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Appendix A.
Details of the calculation of the phase functions

associated withΓe

[Not to be included in the printed version of the
paper]

We give here the proofs for the results quoted in Section 4..

A.1. Constraints imposed by δ (all point groups)

R1. For anyγ ∈ Γe, if δ commutes withγ (δγδ−1 = γ) and
the 8-fold generator isr8, then the in-plane phases ofΦγ

e
are

Φγ
e (b(i))≡

{
aaaa V-lattice,

0000 S-lattice,
(A-1)

wherea is either 0 or 1/2.

If the 8-fold generator is ¯r8 the in-plane phases ofΦγ
e are

Φγ
e (b(i))≡aaaa (A-2a)

regardless of the lattice type, and the phase on the stack-
ing vector is

Φγ
e (c)≡

{
c V-lattice,
a
2 + c S-lattice,

(A-2b)

wherea andc are either 0 or 1/2 but they cannot both be
0. As a consequence, on vertical latticesγ is an operation
of order 2, and on staggered latticesγ is of order 2 or 4
depending on whethera≡0 or 1/2.

Proof: From application of relation (3) to the horizontal gener-
ating vectors we obtain

Φγ
e (b(i))≡Φδγδ−1

e (g8b(i))≡±Φγ
e (b(i+1)), (A-3)

where the upper (positive) sign is forg8 = r8 and the lower
(negative) sign (due to the linearity of the phase function) is for
g8 = r̄8. This implies that onV-lattices the two phasesa and
b in (5) are equal. Application of (3) to the vertical stacking
vector yields (with the same sign convention)

Φγ
e (z)≡±Φγ

e (z). (A-4)

This implies forV-lattices that ifg8 = r̄8 the phaseΦγ
e (z)≡0

or 1/2 and therefore thatγ is an operation of order 2. For the
staggered stacking vector, with the aid of Table 2, we obtain

Φγ
e (z + h)≡±Φγ

e (z + h)± a, (A-5)

implying for S-lattices that ifg8 = r8 the phasea in (5) is 0,
and if g8 = r̄8 then 2Φγ

e (z + h)≡a, whose solutions are given
by Eq. (A-2b), andγ is an operation of order 2 or 4 depending
on whethera≡0 or 1/2.

R2. If γ ∈ Γe, is an operation of ordern > 2, δγδ−1 = γ−1,
and the 8-fold generator isr8, then the lattice must be
staggered,n must be 4, and the phases ofΦγ

e are

Φγ
e (b(i))≡1

2
1
2

1
2

1
2
, Φγ

e (z + h)≡1
4

or
3
4
. (A-6)

If the 8-fold generator is ¯r8 the in-plane phases ofΦγ
e are

Φγ
e (b(i))≡

{
aaaa V-lattice,

0000 S-lattice,
(A-7)

wherea is either 0 or 1/2.

Proof: Application of (3) to the horizontal generating vectors
shows again that onV-lattices the two phasesa andb in (5) are
equal. Application of (3) to the vertical stacking vector yields

Φγ
e (z)≡Φγ−1

e (g8z)≡∓Φγ
e (z), (A-8)

where the upper (negative) sign is forg8 = r8 and the lower
(positive) sign is forg8 = r̄8. This implies that onV-lattices if
g8 = r8 the phaseΦγ

e (z) is 0 or 1/2. If this is the case, then be-
cause we know that the in-plane phases ofΦγ

e are also either 0
or 1/2,γ2 = ε in contradiction to the statement that the order of
γ is greater than 2, and therefore the lattice cannot be vertical.

For the staggered stacking vector we obtain (with the same
sign convention)

Φγ
e (z + h)≡∓Φγ

e (z + h)∓ a, (A-9)

implying for S-lattices that ifg8 = r̄8 the phasea in (5) is 0,
and ifg8 = r8 then 2Φγ

e(z+h)≡a. If a≡0 then all the phases of
Φγ

e are either 0 or 1/2 implying thatγ is of order 2, and there-
fore we must takea≡1/2, in which caseγ is of order 4, and
Φγ

e (z + h)≡1/4 or 3/4.

R3. If 2∗x̄ , 2∗ȳ ∈ Γe, where the asterisk denotes an optional
prime, andδ2∗̄xδ−1 = 2∗̄y , the directions of the ¯xandȳaxes
in spin-space can be chosen so that the in-plane phases of

Φ2∗x̄
e andΦ2∗ȳ

e are{
Φ2∗x̄

e (b(i))≡01
201

2, Φ2∗ȳ
e (b(i))≡ 1

201
20 V-lattice,

Φ2∗x̄
e (b(i))≡Φ2∗ȳ

e (b(i))≡ 1
2

1
2

1
2

1
2 S-lattice,

(A-10a)
and the phases on the stacking vector are{

Φ2∗x̄
e (z)≡Φ2∗ȳ

e (z)≡0 or 1
2 V-lattice,

Φ2∗x̄
e (z + h)≡0, Φ2∗ȳ

e (z + h)≡ 1
2 S-lattice.

(A-10b)

Proof: Let γ1 andγ2 denote the two 2-fold operations, and note
that since the phasesΦγ1

e (k) and Φγ2
e (k) are always either 0

or 1/2 the signs of these phases can be ignored. Application of
Eq. (3) to the horizontal generating vectors yields

Φγ1
e (b(i))≡Φδγ1δ

−1

e (g8b(i))≡Φγ2
e (±b(i+1)), (A-11)

This implies through result R1 that onV-lattices if
Φγ1

e (b(i))≡abab then Φγ2
e (b(i))≡baba, and that onS-lattices

Φγ1
e (b(i))≡Φγ2

e (b(i))≡aaaa, wherea andb are either 0 or 1/2.
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Application of Eq. (3) to the vertical stacking vector yields

Φγ1
e (z)≡Φδγ1δ

−1

e (g8z)≡Φγ2
e (z), (A-12)

where we have ignored the sign difference betweenr8z and ¯r8z.
This equality of phases implies thata andb cannot be equal oth-
erwiseγ1 = γ2. We can always choose the orientation of the ¯x
andȳ axes in spin space such that the phase function associated
with 2∗̄x is the one whose values on the horizontal generating
vectors are 01201

2.
Finally, application of Eq. (3) to the staggered stacking vec-

tor, ignoring again the sign difference betweenr8(z + h) and
r̄8(z + h), yields

Φγ1
e (z + h)≡Φγ2

e (z + h) + a. (A-13)

Since the two phase functions have identical values on the hor-
izontal sublattice they must differ on the stacking vector. This
requires thata be 1/2. Here we can always choose the orienta-
tion of thex̄ andȳ axes in spin space such that the phase func-
tion associated with 2∗̄x is the one whose value on the staggered
stacking vector is 0.

A.2. Constraints imposed by µ (point groups 8mm, 8̄m2, and
8/mmm)

Using the third line of Table 2, summarizing the effect of the
mirror mon the lattice generating vectors, we obtain the follow-
ing results:

M1. For anyγ ∈ Γe, if µ commutes withγ, the in-plane
phases ofΦγ

e are

Φγ
e (b(i))≡

{
abab V-lattice,

0000 S-lattice,
(A-14)

wherea andb are independently either 0 or 1/2.

Proof: Starting from the general result R0, we see that no fur-
ther constraints arise from application of (3) to the horizontal
generating vectors and to the vertical stacking vector, and so
there is no change from the general case forV-lattices. For the
staggered stacking vector we obtain

Φγ
e (z + h)≡Φγ

e (z + h)− a, (A-15)

implying that onS-lattices the phasea in (5) is 0.

