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The following appendices from:

Molecular Crystal Global Phase Diagrams:

I. Method of Construction

Jonathan A. Mettes, J. Brandon Keith, and Richard B. McClurg

have been placed in the supplemental information repository to save space in the

printed version of the journal.

Appendix A.
Spherical Tensor Coupling

Equation (13) in Sec. 2.3. uses slightly different basis functions, couplings, and

normalizations than our references so a full derivation is presented here. To couple

{D`i
mini

, C`
m, D

`j
mjnj} where (Varshalovich et al., 1988)

D`
mn(ωi) = exp (−imαi) d`

mn(βi) exp (−inγi) (60)

d`
mn(βi) =

min(`+m,`−n)∑

k=max(0,m−n)

(−1)k

× [(` + m)! (`−m)! (` + n)! (`− n)!]1/2

k! (` + m− k)! (`− n− k)! (n−m + k)!

× [cos(βi/2)]2`+m−n−2k [sin(βi/2)]2k−m+n (61)

C`
m(Ωij) =

√
4π

2` + 1
Y `

m(Ωij), (62)

we first couple angular basis functions of molecules i and j

A
`(ij)
m(ij)

=
∑

mimj

C
`(ij)m(ij)

`imi,`jmj
D`i

mini
D

`j
mjnj (63)

where C
`(ij)m(ij)

`imi,`jmj
is a Clebsch-Gordan coefficient (Varshalovich et al., 1988). Coupling

A
`(ij)
m(ij)

to the C`
m(Ωij) and requiring the overall state to be a scalar W we obtain

W
ninj

`i``j
=

∑
mm(ij)

C00
` m,`(ij)m(ij)

A
`(ij)
m(ij)

C`
m (64)
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By definition the Clebsch-Gordan coefficient C`m
`1m1,`2m2

is zero unless m1 + m2 = m

so that m2 = −m1 if m = 0. It is also zero unless |`1 − `2| ≤ ` ≤ `1 + `2, and since

m1,2 ∈ {`1,2...−`1,2} this implies that `1 = `2. Thus C00
` m,`(ij)m(ij)

in Eq. (64) simplifies

to C00
`m,`m. With the identity (Varshalovich et al., 1988)

C00
`m,`m =

(−1)`+m

√
2` + 1

(65)

we have

W
ninj

`i``j
=

∑
mimmj

C`m
`imi,`jmj

(−1)`+m

√
2` + 1

D`i
mini

C`
mD

`j
mjnj (66)

Likewise using the identity (Varshalovich et al., 1988)

C`m
`imi,`jmj

= (−1)`i−`j−m
√

2` + 1
(

`i `j `
mi mj m

)
(67)

gives

W
ninj

`i``j
=

∑
mimmj

(−1)`i−`j+`

(
`i `j `
mi mj m

)
D`i

mini
C`

mD
`j
mjnj . (68)

To remove the phase factor one may exploit the mirror symmetry of the 3jm symbol

(
`i `j `
mi mj m

)
= (−1)`i+`j+`

(
`i ` `j

mi m mj

)
(69)

leaving

W
ninj

`i``j
=

∑
mimmj

(
`i ` `j

mi m mj

)
D`i

mini
C`

mD
`j
mjnj . (70)

Equation (70) gives basis functions W without any symmetry adaptation. They are

the starting point for construction of symmetry-adapted basis functions in Sec. 2.3..

Appendix B.
Projection Operators

Symmetries of the molecule and Wyckoff point of the crystal exist within D`i
mi,ni

simultaneously and can be obtained by applying projection operators (Bradley &
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Cracknell, 1972; Fassler & Stiefel, 1992; Fernando et al., 1994; Schmidt & Zdanska,

2000)

P τ
nτ nτ

=
√

dτ/|G|
∑

g∈G

Dτ∗
nτ nτ

(g) g (71)

where dτ is the dimension of the IR τ belonging to the group G of order |G|, Dτ is

the matrix onto which the IR maps g, and subsequent orthonormalization is occa-

sionally required. We have used a slightly different normalization which decreases the

computation in this orthonormalization. Acting upon the elements D`
mn gives

P τ
nτ nτ

◦D`
mn =

∑
n

D`
mnS`

nnτ
(72)

producing a linear combination with the symmetry of τ . The coefficients S`
nnτ

form a

sparse unitary matrix.

