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1 Completion of the algebraic approach for

x-ray scattering

It has already been anticipated that, in the case of x-ray scattering, difficul-
ties a-c) reported at the end of §2 were fully removed in papers I and II.
In reviewing these results we shall reformulate some of them so as to make
their generalization to the neutron case possible. Besides, it should also be
stressed that some aspects of this reformulation are original. In this respect
we first observe that x-ray and neutron scattering can be presented in a uni-
fied way by using some notions of elementary Quantum Mechanics. In fact,
in appendix A we show that the subtracted intensities, defined by (I-16), and
the scattering density of the infinitely resolved Patterson map, defined by (I-
17), are two different representations of a single hermitian operator, denoted
by Q, within an N̄ -dimensional Hilbert space H(N̄ ). More definitely, one
has

Ih−k = 〈k|Q|h〉, h,k ∈ Z3, (1)

νiδi,j = 〈�δi|Q|�δj〉, i, j = 1, . . . , N̄ . (2)

Here |h〉 and |k〉 are two vectors of the Goedkoop lattice G(N̄ ) that is now
defined as consisting of the vectors

|h〉 ≡
N̄∑

j=1

e−i2πh·�δj |�δj〉, h ∈ Z3. (3)

where the vectors |�δj〉, with j = 1, . . . , N̄ , form a complete orthonormal basis

of H(N̄ ). Moreover they are the eigenvectors of the position operator �R with
eigenvalues equal to the positions of the N̄ ”charges” present in (I-17), since
they obey to

�R|�δj〉 = �δj|�δj〉, j = 1, . . . , N̄ . (4)

Eq (3) shows that the vectors of G(N̄ ) only depend on the positions of the
charges and are independent on the latter values. It is stressed that this
property holds true both for x-ray and for neutron scattering. The vector
lattice G(N̄ ) contains N̄ linearly independent vectors due to the property
shown in appendix A of I. Our first task is to single out in G(N̄ ) a set of N̄
linearly independent vectors. If the �δjs were known, the task would be very

simple. In fact, considering the components of �δj , one has �δj = (xj , yj, zj).
We denote the distinct xj values as x̄ı̂ with ı̂ = 1, . . . , M . The distinct yj

values of the �δjs that have xj equal to a particular x̄ı̂ are denoted by ȳı̂,ĵ and

the different zj values of the �δjs having their first two components equal to
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a given pair (x̄ı̂, ȳı̂,ĵ) by z̄ı̂,ĵ,�̂. For a fixed ı̂, index ĵ in ȳı̂,ĵ will run between
1 and µı̂, µı̂ being a integer greater than zero and, similarly, for a fixed pair
(̂ı, ĵ) with 1 ≤ ĵ ≤ µı̂, index �̂ in z̄ı̂,ĵ,�̂ will run between 1 and µı̂,ĵ with µı̂,ĵ

integer and such that µı̂,ĵ ≥ 1. In this way, we have the bijective mapping

{�δj|j = 1, . . . , N̄ } ↔ {(x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂) | ı̂ = 1, . . . , M, ĵ = 1, . . . , µı̂,

�̂ = 1, . . . , µı̂,ĵ} (5)

that can also be seen as a bijective mapping of the integer set {1, . . . , N̄ }
onto the subset I of Z3 defined as

I ≡ {(̂ı, ĵ, �̂)|̂ı = 1, . . . , M, ĵ = 1, . . . , µı̂, �̂ = 1, . . . , µı̂,ĵ} (6)

so that the µı̂,ĵs obey to
M∑
ı̂=1

µi∑
ĵ=1

µı̂,ĵ = N̄ . (7)

I can also be identified as a subset of the reciprocal lattice. In particular, if
we translate I by (−1,−1,−1), we obtain the set of reflections

Bc∗b∗a∗ ≡ {(h1, h2, h3)
∣∣∣ h1 = 0, . . . , (M − 1), h2 = 0, . . . , (µh1+1 − 1),

h3 = 0, . . . , (µh1+1,h2+1 − 1)} (8)

where subscript c∗b∗a∗ on the lhs is a reminder of the fact that we considered
first the different components of the �δj along a, then those along b and lastly
along c. The vectors of G(N̄ ) associated to these reflections are linearly
independent. This important property is proven in Appendix B. It implies
that any vector |h〉 of G(N̄ ) can be written as

|h〉 =
∑

hl∈Bc∗b∗a∗
αh,hl

|hl〉, (9)

and, by Eq(1), that

Ih = 〈0|Q|h〉 =
∑

hl∈B(a∗,b∗,c∗)

