one aspect of the CIF project is intended to be
the ability of the IUCr to provide database maintainers
with data of very high quality, and it is therefore likely
that we shall develop techniques for applying most of
the checks within this package to full CIFs submitted
to us. At the moment, the major item of potential
interest within this package is its ability to compare
bond lengths automatically, as its major diagnostic of
the accuracy of reported coordinates. If we are to take
advantage of this, we shall need to invest more time
in the secretarial input of bond distances, and some
editorial time in inputting a description of the chemical
connectivity of the structure. The bonus should be an

* Other geometrical calculations can be performed by additional
routines in the XTAL program system, a copy of which has just
reached us.

COMPUTERIZATION OF THE EDITORIAL OFFICE 5

overall saving in editorial time. It is envisaged that the
full implementation and development of this approach
will be undertaken in collaboration with the CCDC.

DISPOW/DISANG (NRCVAX) The program package
NRCVAX has been made available to us by the kindness
of Dr E J Gabe and co-workers (Gabe, Le Page,
Charland, Lee & White, 1989). It contains many useful
routines for the handling of various aspects of crystal
structure analysis. The modules DISPOW and DISANG
generate bond distances and angles. Together with the
unique molecule building routine UNIMOL within
the NRCVAX package these can provide geometric
details of a connected residue. This program is not
run routinely (there is no particular reason for this; one
must simply make an arbitrary choice when one has
such a cornucopia of useful programs!) but is accessible
through a pull-down menu.

MOLDRAW This is the only program we use that is
not implemented on the SUN workstations, because it is
written using PC-specific graphics routines (Ugliengo,
Borzani & Viterbo, 1988). (The input file is, however,
generated automatically on a SUN.) It is a molecular
visualization program, and generates static or animated
views of molecules, molecular fragments, unit cells and
even extended crystal regions. The user can generate
stereo views, stick, ball-and-stick or space filling models
in arbitrary orientations. Distances and angles between
specific atoms can be requested interactively. Although
the program itself performs no analysis, editorial staff
find the flexible visualization of cell contents extremely
helpful in interpreting output from other checking pro-
grams. We are grateful to Professor Ugliengo and his
collaborators for allowing us to use this program.

PLUTO/PLTMOL/PACKER (NRCVAX) As was men-
tioned in the comments to MOLDRAW, visualization
of the molecule is often very helpful. These graphics
routines supplied within the NRCVAX package may
all be run on the UNIX machines to allow immediate
visualization.

Space-group misassignments

Whereas the geometric checking programs contain in-
formation relevant to the space group chosen for the
structure refinement, a number of programs are also
used to test the lattice symmetry. Most of these consider
the generation of a reduced cell and the consequent
implied lattice. The different programs do not always
converge to a common answer: this is sometimes due to
the algorithm used or to the conventions for reporting
a unit cell. More often, however, it has to do with
the allowed tolerances on symmetry elements. One of
our major learning tasks will be the recognition of the
circumstances in which the default tolerances presented
by the programs should be modified, and to what extent
they may be changed. In the meantime, we run several
of these programs and compare the output results.

NEWLAT This program (Mugnoli, 1985) assigns an em-
pirical figure of merit to a set of new lattices generated
metrically from a given initial unit cell. This has the
advantage for us of listing several alternatives that are
consistent with some specific experimental tolerance.
Derived lattices are listed in decreasing order of figure
of merit within each candidate crystal system.

CREDUC (NRCVAX) and LEPAGE These programs
use the same algorithm for cell reduction. LEPAGE
(Spek, 1988) is an interactive PC program, which we
now use as a swift check of papers that have not
otherwise been checked as part of the ‘full service’
on receipt.

NIST*LATTICE This program (Mighell, Hubbard &
Stalick, 1981; Himes & Mighell, 1987) has recently
been sent to us by Dr Mighell of the National Institute
of Standards and Technology, and is now undergoing
evaluation. It is part of the checking procedure which
NIST run on entries for their Database, and contains
provision for detailed indexing and analysis of powder
patterns. For our specific requirements at present, its
major contribution is the automatic identification of
a lattice type from the components of the Niggli
matrix. This has previously been done manually, but the
programmatic approach handles tolerances automatically
when e.s.d.’s of the unit-cell parameters are supplied.

DELOS This program (Burzlaff & Zimmermann, 1985),
which was circulated to contemporary Co-editors some
time ago, determines lattice parameters of the conven-
tional standardized unit cell and evaluates the probable
Bravais lattice following the method of Delaunay.