Appendix C.
Variational Mean Field Theory

To obtain the form of the fields hi that gives the optimum approximation to the

Helmholtz free energy, we use a variational approach and the Gibbs-Bogoliubov in-

equality (Girardeau & Mazo, 1974),

A ≤ Amf +
〈
V − V mf

〉
, (73)

where 〈· · · 〉 denotes the thermodynamic average over the mean field–weighted system

configurations. Re-expressing Eq. (73) in terms of the partition function via Eq. (2)

yields

Z ≥ Zmf exp
(
−

〈
V − V mf

〉
/kT

)
. (74)

To make this bound as tight as possible, we choose hi such that the right-hand side

of Eq. (74) is maximized with respect to each component of hi. This gives a set of

simultaneous equations for the fields with the one non–trivial solution

hi =
∑

j

Kij · 〈U j〉 . (75)
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Thus the associated mean field potential in Eq. (21) is given by

V mf/kT =
∑

ij

U i ·Kij · 〈U j〉 . (76)

Upon substitution of Eq. (21) into Eq. (10), Zor is separable, so that

Zor ≈ Zmf
or = zN

rot

∏

i

zi . (77)

Substituting Eqs. (20) and (22) into the Gibbs-Bogoliubov relation [Eq. (73)], the

variational Helmholtz free energy as

Aor ≤ Avar
or = −kT lnZmf

or −
kT

2

∑

ij

〈U i〉 ·Kij · 〈U j〉 (78)

as given in Section 2.4..

Appendix D.
Space Group Irreducible Representations

In the thermodynamic limit N →∞ a space group G consists of an infinite number

of Wigner-Seitz elements {φ|t} where φ is a rotation followed by a translation t.

Each space group possesses an invariant Abelian subgroup T , the group of primitive

translations ti = {ε|ti} where ε is the identity rotation. The representations of its IR’s

are eik·ti where k is a reciprocal space lattice vector which indexes all inequivalent

IR’s in the first Brillouin zone (Miller & Love, 1967; Zak et al., 1969; Bradley &

Cracknell, 1972; Kovalev et al., 1993; Tolédano & Dmitriev, 1996).

The set of rotations φ forms a group called the point group of the crystal Ĝ. Ap-

plying the operations of Ĝ to a given k1 transforms it to k2, . . . kn mod a reciprocal

lattice vector where n is the order of Ĝ. Some rotations in Ĝ leave k1 invariant and

so form Ĝ(k1), the point group of k1. The set of elements {φ|t} associated with ro-

tations in Ĝ(k1) forms G(k1), the space group of k1. The set of inequivalent vectors

in {k1, k2, . . . ,kn} generated by the application of Ĝ forms the star of k1 which we
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denote s. Each ki in s is an arm of the star. If a vector k1 terminates at a point

such that other vectors k2 terminating in the neighborhood of that point have point

groups Ĝ(k2) ⊂ Ĝ(k1) the point of termination of k1 is a high-symmetry point in the

Brillouin zone. Analogous definitions follow for high-symmetry lines/planes.

High-symmetry point IR’s (and occasionally those of lines) play a pivotal role in

phase transitions so we discuss their construction in some detail. The IR’s of G(k1)

map elements g ∈ G(k) to matrices Dk1 indexed by a k-vector and IR’s of G to

matrices Ds indexed by a star. Although G(k1) is a space group like G, its IR’s are

simpler and finite in number because they leave k1 invariant mod a reciprocal lattice

vector. The Ds can be constructed from the Dk1 in two cases: (1) k1 is any vector

inside the Brillouin zone or is any vector of the Brillouin zone and G is symmorphic.

In this case

Dk1({φ|t}) = π(φ) e−ik1·t (79)

where π(φ) is an IR of Ĝ(k1). (2) k1 is any vector on the surface of the Brillouin zone

and G is nonsymmorphic. In this case the Dk1({φ|t}) are finite in number and have

been tabulated for all space groups and relevant k1 (Miller & Love, 1967; Kovalev

et al., 1993).

Full group IR’s are s×s matrices of blocks containing G(k) IR’s. To construct these

we decompose G with respect to its subgroup G(k)

G = G(k) + {φ2|t2}G(k) + . . . + {φσ|tσ}G(k) + . . . (80)

and define the notational device

Ḋ
k
({φp|tp}) =

{
0 if {φp|tp} is not in G(k)
Dk({φp|tp}) if {φp|tp} is in G(k).