M2. If γ ∈ Γe, is an operation of ordern > 2, andµγµ−1 =
γ−1, then the lattice must be staggered,n must be 4, and
the phases ofΦγ

e are

Φγ
e (b(i))≡1

2
1
2

1
2

1
2
, Φγ

e (z + h)≡1
4

or
3
4
. (A-16)

Proof: From result R0 we know that the in-plane phases ofΦγ
e

are either 0 or 1/2. Application of (3) to the vertical stacking
vector yields an expression similar to Eq. (A-8) forr8, implying
that the phase ofΦγ

e (z) is also 0 or 1/2. If this is the case then
γ2 = ε in contradiction to the statement that the order ofγ is

greater than 2. The only possibility that is left is for anS-lattice,
in which case application of (3) to the staggered stacking vector
yields an expression similar to Eq. (A-9) forr8 and therefore to
the same phases obtained in result R2 [Eq. (A-6)].

M3. If 2∗x̄ , 2∗ȳ ∈ Γe, where the asterisk denotes an optional
prime,µ2∗x̄µ

−1 = 2∗ȳ , and the mirror is of typem, then

the lattice must be staggered, the in-plane phases ofΦ2∗x̄
e

andΦ2∗ȳ
e are

Φ2∗x̄
e (b(i))≡Φ2∗ȳ

e (b(i))≡1
2

1
2

1
2

1
2
, (A-17a)

and the directions of the ¯x andȳ axes in spin-space can be
chosen so that the phases on the staggered stacking vector
are

Φ2∗x̄
e (z + h)≡0, Φ2∗ȳ

e (z + h)≡1
2
. (A-17b)

Proof: Let γ1 andγ2 denote the two 2-fold operations, and note
that since the phasesΦγ1

e (k) and Φγ2
e (k) are always either 0

or 1/2 the signs of these phases can be ignored. Application of
Eq. (3) to the horizontal generating vectors yields

Φγ1
e (b(i))≡Φγ2

e (b(i+2k)), (A-18)

for some integerk that depends oni. Together with result R1,
Eq. (A-18) implies that the two phase functions are identical
on the horizontal sublattice. Application of Eq. (3) to the verti-
cal stacking vector establishes that the two phase functions are
identical everywhere in contradiction with the fact thatγ1 6= γ2,
and therefore that the lattice cannot be vertical. Application of
Eq. (3) to the staggered stacking vector yields

Φγ1
e (z + h)≡Φγ2

e (z + h) + a. (A-19)

Since the two phase functions have identical values on the hori-
zontal sublattice they must differ on the stacking vector, requir-
ing thata be 1/2. We then choose the orientation of the ¯x andȳ
axes in spin space such that the phase function associated with
2∗x̄ is the one whose value on the staggered stacking vector is 0.

A.3. Constraints imposed by α (point groups 822and 8̄2m)

Using the fourth line of Table 2, summarizing the effect of the
dihedral rotationd on the lattice generating vectors, we obtain
the following results:

D1. For anyγ ∈ Γe, if α commutes withγ the in-plane phases
are the general ones given in result R0 [Eq. (5)]. If the lat-
tice is vertical, the phase ofΦγ

e (z) is independently 0 or
1/2, implying thatγ is an operation of order 2. If the lat-
tice is staggered the phase on the stacking vector is

Φγ
e (z + h)≡a

2
+ c, (A-20)

wherea is the in-plane phase in (5), andc≡0 or 1/2 but
a andc cannot both be 0. Consequently,γ is an operation
of order 2 or 4, depending on whethera≡0 or 1/2.
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Proof: Application of Eq. (3) to the horizontal generating vec-
tors yields no further constraints beyond the general result R0.
Application of Eq. (3) to the vertical stacking vector yields

Φγ
e (z)≡−Φγ

e (z), (A-21)

implying that the phase ofΦγ
e (z) is 0 or 1/2. If this is the case

then γ is necessarily an operation of order 2. Application of
Eq. (3) to the vertical stacking vector yields

Φγ
e (z + h)≡−Φγ

e (z + h) + Φγ
e (2h)− a. (A-22)

It follows from the general result R1 thatΦγ
e (2h)≡Φγ

e (b(1) +
b(2) + b(3) − b(4))≡0, and therefore that 2Φγ

e (z+ h)≡a, whose
solutions are given by Eq. (A-20). Ifa≡0 thenγ is again of
order 2; Ifa≡1/2 thenγ is of order 4.

D2. If γ ∈ Γe, is an operation of ordern > 2, αγα−1 = γ−1,
and the lattice is vertical there are no additional con-
straints on the phase functionΦγ

e . If the lattice is stag-
gered then the in-plane phases ofΦγ

e are all 0.

Proof: This can easily be seen by applying Eq. (3) to the gener-
ating vectors while noting thatΦγ

e (2h)≡0.

D3. If 2∗x̄ , 2∗ȳ ∈ Γe, where the asterisk denotes an optional
prime, andα2∗x̄α

−1 = 2∗ȳ , then the lattice must be stag-

gered, the in-plane phases ofΦ2∗x̄
e andΦ2∗ȳ

e are

Φ2∗x̄
e (b(i))≡Φ2∗ȳ

e (b(i))≡1
2

1
2

1
2

1
2
, (A-23)

and the directions of the ¯x andȳ axes in spin-space can be
chosen so that the phases on the staggered stacking vector
are

Φ2∗x̄
e (c)≡0, Φ2∗ȳ

e (c)≡1
2
. (A-24)

Proof: This result is established in the same way as result M3
for the mirrorm due to the fact that the sign of the phases can
be ignored and the fact thatΦγ

e(2h)≡0.

A.4. Constraints imposed by η (point groups 8/m and 8/mmm)

Finally, using the fifth line of Table 2, summarizing the effect
of the horizontal mirrorh on the lattice generating vectors, we
obtain the following results:

H1. For anyγ ∈ Γe, if η commutes withγ, then the phase of
Φγ

e on the stacking vector is

Φγ
e (c)≡0 or

1
2
, (A-25)

which implies thatγ is an operation of order 2.

Proof: Application of Eq. (3) to the horizontal generating vec-
tors yields no further constraints beyond the general result R0.
Application of Eq. (3) to the vertical stacking vector yields
Eq. (A-21), and application of Eq. (3) to the staggered stack-
ing vector yields

Φγ
e (z + h)≡ −Φγ

e (z + h) + Φγ
e (2h). (A-26)

BecauseΦγ
e (2h)≡0, Eqs. (A-21) and (A-26) imply that for both

lattice types the phase on the stacking vector is either 0 or 1/2.

H2. If γ ∈ Γe, is an operation of ordern > 2, andηγη−1 =
γ−1 there are no additional constraints on the phase func-
tion Φγ

e .

Proof: This can easily be seen by applying Eq. (3) to the gener-
ating vectors while noting thatΦγ

e (2h)≡0.

H3. If 2∗x̄ , 2∗ȳ ∈ Γe, where the asterisk denotes an optional
prime, then they must both commute withη and their
phase functions are only constrained by results R0 and
H1.

Proof: Let us denote the two operations byγ1 andγ2 and as-
sume that rather than commuting withη they satisfyηγ1η

−1 =
γ2, then application of Eq. (3) to the generating vectors of both
lattice types, while noting thatΦγ

e (2h)≡0, establishes that both
phase functions are identical everywhere in contradiction with
the fact thatγ1 6= γ2.
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Appendix B.
Octagonal spin space-group types:

Values of the phase functions
[Not to be included in the printed version of the

paper]

We give here the remaining calculation of the phase functions
for point groups that were not treated in Section 6. of the main
part of the paper as well as the Tables of all explcicit results.