TRACER This is an old lattice transformation/cell re-
duction program which has been integrated into the
driving software of some diffractometers (Lawton &
Jacobson, 1965).

MISSYM (NRCVAX) This is a particularly powerful rou-
tine (Le Page, 1982,1988) which generates metric sym-
metry elements according to the method of CREDUC,
and then applies the symmetry transformation implied
in the space-group description to the atomic coordinates
of the input atom list, to search for possible additional
symmetries. The program will list additional symmetries
or pseudosymmetries which can be referred back to
the author for consideration. Generous tolerances are
built in to the program and options are available for
excluding specified atoms or atom types from the search
list, so that the results are conservative in the sense that
additional symmetries are likely to be indicated more
often than they actually exist. However, the corollary is
that few genuine cases should be overlooked. It may be
that asking an author to account for any positive result
thrown up by this program will improve the usefulness
of the discussion in the paper, even when it does not
result in a different space-group assignment.

IV. In-house typesetting
One of the immense benefits perceived in current devel-
opments in computer technology is the growing avail-
ability of programs that can in effect compose and
typeset text (and sometimes graphics) to produce high-
quality printed output (though at lower resolution than
is obtainable from phototypesetting machinery). There
are two aspects of this new technology that we should
address. These are the development of a powerful and
flexible system that we can use to produce printed
output conforming to the quality standards of a respected
academic journal; and the ability to handle text pro-
cessed by authors using their own (perhaps arbitrary)
packages. We shall look at the first of these topics—the

6 COMPUTERIZATION OF THE EDITORIAL OFFICE

need to be able to generate printed output of the same
quality as a commercial typesetter—by looking in detail
at two applications (the text formatting software TEX
and the output format PostScript) that we use in-house.
A particular implementation of a powerful TEX-based
formatting system will also be described.

TEX

The program chosen as the test-bed for the development
of in-house composition is TEX (Knuth, 1984). This has
three principal advantages:

1. It is a comprehensive typesetting package — it
addresses concepts such as font kerning, interline
leading, widow and orphan lines, and the specific
requirements of mathematical setting. Many com-
mercial programs suffer from the limitation that,
though you can print lines of 10 pt type 12 pt apart,
you may not be able to place them 11 pt apart.
This is inconvenient if your journal has always been
printed in 10/11 pt.

2. It is cheap, widely available, and produces identical
results on a wide range of machines. This is par-
ticularly important in respect of accepting TEX files
generated by authors, but is also useful in allowing
us to process the same file on any of our machines.

3. It is macro-based, and can be run as a background
job. This is of particular significance to the way
in which we intend to process CIF documents.
The macros referred to above are code words that
represent procedures that may be defined by the
user. These procedures may be simple font changes,
they may substitute the word immediately following
by some other phrase, or they may be full-fledged
programming constructs which redefine the entire
format of the document subject to conditional tests.
Hence, a stream editor (at present) or some other
program can be used to extract from a CIF the
data items that will form the text of a paper, and
append or prepend to each such item a macro
name which will correctly format that item. The
entire derived source file (containing a string of data
items with embedded macro calls) may be processed
automatically by TEX, to produce a first draft of a
printed document without any human intervention.

Several of these points will be developed in more
detail below. However, it is worth mentioning some of
the disadvantages of TEX.

First, the manner of processing text as a stream of
characters with embedded macros produces a source
document that is more like a computer program than a
manuscript. Indeed, it is probably better to refer to TEX
as a programming language, rather than as a program.
This makes it somewhat unfriendly to the user, who
must learn the syntax as well as the vocabulary of a
new language. Further, there is no direct visualization
of the finished document as the user works on it —
the source file must be periodically processed by TEX
and the output displayed by an on-screen previewer
on a high-resolution graphics screen, or printed out.
This is in contrast to the ‘what-you-see-is-what-you-get’,
or ‘WYSIWYG’, approach of many popular packages,
where an on-screen representation of the printed page is

manipulated directly with the help of a mouse. There-
fore, although the first draft of CIF-derived documents
may be produced effortlessly, subsequent editing (which
is likely often to be extensive) will be more laborious.

Secondly, although TEX has many more capabilities
than most word-processing or desktop publishing (DTP)
programs, it still has its limitations. Its mode of operation
is ‘linear’, in the sense that it assembles a notional
column of text, which it then breaks at relevant points
to compose pages. However, a page of print (especially
one with two columns of print and tables or graphics of
arbitrary width) is a two-dimensional entity, and TEX is
unable to handle pages of arbitrary complexity.