αh,hl
〈0|Q|hl〉 =

∑

hl∈B(a∗,b∗,c∗)

αh,hl
Ihl

. (10)

Since the vectors of the present Goedkoop lattice do not depend on the
charges, the same property applies to the coefficients present in linear com-
binations (9) and (10) and, more generally, in any linear relation originated

by a set of linearly dependent vectors. Unfortunately the �δjs are the un-
knowns of our problem. Thus set (9) and any other set of linearly dependent
reflections must be singled from the knowledge of a convenient set of Ih
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values. In § 2.2 above Eq(I-20) we already mentioned a procedure able to
ascertain whether a set of vectors is linearly independent or not. This proce-
dure is a particular case of a more general mathematical property: consider
a set BM of M vectors of a Hilbert space and the matrix elements 〈hm|A|hn〉
of a Hermitian positive-definite operator A between any pair of two vectors
of BM , then the vectors of BM are linearly independent or dependent de-
pending on whether det(A) > 0 or det(A) = 0, respectively. [Note that the
positiveness of A implies that the inequality det(A) < 0 never occurs.] In the
case of x-ray scattering, according to (2) the operator Q is a positive-definite
operator and, according to (1), the matrix elements of Q are the subtracted
intensities. In this way, Eqs (I-20)-(I-28) are also valid in the present case
provided |h〉 is interpreted as a vector defined according to (3) and the Fhs
are substituted with the Ihs. In order to isolate the set Bc∗b∗a∗ we proceed as
follows. We start with the reflection set containing the only reflection h1 = 0,
i.e. B1 ≡ {h1}. Then we enlarge B1 to the set B2 ≡ {h1,h2} obtained by
”adding” to B1 the next reflection h2 = (1, 0, 0) lying on the positive half-axis
a∗. The matrix elements of Q between the vectors determined by B2 is the
(2 × 2) KH matrix (D2) having its (i, j)th element equal 〈hi|Q|hj〉 = Ihj−hi

with i, j = 1, 2. If det(D2) > 0, we go on with the described enlargement
procedure. The dimension of G(N̄ ) is finite and therefore after, say, (m + 1)
steps we must find a KH matrix (Dm+1) such that det(Dm+1) = 0. At this
point we shall say to have found a KH zero since we have found a KH ma-
trix with determinant equal to zero. We conclude that the vector |hm+1〉
associated to last added reflection hm+1 = (m, 0, 0) is linearly dependent on
|h1〉, . . . , |hm〉. Besides, from (3.7) we also obtain that M = m and in this
way M is determined. Furthermore, the ξ̄ı̂ [see Eq (36)] are the roots of the
polynomial equation obtained adapting (I-28) and (I-22) to the present case,
namely

xM −
M−1∑
i=0

αM−1−ix
i = 0 (11)

with

αi =
M∑

j=1

D−1
M ;i+1,jI(M+1−j,0,0), i = 0, . . . , M − 1. (12)

The roots of (11) determine the ξ̄ı̂s that in turn determine the x̄ı̂s by (36).
The vectors |x̄ı̂, h2, h3〉 are given from Eq (41) and one finds

〈x̄ı̂, h
′
2, h

′
3|Q|x̄ı̂, h2, h3〉 =

M−1∑
h1,h′

1=0

V−1
M ;̂ı,h′

1
(ξ̄)V−1

M ;̂ı,h1
(ξ̄)〈h′

1, h
′
2, h

′
3|Q|h1, h2, h3〉

=
M−1∑

h1,h′
1=0

V−1
M ;̂ı,h′

1
(ξ̄)V−1

M ;̂ı,h1
(ξ̄)I(h1−h′

1,h2−h′
2,h3−h′

3).(13)
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It is stressed that the rhs is known in terms of quantities that are either ex-
perimentally known [the I(h1−h′