B.1. Point group G = 8 (generator r8)

The phase functions for point groupG = 8 were calculated
in Section 6.1. and are summarized here in Table B-1 forV-
lattices, and Table B-2 forS-lattices.

B.2. Point group G = 8̄ (generator r̄8)

The only phase function to be determined,Φδ
r̄8

, is zero ev-
erywhere on both lattice types due to the choice of gauge in
sections 5.1. and 5.2.. Note that in this case

Φδ8

e (k)≡Φδ8

r̄8
8
(k)≡Φδ

r̄8
(k + r̄8k + . . . r̄7

8k)≡0, (B-1)

and thereforeδ8 = ε whenever ¯r8 is a generator ofG.
The phase functions for point groupG = 8̄ are summarized

in Table B-3 forV-lattices, and Table B-4 forS-lattices.

B.3. Point group G = 8mm(generators r8 and m)

The phase functions for point groupG = 8mmwere calcu-
lated in Section 6.2. and are summarized here again for conve-
nience in Table B-5 forV-lattices, and Table B-6 forS-lattices.

B.4. Point group G = 8̄m2 (generators r̄8 and m)

Here we only need to determine the phase functionΦµ
m(k)

because by the initial choice of gaugeΦδ
r̄8
(k)≡0. We use the

generating relationsm2 = e and ¯r8mr̄8 = m, which through
group compatibility conditions of the form (46) and (49) yield
equations that resemble those forG = 8mmwith r̄8 replacing
r8.

For the horizontal generating vectors we again find thatΦµ
m

has two possible solutions given by Eq. (60). For the vertical
stacking vector, for which ¯r8z = −z andmz = z, Eqs. (46) and
(49) become

Φµ−1δµδ
e (z)≡− 2Φµ

m(z), (B-2a)

Φµ2

e (z) ≡ 2Φµ
m(z). (B-2b)

The solutions to these equations are

Φµ
m(z)≡1

2
Φµ2

e (z) + a, a≡0 or
1
2
, (B-3a)

with the additional condition that

Φµ2

e (z) + Φµ−1δµδ
e (z)≡0. (B-3b)

For the staggered stacking vector, for which ¯r8(z + h) =
−(z + h)− b(4) andm(z + h) = (z + h) − b(3), Eqs. (46) and

(49) become

Φµ−1δµδ
e (z + h) ≡ −2Φµ

m(z + h)−Φµ
m(b(4)) (B-4a)

Φµ2

e (z + h) ≡ 2Φµ
m(z + h)−Φµ

m(b(3)) (B-4b)

The solutions to these equations are

Φµ
m(z + h)≡1

2
Φµ

m(b(3)) +
1
2

Φµ2

e (z + h) + a, a≡0 or
1
2
,

(B-5a)
with the additional condition that

Φµ2

e (z + h) + Φµ−1δµδ
e (z + h)≡Φµ

m(b(3)) + Φµ
m(b(4)). (B-5b)

A gauge transformation (45) withχ3(b(i))≡1/2 changes the
phaseΦµ

m(z + h) by 1/2 and therefore the two solutions in
Eq. (B-5a) are gauge-equivalent. We take the one witha≡0.

The phase functions for point groupG = 8̄m2 are summa-
rized in Table B-7 forV-lattices, and Table B-8 forS-lattices.

B.5. Point group G = 822 (generators r8 and d)

We need to determine the phaseΦδ
r8
(c) and the phases

Φα
d (b(i))—sinceΦδ

r8
(b(i))≡Φα

d (c)≡0 by our choice of gauge—
using the generating relationsr8

8 = d2 = e andr8dr8 = d. The
relation r8

8 = e yields the same equation forΦδ
r8
(c) as in the

case of point groupG = 8, giving rise to the same solutions as
those given by Eqs. (52) and (56).

The determination ofΦα
d (b(i)) is similar to that ofΦµ

m(b(i))
in the case of point groupG = 8mm. If d is the dihedral ro-
tation that leavesb(1) invariant, then application of Eq. (46) to
b(3) which is perpendicular tob(1) yields

Φα2

e (b(3))≡Φα
d (db(3) + b(3))≡0, (B-6)

implying thatΦα2

e (b(i))≡0000. Application of Eq. (46) tob(1)

then yields

0≡2Φα
d (b(1)) =⇒ Φα

d (b(1))≡0 or
1
2
, (B-7)

and application of Eq. (46) tob(2) and b(4) shows that
Φα

d (b(2))≡Φα
d (b(4)), but provides no further information re-

garding the actual values of these phases. Next, we apply
Eq. (49) to the horizontal generating vectors to obtain

Φα
d (b(i+1))≡Φα

d (b(i)) + Φα−1δαδ
e (b(i)). (B-8)

Thus, Φα
d (b(1)) determines the values ofΦα

d on the remain-
ing horizontal generating vectors through the phase function
Φα−1δαδ

e :

Φα
d (b(i))≡

{
0000 or1

2
1
2

1
2

1
2 if Φα−1δαδ

e (b(i))≡0000,

01
201

2 or 1
201

20 if Φα−1δαδ
e (b(i))≡1

2
1
2

1
2

1
2.

(B-9)

For the vertical stacking vector, for whichdz = −z, we ob-
tain

Φα−1δαδ
e (z)≡0, (B-10a)
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Φα2

e (z)≡0. (B-10b)

The latter of the two, together with Eq. (B-6), implies that on
V-latticesα2 = ε.

For the staggered stacking vector, for whichd(z + h) =
−(z + h) + 2h− b(3), we obtain the additional constraints

Φα
d (b(4))≡Φα−1δαδ

e (z + h), (B-11a)

Φα
d (b(3))≡Φα2

e (z + h). (B-11b)

From Eq. (B-11a) we find thatΦα−1δαδ
e (z + h) must be either

0 or 1/2 and therefore thatα−1δαδ is eitherε or 2z̄. In either
caseΦα−1δαδ

e (b(i))≡0 so only the first of the two cases given in
Eq. (B-9) is possible. This then implies that the left-hand sides
of Eqs. (B-11) are equal and therefore thatα−1δαδ = α2. The
values ofΦα

d on the horizontal generating vectors forS-lattices
are thus given by

Φα
d (b(i))≡

{
0000 ifα−1δαδ = α2 = ε,
1
2

1
2

1
2

1
2 if α−1δαδ = α2 = 2z̄.

(B-12)

The phase functions for point groupG = 822 are summa-
rized in Table B-9 forV-lattices, and Table B-10 forS-lattices.

B.6. Point group G = 8̄2m (generators r̄8 and d)

We need to determine the phase functionΦα
d (k) because we

have chosen a gauge in whichΦδ
r̄8
(k)≡0. We use the generating

relationsd2 = e and ¯r8dr̄8 = d, which through group compat-
ibility conditions of the form (46) and (49) yield equations that
resemble those forG = 822 with r̄8 replacingr8.