Thirdly, it is intended to act as a text processor,
and thus the inclusion of graphics is not necessarily a
straightforward task. However, although there are some
DTP packages which can easily handle certain types
of graphical material, there is always a problem with
incorporating arbitrary graphics and text.

These limitations can be alleviated to some degree
by making use of a commercial text-formatting package
called The Publisher, which combines the power of TEX
with a user-friendly front end and screen previewing
facilities. This software package will be discussed in
greater detail below.

TEX—the program

It is useful to discuss some aspects of TEX that differ-
entiate it from most other DTP applications. Its very
inception is interesting. Donald Knuth, a professor of
computational science at Stanford University, was en-
gaged in writing a series of textbooks on programming,
and became frustrated by the large number of errors in
typeset galley proofs. He determined to write a program
that would enable him to perform his own typesetting
to the same high quality as encountered in commercial
bookwork, and that would be capable of handling com-
plex mathematical setting. TEX was the result. However,
as befits the computer scientist, the program that was
produced was designed to have widespread applications,
and, indeed, to act as a formatting ‘engine’ in subsequent
software. The program itself is therefore designed to
parse and tokenize an incoming text stream, and apply
to the various categories of tokens thus established any
rules that might later be applied — it performs no
specific formatting. The formatting rules are supplied
by a file that overlays the base program. This file
contains font definitions, initializations of variables and
a large number of macros which define the style rules
for formatting documents. Such a file is known as a
‘format’.* TEX is distributed with a format known as
‘plain’, and it is, strictly speaking, TEX + plain (or ‘plain
TEX’) that we use as our formatting program.

Plain TEX produces, as suggested by its title, a
fairly bland document style, but further macros can
be added to specify characteristics such as page size,
heading fonts, degree of paragraph indentation and other
style requirements. We are currently inviting authors
to contribute papers in plain TEX form, because it is
relatively easy for us to superimpose our typographical
style on top of such a file.

* In some installations, this file (or a modified binary image) is read
in at run time; in other cases it is incorporated into the executable
binary.

COMPUTERIZATION OF THE EDITORIAL OFFICE 7

One drawback of this approach is that every heading,
say, has to be marked up with specific style com-
mands. A more powerful approach is that of ‘structured
documentation’, where every structural element in a
document is marked up or tagged with a code that
indicates its logical function, rather than its typography.
The typography is assigned once and for all in some style
file or other initialization procedure. Another ‘format’,
called LATEX (Lamport, 1986), is usually distributed
with TEX, and allows for a TEX manuscript to be marked
up with such structural codes.

We do not currently use LATEX for the following
reasons:

1. The typographical conventions as established in
the distributed program are wholly inappropriate
for Acta papers and other documents we wish to
produce. Mechanisms exist for changing these con-
ventions, but it is complicated and time-consuming
to do this thoroughly. In any case, the changes
we will need to make (in TEX-specific terms) will
only become clear after we have undertaken more
experimentation with the simpler plain TEX format.

2. Although widespread, LATEX is not universally
available (or used) at TEX sites. Plain TEX is a
common denominator which we should always sup-
port, even if we choose also to accept LATEX
submissions.

Nevertheless, it is possible that eventual adoption of
LATEX or a format file written in-house and conforming
to LATEX-type conventions will prove fruitful.

Three full articles written in TEX were published in
1990 in Acta, Section A (Diamond, 1990a,b; Thomas,
1990). These were supplied by authors with considerable
experience of TEX. A considerable amount of editorial
time was invested in procedures to format these papers
in the journal house style, and the results were judged
to be satisfactory.

Some details of the program

We turn now to a brief account of the way in which TEX
works. Conceptually, the program assembles a vertical
list of rectangular boxes. These boxes may be considered
as lines of type, with each typographical character,
accent or symbol itself represented as a rectangular
box.* The boxes are ‘glued’ together—their distance
from each other is specified as a certain amount plus
or minus some tolerance, so the ‘glue’ is quite flexible.
When the length of the vertical list being accumulated
exceeds the target length of a page, the vertical list is
cut and the contents of a full page are ‘shipped out’,
or written to a file known as the DVI file. The criteria
for deciding where to make this cut are complicated:
many competing conditions must be satisfied that refer
to interline spacing, interword spacing, space above
and below paragraphs and around figures and tables.
The precise formatting rules are somewhat heuristic:
numerical values are given to various figures of merit
and a global optimization is attempted of all relevant

* Each such box has three independent dimensions — its width, height
above a baseline, and depth below the baseline. Adjacent boxes are
arranged with baselines all at the same height. This allows for a
proper treatment of letters with descenders—j, p, y etc.

figures of merit.† Many (in fact, ultimately all) the values
of such figures of merit are user-definable; however,
there are so many conditions that interconnect that it
is wise to make changes from the default values only
slowly and with much experimentation.