1,h2−h′
2,h3−h′

3)s] or determined at the previous
step [V−1

M ;̂ı,h1
(ξ̄) being the (̂ı, h1)th element of the inverse of matrix (40)]. In

the previous equation we set h3 = h′
3 = 0 and we put

(Dı̂,m)h′
2,h2 ≡ 〈x̄ı̂, h

′
2, 0|Q|x̄ı̂, h2, 0〉

=
M−1∑

h1,h′
1=0

V−1
M ;̂ı,h′

1
(ξ̄)V−1

M ;̂ı,h1
(ξ̄)I(h1−h′

1,h2−h′
2,0), (14)

since we let h2 and h′
2 vary over (0, . . . , m−1) so as the matrix elements of Q

in the first row are the matrix elements of an (m×m) matrix denoted as (Dı̂,m)
where subscript ı̂ is a reminder of the first argument x̄ı̂ of the involved vectors.
The operator Q being positive definite, the determinant of (Dı̂,m) will be
positive unless the considered vectors |x̄ı̂, h2, 0〉 with h2 = 0, . . . , (m− 1) are
linearly dependent. Similarly to the case just described, one start with m = 1
and, as far as det(Dı̂,m) > 0, one increases m step by step by one till finding
det(Dı̂,m) = 0 that will still be called KH zero referred to matrices (Dı̂,.). In
this way one determines the value of µı̂ that will be equal to m and |x̄ı̂, m, 0〉
can be written as

|x̄ı̂, µı̂, 0〉 =
µı̂−1∑
h2=0

αı̂,h2|x̄ı̂, h2, 0〉, ı̂ = 1, . . . , M. (15)

From this equation follows that

〈x̄ı̂, h
′
2, 0|Q|x̄ı̂, µı̂, 0〉 =

µı̂−1∑
h2=0

αı̂,h2〈x̄ı̂, h
′
2, 0|Q|x̄ı̂, h2, 0〉,

ı̂ = 1, . . . , M, h′
2 = 0, . . . , µı̂ − 1,

that, by (14), becomes

(Dı̂,µı̂+1)h′
2,µı̂

=
µı̂−1∑
h2=0

(Dı̂,µı̂
)h′

2,h2αı̂,h2,

ı̂ = 1, . . . , M, h′
2 = 0, . . . , µı̂ − 1.

The solution of this system reads

αı̂,h2 =
µı̂−1∑
h′

2=0

(D−1
ı̂,µı̂

)h2,h′
2(Dı̂,µı̂+1)h′

2,µı̂
, (16)

ı̂ = 1, . . . , M, h2 = 0, . . . , µı̂ − 1,
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and the coefficients determining the linear combination (15) are now known.
In order to get the polynomial equation whose roots determine η̄ı̂,ĵs we first
observe that the matrix element 〈x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,1|x̄ı̂, µı̂, 0〉 by (15) becomes

〈x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,1|x̄ı̂, µı̂, 0〉 =
µı̂−1∑
h2=0

αı̂,h2〈x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,1|x̄ı̂, h2, 0〉.

The scalar products here present are immediately evaluated by (37) and one
finds

η̄µı̂
ı̂,ĵ =

µı̂−1∑
h2=0

αı̂,h2 η̄
h2
ı̂,ĵ , (17)

ı̂ = 1, . . . , M, ĵ = 1, . . . , µı̂,ĵ.

Thus, fixed ı̂, the η̄ı̂,ĵs, for ĵ = 1, . . . , µı̂, are the roots of the same polynomial
equation of degree µı̂. The polynomial coefficients are given by Eq (16).
Hence, for each ı̂ value, the solutions of the polynomial Eq (17) determine the
η̄ı̂,hjs and, consequently, the ȳı̂,hjs associated to the x̄ı̂s, already determined
by solving Eq (11).
The determination of the µı̂,ĵs and the z̄ı̂,ĵ,�̂s proceeds similarly starting from
the vectors |x̄ı̂, ȳı̂,ĵ, h3〉s that are given by Eq (46), where the involved matrix
elements are know since the η̄ı̂,ĵs have been determined. The matrix elements
of the positive-definite operator Q between two of these vectors with ı̂ and ĵ
fixed are

〈x̄ı̂, ȳı̂,ĵ, h
′
3|Q|x̄ı̂, ȳı̂,ĵ, h3〉 =

µı̂−1∑
h′

2,h2=0

(
Vµı̂

−1(η̄)
)

ĵ,h′
2

(
Vµı̂

−1(η̄)
)

ĵ,h2

×

〈x̄ı̂, h2, h3|Q|x̄ı̂, h2, h3〉.
By Eq (13) this becomes

〈x̄ı̂, ȳı̂,ĵ, h
′
3|Q|x̄ı̂, ȳı̂,ĵ, h3〉 =

µı̂−1∑
h′

2,h2=0

(
Vµı̂

−1(η̄)
)

ĵ,h′
2

(
Vµı̂

−1(η̄)
)

ĵ,h2

× (18)

M−1∑
h1,h′

1=0

(
V−1

M (ξ̄)
)