For the horizontal generating vectors we again find that
Φα

d has two possible solutions given by Eq. (B-9), and that
Φα2

e (b(i))≡0000. For the vertical stacking vector, for which
r̄8z = dz = −z, Eqs. (46) and (49) become

Φα−1δαδ
e (z)≡− 2Φα

d (z), (B-13a)

Φα2

e (z) ≡ 0. (B-13b)

The solutions to Eq. (B-13a) are

Φα
d (z)≡− 1

2
Φα−1δαδ

e (z) + a, a≡0 or
1
2
, (B-14)

and Eq. (B-13b) implies that onV-latticesα2 = ε.
For the staggered stacking vector, for which ¯r8(z + h) =

−(z + h)−b(4) andd(z + h) = −(z + h)+2h−b(3), Eqs. (46)
and (49) become

Φα−1δαδ
e (z + h) ≡ −2Φα

d (z + h)−Φα
d (b(4)), (B-15a)

Φα2

e (z + h) ≡ −Φα
d (b(3)). (B-15b)

The solutions to Eq. (B-15a) are

Φα
d (z + h)≡1

2
Φα

d (b(4))− 1
2

Φα−1δαδ
e (z + h) + a, a≡0 or

1
2
,

(B-16)

with the additional condition, given by Eq. (B-15b), that
Φα

d (b(3)) is determind byα2, reducing the possible solutions
in (B-9) to one. Note that none of the gauge transformationsχ3

in Eq. (45) can change the phaseΦα
d (z + h).

The phase functions for point groupG = 8̄2m are summa-
rized in Table B-11 forV-lattices, and Table B-12 forS-lattices.

B.7. Point group G = 8/m (generators r8 and h)

We are using a gauge in whichΦδ
r8
(b(i))≡Φη

h(c)≡0, and

therefore need to determine the phasesΦη
h(b(i)) andΦδ

r8
(c) us-

ing the generating relationsr8
8 = h2 = e andhr8h = r8. Equa-

tions (49) and (46) for the horizontal generating vectors are

Φη
h(b(i) + b(i+1))≡Φδ−1ηδη

e (b(i)), (B-17a)

2Φη
h(b(i))≡Φη2

e (b(i)). (B-17b)

Due to the fact thatΦδ−1ηδη
e (b(i))≡0000 or 1

2
1
2

1
2

1
2, application

of Eq. (B-17a) to successive horizontal generating vectors es-
tablishes thatΦη

h(−b(i))≡Φη
h(b(i)), and therefore that the in-

plane phases are given by

Φη
h(b(i))≡

{
0000 or1

2
1
2

1
2

1
2 if Φδ−1ηδη

e (b(i))≡0000,

01
201

2 or 1
201

20 if Φδ−1ηδη
e (b(i))≡ 1

2
1
2

1
2

1
2.

(B-18)
Eq. (B-17b) then implies thatΦη2

e (b(i))≡0000. For the vertical
stacking vector, for whichhz = −z, the equations are

−2Φδ
r8
(z)≡Φδ−1ηδη

e (z) (B-19a)

Φη2

e (z)≡0 (B-19b)

The solutions to Eq. (B-19a) are

Φδ
r8
(z)≡ − 1

2
Φδ−1ηδη

e (z) + c, c≡0 or
1
2
, (B-20)

and Eq. (B-19b) implies that onV-latticesη2 = ε.
For the staggered stacking vector, for whichh(z + h) =

−(z + h) + 2h, and using the fact thatΦδ
r8
(2h)≡Φη

h(2r8h)≡0,
the equations are

−Φη
h(b(4))− 2Φδ

r8
(z + h)≡Φδ−1ηδη

e (z + h) (B-21a)

Φη2

e (z + h)≡0. (B-21b)

The solutions to Eq. (B-21a) are

Φδ
r8
(z + h)≡1

2
Φη

h(b(4))− 1
2

Φδ−1ηδη
e (z + h) + c, c≡0 or

1
2
,

(B-22)
but a gauge transformation (45) withχ3(b(i))≡1/2 shows that
the two solutions are gauge-equivalent, allowing us to takec≡0.
Eq. (B-21b) implies thatη2 = ε on S-lattices, as well. Finally,
the generating relationr8

8 = e imposes Eq. (50) as in the case of
point groupG = 8, for both lattice types. Together with Eqs. (B-
19a) and (B-21a) this implies that

Φδ8

e (c)≡ − 4Φδ−1ηδη
e (c), (B-23)

which is true for the horizontal generating vectors as well, and
thereforeδ8 = (δ−1ηδη)−4.

The phase functions for point groupG = 8/m are summa-
rized in Table B-13 forV-lattices, and Table B-14 forS-lattices.
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B.8. Point group G = 8/mmm(generators r8, m, and h)

We need to determine the phaseΦδ
r8
(c), the phasesΦη

h(b(i)),
and the complete phase functionΦµ

m(k). The generating rela-
tions and the equations they impose are the same as those for
G = 8mmand those forG = 8/m, with the additional condition
imposed by the generating relationmhm= h which yields

Φη−1µηµ
e (b(i))≡2Φµ

m(b(i))≡0, (B-24a)

Φη−1µηµ
e (z)≡0, (B-24b)

Φη−1µηµ
e (z + h)≡Φµ

m(b(1))−Φη
h(b(3)), (B-24c)

for the horizontal generating vectors, vertical stacking vector,
and staggered stacking vector, respectively.

For V-lattices Eqs. (B-24a) and (B-24b) imply that
η−1µηµ = ε but do not impose any additional constraints on the
phase functions already determined for point groupsG = 8mm
andG = 8/m. Thus the solutions for point groupG = 8/mmm
are simply the combination of the two, soΦη

h(b(i)) is given
by Eq. (B-18),Φµ

m(b(i)) by Eq. (60), andΦδ
r8
(z) andΦµ

m(z) by
Eqs. (62), with the additional conditions that

Φµ−1δµδ
e (z) + Φδ−1ηδη

e (z)≡0, (B-25)

Φµ2

e (b(i))≡0000,η2 = η−1µηµ = ε, andδ8 = (µ−1δµδ)4 =
(δ−1ηδη)−4.

For S-lattices Eq. (B-24c) implies thatΦη−1µηµ
e (z + h) can

be either 0 or 1/2 and therefore thatη−1µηµ is eitherε or 2z̄.
It also imposes a constraint between the two phase functions
Φµ

m andΦη
h . Therefore, onS-latticesΦη

h(b(i)) is again given by
Eq. (B-18), but

Φµ
m(b(i))≡Φη

h(b(i)) + Φη−1µηµ
e (z + h), (B-26)

andΦδ
r8
(z + h) andΦµ

m(z + h) are given by Eqs. (64), with the
additional conditions that

Φµ−1δµδ
e (b(i))≡Φδ−1ηδη

e (b(i)), (B-27a)

Φµ−1δµδ
e (z + h)+Φδ−1ηδη

e (z + h)≡Φη−1µηµ
e (z + h), (B-27b)

Φµ2

e (b(i))≡Φη−1µηµ
e (b(i))≡0000,Φη−1µηµ

e (z + h)≡0 or 1/2 de-
pending on whetherη−1µηµ is ε or 2z̄, η2 = ε, and δ8 =
(µ−1δµδ)4 = (δ−1ηδη)−4.

The phase functions for point groupG = 8/mmmare summa-
rized in Table B-15 forV-lattices, and Table B-16 forS-lattices.

Table B-1
Spin space-group types onV-lattices withG = 8. In this, and in the following tablesa, b, a′, andb′ are independently 0 or12 , as long as there are no two operations
in Γe with identical phase functions, andc is any integer between 0 and 7. ForΓe = n, n′, or n1′ the integerj is co-prime withN, whereN = n unlessΓe = n′

andn is odd, in which caseN = 2n. If N is odda is necessarily 0. The integerd = 1 unlessN is twice an odd number andΦn∗z̄
e (b(i)) ≡ 1

2, in which cased = 1 or

2. A0 denotes the values 01
201

2 of a phase function on the horizontal generating vectors, andA1 denotes the values1201
20 on the same generators. Lines 3a and 3b

refer to distinct spin space-group types ifΓe = 2′2′2, but give scale-equivalent solutions ifΓe = 222, or 2′2′2′, where 3a is taken as the representative solution.
The spin space group symbols for all groups in this table are of the formPΓe···8δ

c . For example, ifΓe = 222,Gε = 4 andΓ = 2′2′2′, thenδ can be chosen to beε′,
the corresponding line in the Table is 3a or 3b, but since forΓe = 222 they are scale-equivalent only 3a is taken. If, in addition,Φδ

r8
(z) ≡ 5

8 the spin space group

symbol isP222
2c,P,S8′5.