Complexity is added to the process by the fact that
the basic typographic building-block is considered to be
the paragraph, so that the interword spaces, placement
of characters and insertion of hyphens are done on a
paragraph-by-paragraph basis. The result of this is that
greater compositional balance can be achieved within
a paragraph than is the case with other systems. The
disadvantage is that small changes to a word or line
can affect the entire paragraph (though this is famil-
iar to practitioners of traditional typesetting), and the
optimization process is rather CPU intensive.

While it is formatting text, TEX considers characters
and symbols only as rectangular boxes. As mentioned
previously, each such box has three independent dimen-
sions (called ‘width’, ‘height’ and ‘depth’). But each
character also has associated with it a number of other
dimensions that determine its placement relative to other
characters. This set of values (usually about seven for an
ordinary alphabetic character, but nearly two dozen for
some mathematical symbols) is stored for each character
in a TFM (TEX font metrics) file. It is the large number
of independent placement dimensions that allows for the
highest quality in the setting of mathematics.

As mentioned above, the output from the program is
a DVI file which contains details of characters employed
together with precise instructions for their positioning.
The acronym DVI stands for ‘device independent’, and
reflects the fact that TEX has been designed to give
identical results on whatever system it is implemented.
However, the printing of the output is device dependent,
and requires two components: a device driver, which
translates the instructions in the DVI file to a form
understood by the output laser printer, phototypesetter or
even dot-matrix printer; and (usually) a set of pixel files
which contain bitmap representations of the characters
to be printed (recall that to the formatting program these
characters appear only as rectangular boxes).

The character fonts shipped with TEX were designed
by Knuth himself using the program METAFONT
(Knuth, 1986) which he wrote for this purpose. Since
they were generated originally for his textbook project,
they resemble the fonts already used by his printers,
and are very distinctive. This historical accident is
rather unfortunate, for although the TEX fonts are well
designed and not unattractive, they do not match the
fonts used in our journals (or indeed those used in most
academic book and journal publishing). In consequence,
the typesetting of material in the Times font we use is
a more complex business with TEX than it might have
been. This point will be taken up again below.

† As an example, scores are awarded to normal interword spaces,
and demerits are incurred if the normal space must be stretched
or shrunk to fit words into a line. However, if consecutive lines
end with a hyphen, another numerical penalty is incurred. Thus
the interword spacing is adjusted to give a ‘best’ value; but if the
penalties for end-of-line hyphens are high enough, the interword
spacing may be changed away from its ‘best’ value so that the
overall score is optimized.

8 COMPUTERIZATION OF THE EDITORIAL OFFICE

Output devices: PostScript

In the discussion on TEX, emphasis has been placed on
the device-independent nature of the formatter. Device
dependence enters, however, when the actual printing
of the formatted document must be done. Output device
drivers for TEX exist for a surprisingly wide variety of
printing devices. This means that an author can submit
a TEX file with an accompanying printout which he has
made on, say, a dot-matrix printer. If we process his TEX
file and output it to our laser printer, the line breaks,
equation layouts and so forth should look the same (but
the overall appearance of the document will be improved
owing to the laser printer’s higher resolution). In general,
however, graphics cannot be reproduced on different
types of equipment.

The laser printers we have most interest in con-
tain an interpreter for the page description language
PostScript (Adobe Systems Inc., 1985a,b, 1988). This
is a stack-based programming language which is de-
signed specifically to relate graphics elements (including
alphanumeric characters) on a page; however, it has
sufficient arithmetic and logical operations to act as a
general-purpose programming tool. One of the window-
ing systems (NeWS) supported on our SUN workstations
is written in an extended version of PostScript.

The great attraction of PostScript is that it gives
(essentially) a device-independent description of a page.*

Hence a PostScript file printed on our laser printer will
produce identical results when printed on a phototype-
setter that includes the appropriate software (except that
the resolution of the output will be higher). Thus we can
fine-tune a document in the office and know exactly how
it will appear when typeset — line breaks, hyphenation
and so on will all be reproduced precisely.