(81)

Thus if {φp|tp} is an arbitrary element of G, {φσ|tσ} and {φτ |tτ} are elements of

G/G(k), and {φc|tc} is and element of G(k), we let {φp|tp} ◦ {φτ |tτ} be in the coset
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{φσ|tσ}G(k) so that

{φp|tp} ◦ {φτ |tτ} = {φσ|tσ} ◦ {φc|tc} (82)

{φσ|tσ}−1 ◦ {φp|tp} ◦ {φτ |tτ} = {φc|tc} (83)

where the right hand side of the second equality is any element in G(k). Using Eq. (81)

we have an expression for the blocks of Ds

Ds
στ ({φc|tc}) = Ḋ

k
({φσ|tσ}−1 ◦ {φp|tp} ◦ {φτ |tτ}) (84)

so that the only nonzero block along the σ-th row and τ -th column occurs if φp◦φτ ◦k =

φσ ◦ k.

We now show the Qs transform like space group IR’s (Birman, 1984). Upon Fourier

transforming the potential in Eq. (26) the action of T on Uk induces a 1× 1 matrix

representation:

ti ◦Uk = Ukeik·ti . (85)

Diagonalizing Kk gives basis functions which transform like IR’s of G(k)

g ◦Qk
pτ

=
∑
rτ

Qk
rτ

Dk
rτ pτ

(g) ∀ g ∈ G(k). (86)

As the full group IR’s are constructed in blocks from those of G(k) which rotate among

themselves, and the action of {φσ|tσ}

{φσ|tσ} ◦Qk
pτ

= Qφσ◦k
pτ

(87)

also rotates the basis functions in the same way as Ds, Eqs. (84)-(87) combine to

show the action of G on Qs induces a matrix representation

g ◦Qs
pτ

=
∑
rτ

Qs
rτ

Ds
rτ pτ

(g) (88)

so that the Qs are basis functions of a crystallographic IR space.
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Appendix E.
Space-Time Symmetry

Space group IR’s are of three types (Maradudin & Vosko, 1968; Bradley & Cracknell,

1972; Birman, 1984; Cornwell, 1984). Type 1, or potentially real, IR’s can be brought to

real form by a similarity transformation. Type 2, or pseudoreal, IR’s cannot be brought

to real form but can be brought to their complex conjugates. Their characters are real.

Type 3, or complex, IR’s cannot be brought to real form or their complex conjugates.

Their characters are complex. However, as a complex space-group IR can always be

made real we take the direct sum of the IR with its complex conjugate and bring

the resulting representation into real form with a similarity transformation (Stokes

et al., 1991). Thus for a type 1 IR τ we form the physically irreducible representation

by simply taking a similarity transform to make the representation real

S−1 ·Dτ
phys · S = Dτ . (89)

For a type 2 IR τ which is equivalent to its complex conjugate we use

S−1 ·Dτ⊕τ
phys · S =

(
Dτ 0
0 Dτ

)
. (90)

For type 3 IR’s κ and σ which are not equivalent to their complex conjugates we have

S−1 ·Dκ⊕σ
phys · S =

(
Dκ 0
0 Dσ∗

)
. (91)

These transformations often involve linear combinations of the eik·t factors in the set of

Dτ to give real Kk and Uk which transform like physically irreducible representations.
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Appendix F.
Linear Response in Mean Field Theory

To evaluate the stability of a candidate equilibrium configuration of the crystal, we

consider the second derivatives with respect to the variables representing the orienta-

tions of the molecules, i.e., the order parameters. To facilitate the necessary calcula-

tions, we examine how the free energy changes in response to an external field with

the system initially in equilibrium.

Consider the response of the order parameters 〈U〉 in the mean-field system to an

infinitesimal external perturbation in the fields hext, so that

h = hint + hext, (92)

where hint ≡ {hint
1 , . . . ,hint

N } is the set of fields from the unperturbed system, as

defined in Eq. (75). As explained in Section 2.4., N may be limited to the number

of molecules within the kernel of a high–symmetry IR. The hext is introduced solely

so that h can be perturbed without changing the internal fields hint. It is set to zero

later.