Γe = 1, 1′, 2, 2′, 21′

δ8 Φ2∗z̄
e (b(i)c) Φε′

e (b(i)c) Φδ
r8

(z)

1 ε ab a′b′ c
8

2 2z̄ 01
2 −− c

8 + 1
16

Γe = 222, 2′2′2, 2′2′2′ (δ ∈ 4221′ ⇒ δ8 = ε)

δ2x̄δ−1 Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φ2′z̄

e (b(i)c) Φδ
r8

(z)

3a 2x̄ 01
2

1
20 −− c

8

3b ab 1
2

1
2 −− c

8

4 2ȳ A0b A1b a1
2

c
8

Γe = n, n′, n1′ (δnz̄δ−1 = nz̄)

δ8 Φn∗z̄
e (b(i)c) Φε′

e (b(i)c) Φδ
r8

(z)

5 ε ad j
N a′b′ c

8

6 nz̄ ad j
n a′b′ c

8 + d j
8n

7 n2
z̄ ad j

N a′b′ c
8 + d j

4N

8 n3
z̄ ad j

n a′b′ c
8 + 3d j

8n

9 n4
z̄ ad j

N a′b′ c
8 + d j

2N
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Table B-2
Spin space-group types onS-lattices withG = 8. In this and in the following tablesc′ is any integer between 0 and 3. ForΓe = n, or n′, the integerj is co-prime
with N, whereN = n unlessΓe = n′ andn is odd, in which caseN = 2n. The spin space-group symbols for all groups in this table are of the formSΓe···8δ

c′ . For
example, ifΓe = n, Gε = 4 andΓ = n22 thenδ can be chosen to be 2x̄ and the corresponding line in the Table is 9 (andn is necessarily 4). If, in addition,j = 3
andΦδ

r8
(z + h) ≡ 1

4 the spin space-group symbol isS4
43S82x̄

2 .

Γe = 1, 1′, 2, 2′

δ8 Φγ
e (k) Φδ

r8
(z + h)

1 ε 01
2

c′
8

2 2z̄ 01
2

c′
8 + 1

16

Γe = 222, 2′2′2 (δ ∈ 4221′ ⇒ δ8 = ε, δ2x̄δ−1 = 2ȳ)

Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φδ

r8
(z + h)

3 1
20 1

2
1
2

c′
8

Γe = n, n′, n1′

δnz̄δ−1 δ8 Φn∗z̄
e (b(i)c) Φδ

r8
(z + h)

4 nz̄ ε 0 j
N

c′
8

5 nz̄ nz̄ 0 j
n

c′
8 + j

8n

6 nz̄ n2
z̄ 0 j

N
c′
8 + j

4N

7 nz̄ n3
z̄ 0 j

n
c′
8 + 3 j

8n

8 nz̄ n4
z̄ 0 j

N
c′
8 + j

2N

9 n−1
z̄ ε 1

2
j
n(n = 4) c′

8

Table B-3
Spin space-group types onV-lattices withG = 8̄. The possible values ofa, b, a′, b′, N, j, andd, as well as the notationsA0 andA1 are as explained in the caption of
Table B-1. Recall that since ¯r8 is a generator ofG, δ8 is necessarilyε. Lines 2a and 2b refer to distinct spin space-group types ifΓe = 2′2′2 but are scale-equivalent
if Γe = 222, or 2′2′2′, for which line 2a suffices. Spin space-group symbols for all groups in this table are of the formPΓe··· 8̄δ .

Γe = 1, 1′, 2, 2′, 21′

Φ2∗z̄
e (b(i)c) Φε′

e (b(i)c)

1 ab a′b′

Γe = 222, 2′2′2, 2′2′2′

δ2x̄δ−1 Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φ2′z̄

e (b(i)c)

2a 2x̄ 01
2

1
20 −−

2b 2x̄ ab 1
2

1
2 −−

3 2ȳ A0b A1b a1
2

Γe = n, n′, n1′ (δnz̄δ−1 = n−1
z̄ )

δ8 Φn∗z̄
e (b(i)c) Φε′

e (b(i)c)

4 ε ad j
N a′b′
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Table B-4
Spin space group-types onS-lattices withG = 8̄. The possible values ofN and j are as explained in the caption of Table B-2. Recall that since ¯r8 is a generator of
G, δ8 is necessarilyε. Spin space-group symbols for all groups in this table are of the formSΓe···8̄δ .

Γe = 1, 1′, 2, 2′, 21′

Φγ
e (b(i)c)

1 01
2

Γe = 222, 2′2′2

δ2x̄δ−1 Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c)

2 2ȳ
1
20 1

2
1
2

Γe = n, n′

δnz̄δ−1 Φn∗z̄
e (b(i)c)

3 n−1
z̄ 0 j

N

4 nz̄
1
2

j
n(n = 4)

Table B-5
Spin space-group types onV-lattices withG = 8mm. The possible values ofa, b, a′, b′, N, j, andd, as well as the notationsA0 andA1 are as explained in the caption
of Table B-1. Lines 5a and 5b refer to distinct spin space-group types ifΓe = 2′2′2 but are scale-equivalent ifΓe = 222, or 2′2′2′, for which line 3a suffices. ˆa, b̂
and ã denote either 0 or12 . Spin space-group symbols are of the formPΓe···8δmµmδµ where the primary 8δ is replaced by 8δ4 if ã = 1

2 and the secondarymµ is

replaced according to the values of ˆa andb̂: â = b̂ = 0⇒ mµ → mµ, â = 0, b̂ = 1
2 ⇒ mµ → cµ, â = 1

2 , b̂ = 0⇒ mµ → bµ, â = b̂ = 1
2 ⇒ mµ → nµ. The

tertiarymδµ is replaced bycδµ if either b̂ or ã (but not both) is1
2 . Furtheremore, a subscripta is added to the secondarymµ whenΦµ

m(b(i)) ≡ A0 + â. For example,

if Γe = 2′2′2, Gε = 4mm, Γ = 2′2′2′, thenδ can be chosen to beε′ and the spin space group is described by line 5a or 5b, if ab = 1
20, â = 1

2, b̂ = 0 andã = 0

the spin space group symbol will beP2′2′2
P,S,2c8′nc′.