A word of caution may be in order here. Although
PostScript is a full programming language and can be
used to format documents,† most applications that claim
to support PostScript in fact use it solely to describe the
final output. Thus a typical PostScript file, as produced
by, say, Microsoft WORD, is no more than an electronic
representation of a printed page. Although we could
easily print the page described by such a file, we cannot
in general easily modify it to change the page format.
Hence, PostScript itself is not a useful medium for
transmitting text unless that text is already formatted
precisely in its final form. PostScript files describing line
illustrations, however, are potentially useful, for the only
editing normally required on artwork is re-sizing, which
can (usually) be achieved in a straightforward manner
with PostScript.

Two criticisms are generally made of PostScript —
that it is slow, and that it generates excessively large
files. There is some truth in both these statements, but
they require a certain amount of investigation. The size
of PostScript files is due to three main factors:
1. Because it is interpreted within the printer, Post-

Script is sent as ‘source code’ in ASCII format.
A binary representation would be more compact.

* The exception to this is that half-toning and screening functions do
require specific knowledge of the printing device.

† This is what we do when producing annual indexes, for instance;
a PostScript program decides where to break the text into columns
or start a new page.

However, the readable ASCII form does allow edit-
ing of files from various sources, and extracting
portions of code for use in other applications. This
is useful. The point is also made that the names
of the PostScript operators are excessively long.
This is true enough (cleartomark, countexecstack,
currenthsbcolor . . .), but any of them can be
assigned any arbitrary user-defined string as needed.

2. A typical PostScript file will have a long prologue
section defining and initializing entities that will
appear in the page description part of the file.
This is a fixed overhead that can make description
files for small documents disproportionately large.
For instance, one application that we use takes a
file containing less than 400 bytes and generates a
PostScript file some 14 kB long (35 times bigger).
However, the overhead diminishes in relative terms
as the file size increases: the same application gen-
erates a 200 kB PostScript file from a 99 kB input
(factor of 2 increase).

3. The PostScript interpreter is responsible for raster-
ization of the page in memory (i.e. its translation
from a conceptual model of line segments, curves
and filled spaces to a set of instructions to a laser
to print or not print 1/300" 1/300" pixels). Where
this mechanism is followed relatively compact files
can be generated. However, where the rasterization
is done elsewhere, in the application that generates
the PostScript file, the file must include the resulting
bitmaps (plus perhaps instructions on how to handle
the bitmap). This obviously increases the file size.
Consider an extreme example: an instruction to draw
an 8" diameter circle on a page could be written in
about 60 bytes of PostScript code. A hypothetical
scanning procedure which uses one bit to indicate
the state of each pixel would require 720 kB to
describe the same page! Of course, real applica-
tions rarely show so extreme a disparity. However,
typographical applications which use fonts that are
not resident in the PostScript device incur a large
overhead as they need to download character de-
scriptions; and graphics applications that produce
raster rather than vector output can also lead to large
files.

The other point mentioned above, that PostScript
is slow, is related to these considerations. Where a
file contains a lengthy prologue re-defining many of
the original PostScript operations, or where there are
extensive bitmaps, processing is much slower than when
only resident PostScript operators and fonts are used.

In any case ‘slowness’ is a relative concept. Our
PostScript applications generally produce publication-
quality output from a laser printer faster than our old
line printer used to generate barely-legible draft listings!

TEX and PostScript

Both TEX and PostScript are de facto standards in the
sense that they are implemented identically on a range
of hardware platforms and under different operating
systems. However, they are programming tools, so that,
while their implementation is standardized, their ap-
plications are not. In particular, there is no standard
way in which TEX handles the resident PostScript fonts
that are so useful to us—both because they resemble

COMPUTERIZATION OF THE EDITORIAL OFFICE 9

a �
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Fig. 5 Comparison between resident PostScript and Computer Mod-
ern typefaces. The top line shows a lower-case ‘a’ in Times and
Computer Modern roman 17pt. The Times roman and italic and
Computer Modern roman and text italic alphabets and numeral sets
are displayed. Note in particular the different weights of the two fonts.
The Times font appears to print darker; it is also taller and narrower.

more closely the fonts we already use, and because they
give a more compact and resolution-independent output
file. Figure 5 illustrates the differences between the two
classes of font.