Since the field perturbation is infinitesimal, the response is linear with respect to

the external fields (Chaikin & Lubensky, 1995),

δ〈U〉 = χ · δhext = χo · δh, (93)

where

χ ≡ ∂〈U〉
∂hext and χo ≡ ∂〈U〉

∂h

∣∣∣∣
o

, (94)

U ≡ {U1, . . . , UN}, and the “o” indicates the unperturbed system, in which hext = 0.

This assumption of linear response is also called the “random phase approximation”

in the literature of many-body problems in Fermi systems (Pines, 1997).

Using Eqs. (75) and (92)-(93), the order parameter response becomes

δ〈U〉 = χo · (K · δ〈U〉+ δhext
)
, (95)
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where

K ≡




K1,1 K1,2 · · · K1,N

K2,1 K2,2 · · · K2,N
...

...
. . .

...
KN,1 KN,2 · · · KN,N


 , (96)

and Ki,n here indicates a summation of pairwise coupling matrices [Eq. (18)] over all

nearest neighbors of molecule type i that belong to type n within the kernel of the

high–symmetry IR. Upon rearrangement,

δ〈U〉 =
(
χo −K−1

) · δhext, (97)

and taking the limit as the perturbation goes to zero,

lim
δ→0

δ〈U〉
δhext = χ = χo −K−1 . (98)

Thus the response of the order parameters in the presence of the external perturbation

(χ) can be expressed in terms of the coupling matrices [Eq. (18)] and the unperturbed

system response χo.

Evaluating the change in the free energy [Eq. (25)] with respect to the external field,

we find that
∂Avar

or

∂hext = 〈U〉, (99)

which implies that the free energy obeys the thermodynamic differential relationship

dAvar
or = −S dT +

N∑

i=1

〈U i〉 · dhext
i . (100)

The thermodynamic potential that is a natural function of the order parameters

〈U〉 and not of the external fields is obtained by performing a Legendre transfor-

mation (Chandler, 1987) on Avar
or . Thus we define a new free energy function F ,

F ≡ Avar
or −

N∑

i=1

〈U i〉 · hext
i , (101)

that obeys the desired thermodynamic differential relationship

dF = −S dT −
N∑

i=1

hext
i · d〈U i〉. (102)
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Taking the derivative of F with respect to the order parameters, we obtain

∂F

∂〈U〉 = −hext, (103)

so that F is a function of T and the order parameters, as requested. Taking the second

derivative of F ,

∂2F

∂〈U〉 ∂〈U〉 = −∂hext

∂〈U〉 ≡ − (χ)−1 = − (χo)−1 + K, (104)

using the result from Eq. (98). In the limit of vanishing external field, F reduces to

the free energy Avar,

lim
hext→0

F = Avar
or . (105)

Therefore a crystal structure is stable (i.e., Avar
or is minimized) if the consistency

relations are satisfied and the Hessian matrix in Eq. (104) is positive definite.

Appendix G.
Largest Order Parameter Approximation

At high symmetry points of the Brillouin zone the number of independent molecules

in the kernel of the IR is manageable. While identifying the P42/nmc phase, we

had to consider the entire V -line with 256 independent molecules. This large number

overwhelmed the codes developed to identify the phases. In this and similar cases

a further approximation may be used. This is the largest OP approximation first

introduced by James & Keenan (1959). As the fields and thermal average of the

rotator functions may be rewritten

hi =
∑

k

eik·ti

√
N

Ek ·Λk · 〈Qk〉 (106)

〈U i〉 =
∑

k

eik·ti

√
N

Ek · 〈Qk〉, (107)

we may approximate that only those 〈Qk〉 belonging to the primary order parameter

are nonzero. The eigenvalues may be set to zero except for those along the primary
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IR and can be brought out of the summation

hi = Λpri ·
∑

k

eik·ti

√
N

Ek · 〈Qk〉

= Λpri · 〈U i〉, (108)

giving only one set of consistency relations to solve for the base molecule

〈U0〉 =
1
z0

∫
U0 exp(−U0 ·Λpri · 〈U0〉)d(ω0). (109)

Two considerations prevent this technique from general use: (1) it is not as accurate

because of the neglect of secondary OP’s (2) these consistency relations do not con-

verge as easily to the lowest free energy solution. For the V line there is no secondary

OP and the convergence is rapid so that the technique is accurate and efficient.
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