Γe = 1, 1′, 2, 2′, 21′ (δ8 = ε)

µ−1δµδ µ2 Φ2∗z̄
e (b(i)c) Φε′

e (b(i)c) Φµ
m(b(i)) Φµ

m(z) Φδ
r8

(z)

1 ε ε ab a′b′ â b̂ ã

2 ε 2z̄ 01
2

1
2a â b̂ ã

3 2z̄ ε 01
2

1
2a â b̂ ã

1
2a a′b′ â + A0 b̂ ã + a

2

4 2z̄ 2z̄ 01
2

1
2b â b̂ + 1

4 ã + 1
4

Γe = 222, 2′2′2, 2′2′2′ (µ2x̄µ−1 = 2x̄ ⇒ µ2 = ε)

δ2x̄δ−1 µ−1δµδ Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φ2′z̄

e (b(i)c) Φµ
m(b(i)) Φµ

m(z) Φδ
r8

(z)

5a 2x̄ ε 01
2

1
20 −− â b̂ ã

5b 2x̄ ε ab 1
2

1
2 −− â b̂ ã

6 2ȳ 2z̄ A0b A1b a1
2 A0 + â b̂ ã

Γe = n, n′, n1′ (δnz̄δ−1 = µnz̄µ−1 = nz̄, δ8 = (µ−1δµδ)4)

µ−1δµδ µ2 Φn∗z̄
e (b(i)c) Φε′

e (b(i)c) Φµ
m(b(i)) Φµ

m(z) Φδ
r8

(z)

7 ε ε ad j
N a′b′ â b̂ ã

8 ε nz̄ 0 j
n ab â b̂ + j

2n ã

9 nz̄ ε 0 j
n ab â b̂ ã + j

2n

1
2

d j
n ab â + A0 b̂ ã + d j

2n

10 nz̄ nz̄ 0 j
n ab â b̂ + j

2n ã + j
2n
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Table B-6
Spin space-group types onS-lattices withG = 8mm. The possible values ofN and j are as explained in the caption of Table B-2, and the notationA0 is explained
in the caption of Table B-1. ˆa and ã denote either 0 or12 . For any choice of spin-space operations(µ−1δµδ)4 = δ8. Spin space-group symbols are of the form

SΓe···8δmµmδµ where the primary 8δ is replaced by 8δ2 if â = 1
2 and the secondarymµ is replaced bydµ if â = 1

2 . The tertiarymδµ is replaced bycδµ if ã = 1
2 . A

subscripta is added to the secondarym if Φµ
m(b(i)) ≡ â + A0.

Γe = 1, 1′, 2, 2′ (δ8 = ε)

µ−1δµδ µ2 Φγ
e (k) Φµ

m(b(i)) Φµ
m(z + h) Φδ

r8
(z + h)

1 ε ε 01
2 â ã + 1

2 â 1
2 â

2 ε 2z̄ 01
2 â ã + 1

2 â + 1
4

1
2 â

3 2z̄ ε 01
2 â ã + 1

2 â 1
2 â + 1

4

4 2z̄ 2z̄ 01
2 â ã + 1

2 â + 1
4

1
2 â + 1

4

Γe = 222, 2′2′2 (µ2x̄µ−1 = 2ȳ ⇒ µ2 = 2z̄)

δ2x̄δ−1 µ−1δµδ Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φµ

m(b(i)) Φµ
m(z + h) Φδ

r8
(z + h)

5 2ȳ 2z̄
1
20 1

2
1
2 â ã + 1

2 â + 1
4

1
2 â + 1

4

Γe = n, n′ (δnz̄δ−1 = µnz̄µ−1)

δnz̄δ−1 µ−1δµδ µ2 δ8 Φn∗z̄
e (b(i)c) Φµ

m(b(i)) Φµ
m(z + h) Φδ

r8
(z + h)

6 nz̄ ε ε ε 0 j
N â ã + 1

2 â 1
2 â

7 nz̄ ε nz̄ ε 0 j
n â ã + 1

2 â + j
2n

1
2 â

8 nz̄ nz̄ ε n4
z̄ 0 j

n â ã + 1
2 â 1

2 â + j
2n

9 nz̄ nz̄ nz̄ n4
z̄ 0 j

n â ã + 1
2 â + j

2n
1
2 â + j

2n

10 n−1
z̄ ε ε ε 1

2
j
n(n = 4) â ã + 1

2 â 1
2 â

11 n−1
z̄ n−1

z̄ ε ε 1
2

j
n(n = 4) â + A0 ã + 1

2 â 1
2( 1

2 − â)− j
8

Table B-7
Spin space-group types onV-lattices withG = 8̄m2. The possible values ofa, b, a′, b′, N, j, andd, as well as the notationsA0 andA1 are as explained in the caption
of Table B-1. Lines 4a and 4b refer to distinct spin space-group types ifΓe = 2′2′2 but are scale-equivalent ifΓe = 222, or 2′2′2′, for which line 4a suffices. ˆa and
b̂ denote either 0 or12 . Note that sincē8 is a generator ofG δ8 = ε. Spin space-group symbols are of the formPΓe··· 8̄δmµ2δµ where the secondarymµ is replaced as
in Table B-5 above.

Γe = 1, 1′, 2, 2′, 21′

µ−1δµδ µ2 Φ2∗z̄
e (b(i)c) Φε′

e (b(i)c) Φµ
m(b(i)) Φµ

m(z)

1 ε ε ab a′b′ â b̂

2 2z̄ ε 1
20 a1

2 â + A0 b̂

3 2z̄ 2z̄ 01
2

1
2b â b̂ + 1

4

Γe = 222, 2′2′2, 2′2′2′ (µ2 = ε,µ2x̄µ−1 = 2x̄)

δ2x̄δ−1 µ−1δµδ Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φ2′z̄

e (b(i)c) Φµ
m(b(i)) Φµ

m(z)

4a 2x̄ ε 01
2

1
20 −− â b̂

4b 2x̄ ε ab 1
2

1
2 −− â b̂

5 2ȳ 2z̄ A0b A1b a1
2 â + A0 b̂

Γe = n, n′, n1′ (δnz̄δ−1 = n−1
z̄ , µnz̄µ−1 = nz̄, µ2 = (µ−1δµδ)−1)

µ−1δµδ Φn∗z̄
e (b(i)c) Φε′

e (b(i)c) Φµ
m(b(i)) Φµ

m(z)

6 ε ad j
N a′b′ â b̂

7 ε 0 j
n ab â b̂ + j

2n
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Table B-8
Spin space-group types onS-lattices withG = 8̄m2. The possible values ofN and j are as explained in the caption of Table B-2. ˆa denotes either 0 or12 . Note that

since8̄ is a generator ofG δ8 = ε. In additionµ2 = (µ−1δµδ)−1. Spin space-group symbols are of the formSΓe···8̄δmµ2δµ where the secondarymµ is replaced as
in Table B-6 above.

Γe = 1, 1′, 2, 2′

µ−1δµδ Φγ
e (k) Φµ

m(b(i)) Φµ
m(z + h)

1 ε 01
2 â 1

2 â

2 2z̄ 01
2 â 1

2 â + 1
4

Γe = 222, 2′2′2 (δ2x̄δ−1 = µ2x̄µ−1 = 2ȳ)

µ−1δµδ Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φµ

m(b(i)) Φµ
m(z + h)

3 2z̄
1
20 1

2
1
2 â 1

2 â + 1
4

Γe = n, n′ (δnz̄d−1 = µn−1
z̄ µ−1)

δnz̄δ−1 µ−1δµδ Φn∗z̄
e (b(i)c) Φµ

m(b(i)) Φµ
m(z + h)

4 n−1
z̄ ε 0 j

N â 1
2 â

5 n−1
z̄ n−1

z̄ 0 j
n â 1

2 â + j
2n

6 nz̄ ε 1
2

j
n(n = 4) â 1

2 â

Table B-9
Spin space-group types forV-lattices withG = 822. The possible values ofa, b, a′, b′, c, N, j, andd, as well as the notationsA0 andA1 are as explained in the
caption of Table B-1. Lines 4a and 4b refer to distinct spin space-group types ifΓe = 2′2′2 but are scale-equivalent ifΓe = 222, or 2′2′2′, for which line 4a
suffices. `a denotes either 0 or12 . Note thatα2 = ε. Spin space-group symbols are of the formPΓe···8δ

c 2α2δα, where the secondary 2α is replaced by 2α1 if à = 1
2 . An

additional subscripta is added to the secondary 2α if Φα
d (b(i)) = à + A0.