It has already been mentioned that the family of fonts
distributed with TEX (known as Computer Modern) are
described by a large number of dimensional parameters
in order to allow complex and high-precision positioning
of characters in mathematical expressions. The use of
Times fonts in mathematical setting would require an
output driver program that would allow the PostScript
fonts to be modified to include these extra dimensions,
and perhaps also some modification of the shapes of
letters (for example, an italic j as used in running
text is too deep for use as a subscripted character).
Furthermore, characters are referred to by TEX in terms
of their numeric position within a font table. Characters
are differently arranged in the PostScript and Com-
puter Modern fonts. There are two ways of making the
two sets of fonts compatible—rewrite the procedures
whereby TEX identifies any desired character to reflect
the different location in the PostScript font; or rearrange
the position of PostScript characters so that they occupy
(as far as is possible) the same positions in the font
tables as the Computer Modern characters. This latter
procedure can be undertaken by a suitable output driver.
We do have at least one output program (known as
dvitps) which has the potential to allow all these changes,
and we have already used it to good effect in construct-
ing caps-and-small-caps fonts. However, a great deal of
labour would be involved in making all the necessary
changes to the PostScript fonts to allow them to be
used in mathematical work. In consequence, we shall for
some time follow the convention that Computer Modern
characters will appear in mathematics. Aesthetically, this
is not an ideal solution. However, it is not at present
considered worth the effort that would be involved to
do otherwise. This compromise has also been adopted
by other publishers and applications programs.

One point that might usefully be made here is that
the Computer Modern characters are downloaded to the
printer as bitmaps. We have the program METAFONT
that originally generated these fonts, and this gives us the
ability to generate high-resolution (currently 1200 dpi)
characters to meet the requirements of phototypesetters
or other output devices.

Although dvitps is a powerful program, we may find
ourselves unable to exercise its full potential if we
wish to produce output that is exactly the same as that

generated by The Publisher (of which more later). Work
is in hand to assess the compatibility of the two output
drivers.

The Publisher

Several references have already been made to this pro-
gram, which is supplied by ArborText Inc. of Ann Arbor,
Michigan, USA (see Figure 6). This is an integrated
document formatter, table and equation editor, vector
and raster graphics processor with on-screen previewer.
Its ‘engine’ is TEX, and it is able to import TEX and
LATEX documents and preview them. However, it also
operates in a mode that allows input text to be ‘tagged’
by iconic symbols that store formatting information as
‘style sheets’. The input window during this mode of
operation is illustrated in Figure 7. The style associated
with each such symbol can be modified globally, or on
each local occurrence of the symbol. Manipulation of
these symbols is by mouse and pull-down menu, and the
user need never know that he is invoking TEX. Equations
can be entered in a separate window which supplies an
accurate representation of the result as the user enters
material—in other words, this equation editor works in
WYSIWYG mode (Figure 8). A similar type of window
can be used for entry of tabular data.

Fig. 6 The Publisher startup panel. A window appears offering
various styles of document that may be processed. As house styles
for various types of papers are encoded in The Publisher format, these
will be added to the menu.

10 COMPUTERIZATION OF THE EDITORIAL OFFICE

Fig. 7 The appearance of the input (edit) window to The Publisher.
This indicates how the present document was prepared. Tags for
various structural elements may be modified globally or locally. The
edit window gives an indication of the appearance of the text as it
is input, but a separate Preview option must be invoked to visualize
the final page.

Fig. 8 The equation editor for The Publisher. Equations of great
complexity may be constructed in this WYSIWYG fashion; but if
this does not suffice, native TEX code can also be introduced to obtain
extremely high precision in formatting.

We may list the main attractions of this package thus:
1. Its in-built formatting macros are fairly robust and

are very well developed. It is notoriously difficult
to compose multi-column pages with inserts in
TEX, and one of our long-term projects will be to
investigate the possibility of writing TEX macros to
do this. The Publisher achieves multi-column page
makeup very well (though not always perfectly).
The choice of both global and local styles for
document elements is also very useful for fine-
tuning page layout.

2. The ability to incorporate external TEX files allows
us to make immediate and direct use of author-
supplied TEX . While such a file must still be edited
as a TEX file (that is, the iconic tags and associated
style sheets cannot be applied) equations and tables
can be composed in the WYSIWYG editors and
then inserted into the TEX document.

3. The mechanism of style sheets allows a uniform
style to be applied to any document. This will
provide a comfortable way of ensuring that all
papers conform to a single set of style rules.

4. The package can translate a LATEX file into a form
that can be manipulated with tags. That is, a LATEX
file can either be read in and stored, still as LATEX
source, and consequently edited and previewed; or it
can be transformed into a ‘Publisher’ document that
may be modified in a quasi-WYSIWYG fashion.
This will become a very powerful feature in the
future, as we develop our own LATEX style rules.