ı̂,h′
1

(
V−1

M (ξ̄)
)

ı̂,h1

I(h1−h′
1,h2−h′

2,h3−h′
3)

that shows that the involved matrix elements of Q are now known. Similarly
to (14) we shall now put

(Dı̂,ĵ,m)h′
3,h3 ≡ 〈x̄ı̂, ȳı̂,ĵ, h

′
3|Q|x̄ı̂, ȳı̂,ĵ, h3〉, (19)

ı̂ = 1, . . . , M, ĵ = 1, . . . , µĵ,
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where h3 and h′
3 are assumed to run from 0 to m − 1. Again, fixed ı̂ and

ĵ, we start with m = 1, we evaluate det(Dı̂,ĵ,m) and if the determinant is
different from zero we increase m by 1. At a particular step, say m , of this
procedure we find a determinant equal to zero that is the KH zero relevant
to matrices (Dı̂,ĵ,.). Then we conclude that µı̂,ĵ = m and we can write

|x̄ı̂, ȳı̂,ĵ, µı̂,ĵ〉 =
µı̂,ĵ−1∑
h3=0

αı̂,ĵ,h3|x̄ı̂, ȳı̂,ĵ, h3〉 (20)

ı̂ = 1, . . . , M, ĵ = 1, . . . , µı̂.

The coefficients αı̂,ĵ,h3 here present are obtained by solving the system of
linear equations obtained considering the matrix elements of Q between the
vectors |x̄ı̂, ȳı̂,ĵ, h3〉, with h3 = 0, . . . , µı̂,ĵ − 1, and |x̄ı̂, ȳı̂,ĵ, µı̂,ĵ〉. In this way,
using (20) and definition (19), one finds

αı̂,ĵ,h3 =
µı̂,ĵ−1∑
h′

3=0

(D−1
ı̂,ĵ,µı̂,ĵ

)h3,h′
3(Dı̂,ĵ,µı̂,ĵ+1)h′

3,µı̂,ĵ

ı̂ = 1, . . . , M, ĵ = 1, . . . , µı̂. (21)

Finally the scalar product of (20) with |x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 yields

〈x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂|x̄ı̂, ȳı̂,ĵ, µı̂,ĵ〉 =
µı̂,ĵ−1∑
h3=0

αı̂,ĵ,h3〈x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂|x̄ı̂, ȳı̂,ĵ, h3〉

that, using (42) and (34), becomes

ζ̄
µı̂,ĵ

ĵ,ĵ,�̂
=

µı̂,ĵ−1∑
h3=0

αı̂,ĵ,h3 ζ̄
h3

ĵ,ĵ,�̂
, (22)

ı̂ = 1, . . . , M, ĵ = 1, . . . , µı̂, �̂ = 1, . . . , µı̂,ĵ.

For fixed ı̂ and ĵ values, these equations show that the ζ̄ĵ,ĵ,�̂ with �̂ = 1, . . . , µı̂,ĵ

are the roots of a polynomial equation of the µı̂,ĵth degree that is fully known
since its coefficients are given by (21). At this point, the determination of the
unknowns: M , µı̂, µı̂,ĵ, x̄ı̂, ȳı̂,ĵ and z̄ı̂,ĵ,�̂ is fully accomplished. Hence, from
(7) and (5) we conclude that the number of the scattering centres and their
spatial location have been determined. The determination of the charges νj

is now straightforward. To this aim it is sufficient to solve the linear system
of equations obtained considering Eq (I-16) for all the hs of the set Bc∗b∗a∗

defined by (8).
Once we have also determined the νjs all the quantities entering in the def-
inition (I-16) of subtracted intensities are known. It follows that Ih can be
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evaluated for any h and this implies that the full diffraction pattern can be
reconstructed from the knowledge of the subtracted intensities required to
single out the basic set of reflection Bc∗b∗a∗ . The reported procedure, able
to single out this set, is based on the search of the first singular matrices
(DM), (Dı̂,µı̂+1) [see Eq (14)] and (Dı̂,ĵ,µı̂,ĵ+1) [see Eq (19) and (18)]. The
expressions of these matrices show that it is necessary to know all the sub-
tracted intensities relevant to the reflections that are difference of any two
reflections that belong to set obtained obtained by ”adding” to Bc∗b∗a∗ all
the reflections that are nearest neighbour of its border and contained in the
first octant of reciprocal space.
In concluding this section we remark that the most important part of the
results first reported in § 2 of I have been obtained again by a different
procedure that directly applies to the 3D case and explicitly reports the
polynomial equations in a single variable that must be solved in order to
determine the positions of the ”charges”. On the contrary, we must refer to
I for the discussion of the iterative procedure that allows us to reconstruct
the full diffraction pattern from a complete set of reflections. It is also noted
that the basic set Bc∗b∗a∗ is different from those worked out in paper II. In
particular, it is not one of the basic sets with the smallest size and therefore
one should refer to II for the procedure that determines these sets.