Γe = 1, 1′, 2, 2′, 21′

α−1δαδ δ8 Φ2∗z̄
e (b(i)c) Φε′

e (b(i)c) Φα
d (b(i)) Φδ

r8
(z)

1 ε ε ab a′b′ à c
8

2 ε 2z̄ 01
2

1
2a à c

8 + 1
16

3 2z̄ ε 1
20 a1

2 à + A0
c
8

Γe = 222, 2′2′2, 2′2′2′ (α2x̄α−1 = 2x̄)

δ2x̄δ−1 α−1δαδ Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φ2′z̄

e (b(i)c) Φα
d (b(i)) Φδ

r8
(z)

4a 2x̄ ε 01
2

1
20 −− à c

8

4b ab 1
2

1
2 −− à c

8

5 2ȳ 2z̄ A0b A1b a1
2 à + A0

c
8

Γe = n, n′, n1′ (δnz̄δ−1 = nz̄, αnz̄α−1 = n−1
z̄ , α−1δαδ = ε)

δ8 Φn∗z̄
e (b(i)c) Φε′

e (b(i)c) Φα
d (b(i)) Φδ

r8
(z)

6 ε ad j
N a′b′ à c

8

7 nz̄ 0 j
n ab à c

8 + j
8n

8 n3
z̄ 0 j

n ab à c
8 + 3 j

8n

9 n2
z̄ ad j

N a′b′ à c
8 + d j

4N

10 n4
z̄ ad j

N a′b′ à c
8 + d j

2N
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Table B-10
Spin space-group types forS-lattices withG = 822. The possible values ofc′, N and j are explained in the caption Table B-2. Note thatα−1δαδ = α2. Spin
space-group symbols are of the formSΓe···8δ

c′2
α2δα, where the secondary 2α is replaced by 2α1 if Φα

d (b(i)) ≡ 1
2 .

Γe = 1, 1′, 2, 2′

α−1δαδ δ8 Φγ
e (b(i)c) Φα

d (b(i)) Φδ
r8

(z + h)

1 ε ε 01
2 0 c′

8

2 ε 2z̄ 01
2 0 c′

8 + 1
16

3 2z̄ ε 01
2

1
2

c′
8

Γe = 222, 2′2′2 (δ ∈ 4221′ ⇒ δ8 = ε, δ2x̄δ−1 = α2x̄α−1 = 2ȳ)

α−1δαδ Φ2∗z̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φα

d (b(i)) Φδ
r8

(z + h)

4 2z̄
1
20 1

2
1
2

1
2

c′
8

Γe = n, n′ (δnz̄δ−1 = αn−1
z̄ α−1, α−1δαδ = α2 = ε)

δnz̄δ−1 δ8 Φn∗z̄
e (b(i)c) Φα

d (b(i)) Φδ
r8

(z + h)

5 nz̄ ε 0 j
N 0 c′

8

6 nz̄ nz̄ 0 j
n 0 c′

8 + j
8n

7 nz̄ n2
z̄ 0 j

N 0 c′
8 + j

4N

8 nz̄ n3
z̄ 0 j

n 0 c′
8 + 3 j

8n

9 nz̄ n4
z̄ 0 j

N 0 c′
8 + j

2N

10 n−1
z̄ ε 1

2
j
n(n = 4) 0 c′

8

Table B-11
Spin space-group types onV-lattices withG = 8̄2m. The possible values ofa, b, a′, b′, N, j, andd, as well as the notationsA0 andA1 are as explained in the caption
of Table B-1. Lines 3a and 3b refer to distinct spin space-group types ifΓe = 2′2′2 but are scale-equivalent ifΓe = 222, or 2′2′2′, for which line 3a suffices. `a and
b̀ denote either 0 or12 . Note that for all choices of spin-space operationsδ8 = ε andα2 = ε. Spin space-group symbols are of the formPΓe··· 8̄δ2αmδα where 2α is

replaced by 2α1 if à = 1
2 , andmδα is replaced bycδα if b̀ = 1

2. A subscripta is added to the secondary 2 ifΦα
d (b(i)) ≡ à + A0.

Γe = 1, 1′, 2, 2′, 21′

α−1δαδ Φ2∗z̄
e (b(i)c) Φε′

e (b(i)c) Φα
d (b(i)) Φα

d (z)

1 ε ab a′b′ à b̀

2 2z̄ 01
2 a′b′ à b̀ + 1

4

1
2b a′b′ à + A0 b̀ + 1

2a

Γe = 222, 2′2′2, 2′2′2′ (α2x̄α−1 = 2x̄)

δ2x̄δ−1 α−1δαδ Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φ2′z̄

e (b(i)c) Φα
d (b(i)) Φα

d (z)

3a 2x̄ ε 01
2

1
20 −− à b̀

3b ab 1
2

1
2 −− à b̀

4 2ȳ 2z̄ A0b A1b a1
2 à + A0 b̀

Γe = n, n′, n1′ (δnz̄δ−1 = αnz̄α−1 = n−1
z̄ )

α−1δαδ Φn∗z̄
e (b(i)c) Φε′

e (b(i)c) Φα
d (b(i)) Φα

d (z)

5 ε ad j
N a′b′ à b̀

6 nz̄ 0 j
n a′b′ à b̀− j

2n

1
2

d j
n a′b′ à + A0 b̀− d j

2n
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Table B-12
Spin space-group types forS-lattices withG = 8̄2m. The possible values ofN and j are explained in the caption of Table B-2, and the notationA0 is as explained in
the caption of Table B-1.̀b denotes either 0 or12. Note that sincē8 is a generator ofG δ8 = ε. Spin space-group symbols areSΓe···8̄δ2αmδα if b̀ = 0 andSΓe···8̄δ2αcδα

if b̀ = 1
2 . The secondary 2 is replaced by 21 if Φα

d (b(i)) ≡ 1
2 and by 2a if Φα

d (b(i)) ≡ 01
201

2 .

Γe = 1, 1′, 2, 2′

α−1δαδ α2 Φγ
e (b(i)c) Φα

d (b(i)) Φα
d (z + h)

1 ε ε 01
2 0 b̀

2 ε 2z̄ 01
2

1
2 b̀ + 1

4

3 2z̄ ε 01
2 0 b̀− 1

4

4 2z̄ 2z̄ 01
2

1
2 b̀

Γe = 222, 2′2′2 (δ2x̄δ−1 = α2x̄α−1 = 2ȳ ⇒ α−1δαδ = α2 = ε)

Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φα

d (b(i)) Φα
d (z + h)

5 1
20 1

2
1
2

1
2 b̀

Γe = n, n′ (δnz̄δ−1 = αnz̄α−1, α2 = ε)

δnz̄δ−1 α−1δαδ Φn∗z̄
e (b(i)c) Φα

d (b(i)) Φα
d (z + h)

6 n−1
z̄ ε 0 j

N 0 b̀− j
2N

7 n−1
z̄ nz̄ 0 j

n 0 b̀− j
2n

8 nz̄ ε 1
2

j
n(n = 4) A0 b̀

9 nz̄ nz̄
1
2

j
n(n = 4) A0 b̀− j

8

Table B-13
Spin space-group types onV-lattices withG = 8/m. The possible values ofa, b, a′, b′, N, j, andd, as well as the notationsA0 andA1 are as explained in the caption
of Table B-1. Lines 3a and 3b refer to distinct spin space-group types ifΓe = 2′2′2 but are scale-equivalent ifΓe = 222, or 2′2′2′, for which line 3a suffices. ˇa
andã denote either 0 or12 . Note thatη2 = ε. Spin space-group symbols are of the formPΓe···8δ /mη where 8δ is replaced by 8δ4 if ã = 1

2 andmη is replaced bynη if

ǎ = 1
2, a subscripta is added ifΦη

h (b(i)) ≡ ǎ + A0.