5. Output is in PostScript, and there are efficient mech-
anisms for handling PostScript graphics. By default,
The Publisher uses PostScript resident fonts for text
and Computer Modern fonts for mathematics—this
is the compromise position discussed above.

6. The Publisher can also input or output SGML files.
This format (‘Standard Generalized Markup Lan-
guage’) is a standard developed within the print-
ing community for compatibility between electronic
documents (International Standards Organization,
1986). In principle, an SGML file generated in some
quite different application could be read into The
Publisher and manipulated using the local software.
We have not yet any practical experience of how
well this will work; but it seems to be sensible to
conform to accepted standards wherever possible.

We have also a set of filters which claim to translate
various word-processor formats to a format compatible
with The Publisher (in fact, into WordPerfect form,
which The Publisher can import directly). Our experi-
ence so far with these has been rather disappointing. It
is often the case that such translators are inefficient (the
basic models of the document used by different word-
processors may be mutually incompatible). We find that
text is in general preserved (but text alone can usually
be saved in ASCII output files from word-processors).
Non-text symbols, mathematics and table alignments are
usually not translated, and it is just these features that
would be of most use.

Import of word-processing files

It is clear that the ability to submit via diskette or e-
mail the output from common word-processing packages
would be welcomed by many authors. This is a possible

COMPUTERIZATION OF THE EDITORIAL OFFICE 11

development that we keep under review. At present,
our priority is to consolidate the preparation of papers
in-house by TEX (as plain TEX or via The Publisher),
with the consequent ability to accept TEX contributions
from authors. When this has been achieved, we shall
look in more detail at import of other files. It is likely
that the most fruitful approach will be to translate
other file formats to a Publisher document, partly to
provide a single system that will be familiar to all
staff, partly because few word-processing packages are
sufficiently powerful to meet the style requirements of
IUCr journals.

Some comments on this have already been made
in the earlier discussion of The Publisher package.
The Publisher itself can import and translate where
necessary files generated by TEX and LATEX, troff,
WordPerfect and from SGML applications. We have a
program available to translate into LATEX from Scribe,
and we have a little experience with handling IBM
Script documents. The Filtrix suite of translators con-
verts files in Interleaf, DisplayWrite, Microsoft WORD,
SunWrite, WordStar, XyWrite and a few other formats to
WordPerfect (and thence to Publisher format). We find
that these translations are reasonably good at preserving
text; however, the formatting instructions are often lost
altogether, or mis-translated. Although this is of some
use (the text of a paper need not be entered manually)
the need to introduce formatting commands by hand can
cause processing of a document to consume a great deal
of editorial time. In any case, the translator may not be
able to cope with different versions of word-processing
programs. Hence, at present, there appears to be no great
advantage to us in receiving a word-processed file as
opposed to an ASCII file containing the desired text and
a hard copy manuscript.

This conclusion is not presented out of any desire
to be negative. We shall continue to review the matter,
acquire further translators where possible, and consider
(in future) writing our own translators. We shall certainly
be happy to experiment with large contributions where
the trouble of translation and modification of the input
file will clearly offer savings over a more traditional
approach. It may also turn out to be the case that, when
we have developed detailed styling rules for the journals
within The Publisher, portions of word-processed text
can be cut and pasted into The Publisher without the
need for further formatting.

V. The timetable for progress
This document has reported at some length on the
technical aspects of the computing facilities within the
Chester office. Development is proceeding along many
fronts almost simultaneously, and the only way to guar-
antee that this is done productively is to work to a
(rough) schedule of priorities. The main thrust of our
activities over the past year or so has been to enable
structural papers to be handled in the CIF format, and our
priority is now to transform the prototype procedures we
have been developing for this purpose into a production
model. Our (informal) timetable for this is summarized
below:
• Extraction from CIF file of data for checking and

conversion to suitable formats for input to various
checking programs (1 November).

• Conversion of data on a hard-copy pro forma into a
CIF (1 November).

• Conversion of data in a CIF file into a TEX-encoded
file for production of hard-copy Acta paper (1 Jan-
uary).

• Assess workload (1 January).
• Finalize design of hard-copy (and electronic) pro

forma (1 December).
• Finalize format of paper (1 December).
• Arrange TEX training course.
• Develop e-mail handling procedures (1 February).
• Develop housekeeping procedures (1 February).
• Publish in Acta:

Editorial
Submission instructions for CIF-type submis-
sions + examples
Full Notes for Authors
Deadline and policy of Acta B versus Acta C.