2 The algebraic approach for neutron scat-

tering

In the previous section we stressed that the vectors forming the present Goed-
koop lattice are independent from the νjs and only depend on the positions of
the scattering centres. Hence a basic set of reflections preserves the property
of being a set containing the largest number of linearly independent reflec-
tions whatever the charge values. On the other hand, we also stressed that a
procedure able to single out a set of basic reflections must use experimentally
known quantities. In the case of x-ray scattering it has been possible to find
such a procedure because the observable subtracted intensities are the ma-
trix elements of the charge operator Q that is positive-definite, so that the
vanishing of the determinant of any (m×m) matrix with its elements equal
to those of Q between any pair of vectors associated to a set of m reflections
implies that the considered vectors are linearly dependent. This mathemati-
cal property can no longer be used in the case of neutron scattering because
the charge operator Q in general is not positive-definite due to the fact that
some νjs can be smaller than zero. Therefore, in order to extend the search
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procedure of a basic set to the case of neutron scattering, we must find a
positive definite operator whose matrix elements with respect to the |h〉s are
known in terms of the observed Ihs. To this aim, denote by Sobs the set of the
observed reflections and denote by S1 the largest subset of Sobs such that, for
any two reflections hr and hr′ of S1, it results that (hr −hr′) lies in Sobs. We
denote by N̄1 the number of reflections contained in S1. First let us assume
that S1 be large enough to contain a basic set (and the latter’s border) so
that N̄1 > N̄ . Consider now the linear operator1

QS1 ≡ Q
N̄1∑
r=1

|hr〉〈hr|Q. (23)

This operator is hermitian and positive definite. The first property is evident.
To show the second, we consider the expectation value of QS1 with respect
to an arbitrary vector |a〉 ∈ H(N̄ ). One finds that

〈a|QS1 |a〉 =
N̄1∑
r−1

∣∣∣〈a|Q|hr〉
∣∣∣2

This expectation value can be equal to zero either if Q|a〉( �= 0) is perpendic-
ular to all the |hr〉s, with r = 1, . . . , N̄1, or if Q|a〉 = 0. The first condition is
impossible because S1 is assumed to contain a basic set of vectors. We are left
with the condition Q|a〉 = 0. This implies that |a〉 is eigenvector of Q with
eigenvalue 0. But this condition is also impossible because the eigenvalues
of Q are all different from zero as it appears evident from Eq. (2). Hence,
〈a|QS1|a〉 > 0 whatever |a〉( �= 0) and the positivity of QS1 is proven. From
(23) follows that the matrix elements of QS1 with respect to the vectors of
the Goedkoop lattice are

〈h|QS1|k〉 =
N̄1∑
r=1

Ih−hrIhr−k.

If h,k ∈ S1, the matrix elements of QS1 are fully known and will be denoted
as

Jhl,hm ≡ 〈hl|QS1|hm〉 =
N̄1∑
r=1

Ihl−hrIhr−hm , l, m = 1, . . . , N̄1. (24)

[It is noted that the Jhl,hm’s are symmetric since they obey the relation
Jhl,hm = Jhm,hl

that follows from the Friedel property valid for the subtracted

1The introduction of this quantity is suggested by the ”tensorial” product used by Silva
& Navaza (1981) and Navaza & Navaza (1992).
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intensities, i.e. Ih = I−h.] At this point, the search of a basic set becomes
possible through the search of the KH zeros of the generalized KH matrices
having their elements dependent on the Jhl,hms. It will proceed by one of
the enlargement procedures described in the previous section or in § 5 of
II. Whatever the adopted procedure, the search of a basic set is complete if
and only if the final configuration of the found KH zeros is such to prevent
a further enlargement of the set. Should the set S1 be not large enough to
contain a basic set of reflections, this will be signaled by the fact that the
resulting set can still be enlarged. It should appear clear that the use of
QS1 is only necessary to locate the KH zeros and to determine N̄ , while the

remaining unknowns �δj and νj are determined as in § 4.

A Quantum mechanical formulation

By using some notions of elementary Quantum Mechanics we show here how
it is possible to introduce a finite-dimensional Hilbert space and, within the
latter, a lattice of vectors in such a way that the scattering density (I-17)
and the ”subtracted” intensities (I-16) are two different representations of a
single hermitian operator. This property holds true in both cases of x-ray
and neutron scattering2.
To this aim we recall that the position and momentum operator, respectively
denoted by �R and �P, have eigenvectors |r〉 and |p〉 whose eigenvalues r and
p span the full 3D space R3. Consider now the eigenvalues p equal to −2πh,
h being a triple of integers, and put |h) ≡ |−2πh〉. As h ranges over the
3D lattice Z3, the set of |h)’s defines a lattice of vectors lying within the
infinite-dimensional Hilbert space H spanned by the eigenvectors |p〉 or |r〉.
Introduce now the linear operator

Q ≡
N̄∑

ĵ=1

|�δĵ〉νĵ〈�δĵ|, (25)

where |�δĵ〉 is the eigenvector of �R with eigenvalue �δĵ equal to the position
vector of the ĵth scattering centre. Due to the property 〈r|r′〉 = δ(r − r′),
the matrix elements of Q with respect to the eigenvectors of �R are

〈r|Q|r′〉 = δ(r − r′)
N̄∑

ĵ=1

νĵδ(r− �δĵ) (26)

2In passing we observe that this approach is not a simple mathematical trick as it is
confirmed by the papers of Bethanis et al.(2002) and Ciccariello(2005).
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At the same time, the matrix elements of Q with respect to the lattice vectors
|h) are

(h|Q|h′) = (2π)−3
N̄∑

ĵ=1

νĵe
−i2π�δĵ·(h−h′), (27)

where we used the property that 〈p|r〉 = eip·r/(2π)3/2 and units such that
� = 1 (Messiah, 1959). Comparison of (26) with (I-17) shows that the
scattering density (I-17) coincides with the diagonal matrix elements of Q
(leaving aside the divergent factor related to the value δ(0) of the 1st Dirac
function). On the other hand, the comparison of (27) with (I-16) shows
that all the subtracted intensities (I-16) are (2π)3 times the matrix elements
of Q with respect to the lattice vectors |h). Moreover, Eq.(25) shows that
the ”charge density” operator Q is determined only by the N̄ eigenvectors
|�δ1〉, . . . , |�δN̄ 〉 of �R with eigenvalues equal to the positions of the N̄ scattering
centres, and by the N̄ real numbers ν1, . . . , νN̄ equal to the weights of the
scattering centres. Hence, we can restrict ourselves to the finite-dimensional
Hilbert space H(N̄ ) spanned by the vectors |�δ1〉, . . . , |�δN̄ 〉 and defined as

H(N̄ ) ≡
{
|v〉 =

N̄∑
j=1

αj |�δj〉
∣∣∣ α1, . . . , αN̄ ∈ C

}
.

Vectors |�δ1〉, . . . , |�δN̄ 〉 obey the orthonormality condition3

〈�δj′|�δj〉 = δj′,j, j, j′ = 1, . . . , N̄ (28)

as well as the completeness relation

N̄∑
j=1

|�δj〉〈�δj| = 1. (29)

In order to preserve the validity of (27), we still need to assume that H(N̄ )
contains a lattice of vectors |h〉 [not to be confused with |h) or with the

eigenvectors of �P , see the following Eq. (32)] defined by Eq (3). After taking

the scalar product of |h〉 with with |�δj′〉 one gets

〈�δj′|h〉 = e−i2πh·�δj′ , ∀h ∈ Z3, j′ = 1, 2, . . . , N̄ . (30)

From the above two relations it follows that vectors |h〉 are no longer orthog-
onal since from (3) and (28) one gets

〈h|h′〉 =
N̄∑

j=1

ei2π�δj ·(h−h′) = 〈h + m|h′ + m〉, ∀ h,h′,m ∈ Z3, (31)

3By so doing, the previous normalization 〈�δj′ |�δj〉 = δ(�δj′ − �δj) has been scaled to
〈�δj′ |�δj〉 = δj′,j.