(1 March).
This unofficial schedule is, of course, subject to

change as the various factors involved interact with each
other. Nevertheless, we are currently maintaining the
schedule.

Beyond this six-month period, we see the need for
the following matters to be addressed:
1. Development of procedures to allow authors to

submit their favourite word-processor files.
2. Development of an IUCr LATEX format and effi-

cient handling of author-generated TEX files.
3. Rationalization of the checking procedures to allow

routine and correct structures to be handled in a
more automatic way.

4. Development of a service providing checked CIFs
direct to Databases.

5. Development of a service to other journal publishers
involving the structural checking of CIF-based data.

6. Complete overhaul of the ‘journal housekeeping’
software. This would probably involve investment
in a system that is more portable than the current
UX-BASIC-based one. It would also be more pow-
erful, and should interact directly wherever possible
with CIFs and electronic manuscripts to reduce
manual keyboarding.

7. Possible development of a package which we could
distribute that generates CIFs, reads and checks
them, visualizes structures and provides other means
of handling the data contained in these files.

8. Development of techniques for handling half-tone
graphics in PostScript.

There is no particular order in the way these pos-
sibilities have been listed, and no attempt to suggest a
timetable for approaching them. These are matters which
will need to be considered by the officers of the Union
on a continuing basis.

References

Adobe Systems Inc. (1985a). POSTSCRIPT Language Reference
Manual. Reading, MA: Addison-Wesley.

Adobe Systems Inc. (1985b). POSTSCRIPT Language Tutorial
and Cookbook. Reading, MA: Addison-Wesley.

Adobe Systems Inc. (1988). POSTSCRIPT Language Program
Design. Reading, MA: Addison-Wesley.

ALLEN, F.H., KENNARD, O., MOTHERWELL, W.D.S.,
TOWN, W.G., WATSON, D.G., SCOTT, T.J. & LARSON,
A.C. (1974). J. Appl. Cryst. 7, 73–78.

12 COMPUTERIZATION OF THE EDITORIAL OFFICE

BURZLAFF, H. & ZIMMERMANN, H. (1985). Z. Kristal-
logr. 170, 241–246.

CRUZ, F. DA (1987). KERMIT: A File Transfer Protocol.
Bedford, MA: Digital Press.

DIAMOND, R. (1990a). Acta Cryst. A46, 423.
DIAMOND, R. (1990b). Acta Cryst. A46, 425–435.
GABE, E.J., LE PAGE, Y., CHARLAND, J.-P., LEE, F.L. &

WHITE, P.S. (1989). J. Appl. Cryst. 22, 384–387.
HALL, S.R. & STEWART, J.M. (1990). Eds. XTAL3.0 Refer-

ence Manual. Univs. of Western Australia and Maryland.
HIMES, V.L. & MIGHELL, A.D. (1987). Acta Cryst. A43,

375–384.
International Standards Organization (1986). Information Pro-

cessing—Text and Office Systems—Standard Generalized
Markup Language (SGML). ISO 8879-1986. Geneva: In-
ternational Standards Organization.

KNUTH, D.E. (1984). The TEXbook. Reading, MA: Addison-
Wesley.

KNUTH, D.E. (1986). The METAFONTbook. Reading, MA:
Addison-Wesley.

LAMPORT, L. (1986). LATEX. A Document Preparation Sys-
tem. Reading, MA: Addison-Wesley.

LAWTON, S.L. & JACOBSON, R.A. (1965). The Reduced
Cell and its Crystallographic Applications. USAEC R&D
Report IS-1141.

LE PAGE, Y. (1982). J. Appl. Cryst. 15, 255–259.
LE PAGE, Y. (1988). J. Appl. Cryst. 21, 983–984.
MIGHELL, A.D., HUBBARD, C.R. & STALICK, J.K. (1981).

NBS*AIDS80: A FORTRAN Program for Crystallographic
Data Evaluation. NBS Tech. Note 1141.

MUGNOLI, A. (1985). J. Appl. Cryst. 18, 183–184.
NARDELLI, M. (1983). Comput. Chem. 7, 95–98.
SPEK, A.L. (1988). J. Appl. Cryst. 21, 578–579.
THOMAS, D.J. (1990). Acta Cryst. A46, 321–343.
UGLIENGO, P., BORZANI, Y. & VITERBO, D. (1988). J.

Appl. Cryst. 21, 75.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