11



with 〈h|h〉 = N̄ . This property is not surprising if one observes that |h〉 and
|h) are related as follows

|h〉 = (2π)3/2
N̄∑

j=1

|�δj〉〈�δj |h) (32)

so that |h〉 is the projection of |h)(∈ H) into H(N̄ ) and, therefore, it is no

longer an eigenvector of �P. It is straightforward to show by (3) and (28) that

〈h′|Q|h〉 =
N̄∑

j=1

νje
−i2π�δj ·(h′−h) = Ih′−h,

which coincides with (1). Thus, on the one hand, all the matrix elements
of Q with respect to the lattice of vectors |h〉 reproduce the full diffraction
pattern. On the other hand, the diagonal matrix elements of Q with respect
to the basis vectors |�δj〉 are the weights of the scattering density (I-17). In
this way, it has been shown that: both for X-ray and for neutron scattering
it can be introduced a finite-dimensional Hilbert space H(N̄ ) spanned by the

N̄ eigenvectors of �R associated to the position vectors of the N̄ scattering
centres; within H(N̄ ) it exists a G(N̄ ) vector lattice formed by the vectors
|h〉 defined by Eq. (3); it exists a hermitian linear operator Q whose matrix

elements with respect to the basis vectors |�δj〉 and to the vectors of G(N̄ )
yield all the weights of the scattering density and all the subtracted intensities
Ih, respectively.

B Linear independence of the reflection set

(8)

We prove now that the reflection of the set defined by Eq (8) are linearly
independent. To this aim, we start by observing that Eq (5) allows us to

write �δj as

|�δj〉 = |x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 (33)

and Eq (28) implies that

〈x̄ı̂′ , ȳı̂′,ĵ′, z̄ı̂′,ĵ′,�̂′|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 = δı̂′ ,̂ıδĵ′,ĵδ�̂′,�̂ (34)

Then, the generic vector |h〉 of G(N̄ ) can be written as

|h1, h2, h3〉 =
M∑
ı̂=1

µı̂∑
ĵ=1

µı̂,ĵ∑

�̂=1

ξ̄h1
ı̂ η̄h2

ı̂,ĵ ζ̄
h3

ı̂,ĵ,�̂
|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 (35)
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where the rhs follows from (3), (34), (35) and the following definitions

ξ̄ı̂ ≡ e−i2πx̄ı̂ , η̄ı̂,ĵ ≡ e−i2πȳı̂,ĵ , ζ̄ı̂,ĵ,�̂ ≡ e−i2πz̄
ı̂,ĵ,�̂ (36)

similar to (I-26). Putting

|x̄ı̂, h2, h3〉 ≡
µı̂∑

ĵ=1

µı̂,ĵ∑

�̂=1

η̄h2
ı̂,ĵ ζ̄

h3

ı̂,ĵ,�̂
|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 (37)

Eq (35) becomes

|h1, h2, h3〉 =
M∑
ı̂=1

ξ̄h1
ı̂ |x̄ı̂, h2, h2〉 (38)

The vectors |x̄ı̂, h2, h3〉 with h2 and h3 fixed and ı̂ = 1, . . . , M are linearly
independent because they are each other orthogonal since

〈x̄ı̂′ , h2, h3|x̄ı̂, h2, h3〉 =
µı̂′∑

ĵ′=1

µı̂′,ĵ′∑

�̂′=1

µı̂∑
ĵ=1

µı̂,ĵ∑

�̂=1

η̄−h2
ı̂′,ĵ′ ζ̄

−h3

ı̂′,ĵ′,�̂′ η̄
h2
ı̂,ĵ ζ̄

h3

ı̂,ĵ,�̂
× (39)

〈x̄ı̂′ , ȳı̂′,ĵ′, z̄ı̂′,ĵ′,�̂′|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 = δı̂′ ,̂ı

µı̂∑
ĵ=1

µı̂,ĵ,

where the last equality follows from (34). It follows that, fixed h2 and h3, the
M vectors |h1, h2, h3〉, with h1 = 0, 1, . . . , (M − 1), are linearly independent
because, on the basis of (38), they are related to the |x̄ı̂, h2, h3〉 by a non-

singular (M ×M) Vandermonde matrix
(
VM(ξ̄)

)
having its (h1, ı̂)th element

equal to (
VM(ξ̄)

)
h1 ,̂ı

≡ ξ̄h1
ı̂ = e−2iπx̄ı̂h1. (40)

[The non singularity of this matrix is ensured by the property that ξ̄1 �=
ξ̄2 . . . �= ξ̄M due to the facts that x̄1 �= . . . �= x̄M and 0 ≤ x̄ı̂ < 1 for
ı̂ = 1, . . . , M .] Hence, by inverting (38), one can write

|x̄ı̂, h2, h3〉 =
M−1∑
h1=0

(
V−1

M(ξ̄)
)

ı̂,h1

|h1, h2, h3〉. (41)

We apply now the same procedure to the vectors defined by (37). Putting

|x̄ı̂, ȳı̂,ĵ, h3〉 ≡
µı̂,ĵ∑

�̂=1

ζ̄h3

ı̂,ĵ,�̂
|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 (42)

vectors (37) can be written as

|x̄ı̂, h2, h3〉 ≡
µı̂∑

ĵ=1

η̄h2
ı̂,ĵ |x̄ı̂, ȳı̂,ĵ, h3〉. (43)
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Similarly to (39), the scalar products of two vectors (42) with the same h3

value yield

〈x̄ı̂′ , ȳı̂′,ĵ′, h3|x̄ı̂, ȳı̂,ĵ, h3〉 =

µı̂′,ĵ′∑

�̂′=1

µı̂,ĵ∑

�̂=1

ζ̄−h3

ı̂′,ĵ′,�̂′ ζ̄
h3

ı̂,ĵ,�̂
〈x̄ı̂′ , ȳı̂′,ĵ′, z̄ı̂′,ĵ′,�̂′|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉

= δı̂′ ,̂ıδĵ′,ĵµı̂,ĵ. (44)

Thus, at fixed ı̂ and h3, we have µı̂ linearly independent |x̄ı̂, ȳı̂,ĵ, h3〉 vectors.
If we let h2 range from 0 to (µı̂ − 1) in (43), one realizes that the resulting
(µı̂ − 1) vectors |x̄ı̂, h2, h3〉 [with ı̂ and h3 fixed] are related to the previous
vectors by a (µı̂ × µı̂) Vandermonde matrix with elements

(
Vµı̂

(η̄)
)

h2,ĵ
≡ η̄h2

ı̂,ĵ = e−2iπȳı̂,ĵh2. (45)

The involved η̄ı̂,ĵs being all different among themselves once ı̂ has been fixed,
the matrix is non-singular and (43) can be inverted to read

|x̄ı̂, ȳı̂,ĵ, h3〉 ≡
µı̂−1∑
h2=0

(
Vµı̂

−1(η̄)
)

ĵ,h2

|x̄ı̂, h2, h3〉. (46)

Similar considerations applied to Eq (42) show that the vectors |x̄ı̂, ȳı̂,ĵ, h3〉,
with h3 = 0, . . . , (µı̂,ĵ−1) and fixed ı̂ and ĵ, are linearly independent because
they are related to the µı̂,ĵ vectors present on the rhs of (42) by the (µı̂,ĵ×µı̂,ĵ)
Vandermonde matrix, with elements

(
Vµı̂,ĵ

(ζ̄)
)

h3,�̂
≡ ζ̄h3

ı̂,ĵ,�̂
= e−2iπz̄

ı̂,ĵ,�̂
h3 , (47)

which is non-singular because all the ζ̄ı̂,ĵ,�̂ are different among themselves for

�̂ = 1, . . . , µı̂,ĵ and ı̂ and ĵ fixed. Thus, (42) can be inverted to read

|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 =
µı̂,ĵ−1∑
h3=0

(
V−1

µı̂,ĵ
(ζ̄)

)
�̂,h3

|x̄ı̂, ȳı̂,ĵ, h3〉. (48)

We observe now that, if h belongs to the set defined by (8), |h〉 can be written
as

|h1, h2, h3〉 =
M∑
ı̂=1

µı̂∑
ĵ=1

µı̂,ĵ∑

�̂=1

(
VM(ξ̄)

)
h1 ,̂ı

(
Vµı̂

(η̄)
)

h2,ĵ
× (49)

(
Vµı̂,ĵ

(ζ̄)
)

h3,�̂
|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉,

14



that, due to the non-singularity of the involved matrices, can be inverted as

|x̄ı̂, ȳı̂,ĵ, z̄ı̂,ĵ,�̂〉 =
M−1∑
h1=0

µı̂−1∑
h2=0

µı̂,ĵ−1∑
h3=0

(
V−1

M (ξ̄)
)

ı̂,h1

× (50)

(
V−1

µı̂
(η̄)

)
ĵ,h2

(
V−1

µı̂,ĵ
(ζ̄)

)
�̂,h3

|h1, h2, h3〉.

In this way, the linear independence of the reflections of the set (8) is proven.
In passing, it is also noted that the determinant of the block-matrix relating
the rhs to the lhs of (49) has a simple algebraic expression (Cervellino &
Ciccariello, 2005).
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