Γe = 1, 1′, 2, 2′, 21′ (δ8 = ε)

δ−1ηδη Φ2∗z̄
e (b(i)c) Φε′

e (b(i)c) Φη
h (b(i)) Φδ

r8
(z)

1 ε ab a′b′ ǎ ã

2 2z̄ 01
2

1
2b ǎ ã + 1

4

1
2b a′b′ ǎ + A0 ã + b

2

Γe = 222, 2′2′2, 2′2′2′ (η2x̄η−1 = 2x̄, δ−1ηδη = δ8 = ε)

δ2x̄δ−1 Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φ2′z̄

e (b(i)c) Φη
h (b(i)) Φδ

r8
(z)

3a 2x̄ 01
2

1
20 −− ǎ ã

3b ab 1
2

1
2 −− ǎ ã

4 2ȳ A0b A1b a1
2 ǎ ã

Γe = n, n′ (δnz̄δ−1 = nz̄, ηnz̄η−1 = n−1
z̄ , δ8 = (δ−1ηδη)−4)

δ−1ηδη Φn∗z̄
e (b(i)c) Φε′

e (b(i)c) Φη
h (b(i)) Φδ

r8
(z)

5 ε ad j
N a′b′ ǎ ã

6 n−1
z̄ 0 j

n ab ǎ ã

1
2

d j
n ab ǎ + A0 ã + d j

2n
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Table B-14
Spin space-group types onS-lattices withG = 8/m. The possible values ofN and j are explained in the caption of Table B-2, and the notationA0 is explained in the
caption of Table B-1. Note thatη2 = ε. ǎ denotes either 0 or12 . Spin space-group symbols areSΓe···8δ /mη if ǎ≡ 0 andSΓe···8δ

2/aη if ǎ≡ 1
2 .

Γe = 1, 1′, 2, 2′ (δ8 = ε)

δ−1ηδη Φγ
e (b(i)c) Φη

h (b(i)) Φδ
r8

(z + h)

1 ε 01
2 ǎ 1

2 ǎ

2 2z̄ 01
2 ǎ 1

2 ǎ + 1
4

Γe = 222, 2′2′2 (η2x̄η−1 = 2x̄, δ−1ηδη = δ8 = ε)

δ2x̄δ−1 Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φη

h (b(i)) Φδ
r8

(z + h)

3 2ȳ
1
20 1

2
1
2 ǎ 1

2 ǎ

Γe = n, n′ (ηnz̄η−1 = n−1
z̄ , δ8 = (δ−1ηδη)−4)

δnz̄δ−1 δ−1ηδη Φn∗z̄
e (b(i)c) Φη

h (b(i)) Φδ
r8

(z + h)

4 nz̄ ε 0 j
N ǎ 1

2 ǎ

5 nz̄ n−1
z̄ 0 j

n ǎ 1
2 ǎ + j

2n

6 n−1
z̄ ε 1

2
j
n(n = 4) ǎ 1

2 ǎ

7 n−1
z̄ n−1

z̄
1
2

j
n(n = 4) ǎ + A0

1
2 ǎ− 1

2
j
n(n = 4)
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Table B-15
Spin space-group types onV-lattices withG = 8/mmm. The possible values ofa, b, a′, b′, N, j, andd, as well as the notationsA0 andA1 are explained in the caption
of Table B-1. Lines 7a and 7b refer to distinct spin space-group types ifΓe = 2′2′2 but are scale-equivalent ifΓe = 222, or 2′2′2′, for which line 7a suffices. Note
thatη2 = η−1µηµ = ε. â, b̂, ǎ, ã andb̃ denote either 0 or12 . Spin space-group symbols are of the formPΓe···8δ /mηmµmδµ, where 8δ andmη are replaced as in Table
B-13 above, andmµ andmδµ are replaced as in Table B-5 above.

Γe = 1, 1′, 2, 2′, 21′ (η−1µηµ = η2 = δ8 = ε)

µ−1δµδ δ−1ηδη µ2 Φ2∗z̄
e (b(i)c) Φε′

e (b(i)c) Φµ
m(b(i)) Φµ

m(z) Φη
h (b(i)) Φδ

r8
(z)

1 ε ε ε ab a′b′ â b̂ ǎ ã

2 ε ε 2z̄ 01
2

1
2b′ â b̂ + 1

4 ǎ ã

3 ε 2z̄ ε 1
20 a′ 1

2 â b̂ ǎ + A0 ã

4 2z̄ ε ε 1
20 a′ 1

2 â + A0 b̂ ǎ ã

5 2z̄ 2z̄ ε 01
2

1
2b′ â b̂ ǎ ã + 1

4

1
2b a′b′ â + A0 b̂ ǎ + A0 ã + b

2

6 2z̄ 2z̄ 2z̄ 01
2

1
2b′ â b̂ + 1

4 ǎ ã + 1
4

Γe = 222, 2′2′2, 2′2′2′ (µ2x̄µ−1 = η2x̄η−1 = 2x̄ ⇒ µ2 = ε)

δ2x̄δ−1 µ−1δµδ δ−1ηδη Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φ2′z̄

e (b(i)c) Φµ
m(b(i)) Φµ

m(z) Φη
h (b(i)) Φδ

r8
(z)

7a 2x̄ ε ε 01
2

1
20 −− â b̂ ǎ b̃

7b ab 1
2

1
2 −− â b̂ ǎ b̃

8 2ȳ 2z̄ ε A0b A1b a1
2 â + A0 b̂ ǎ b̃

Γe = n, n′, n1′ (δnz̄δ−1 = µnz̄µ−1 = nz̄, ηnz̄η−1 = n−1
z̄ , δ8 = (µ−1δµδ)4, (δ−1ηδη)−1 = µ−1δµδ)

µ−1δµδ µ2 Φn∗z̄
e (b(i)c) Φε′

e (b(i)c) Φµ
m(b(i)) Φµ

m(z) Φη
h (b(i)) Φδ

r8
(z)

9 ε ε ad j
N a′b′ â b̂ ǎ b̃

10 ε nz̄ 0 j
n a′b′ â b̂ + j

2n ǎ b̃

11 nz̄ ε 0 j
n a′b′ â b̂ ǎ b̃ + j

2n

1
2

d j
n a′b′ â + A0 b̂ ǎ + A0 b̃ + d j

2n

12 nz̄ nz̄ 0 j
n a′b′ â b̂ + j

2n ǎ b̃ + j
2n
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Table B-16
Spin space-group types onS-lattices withG = 8/mmm. The possible values ofN and j are explained in the caption of Table B-2, and the notationA0 is explained in
the caption of Table B-1. Note thatη2 = ε. ã andb̃ denote either 0 or12 . Spin space-group symbols areSΓe···8δ /mηmµmδµ if ã = b̃ = 0, SΓe···8δ /mηmµcδµ if ã = 0

andb̃ = 1
2 , SΓe···8δ /nηdµmδµ if ã = 1

2 andb̃ = 0 andSΓe···8δ /nηdµcδµ if ã = b̃ = 1
2. For example, ifΓe = 7 ,Gε = 4mmandΓ = (14)2′2′ the spin-space operations

can be chosen to beδ = (14)z̄ andη = 2′̄x, µ is necessarilyε sincem ∈ Gε. The corresponding line in the Table is 12, if ˜a = 0, b̃ = 1
2 andΦ7z̄

e (z + h) ≡ 2
7 , the

spin space-group symbol isS7
72C814m2x̄mc14.

Γe = 1, 1′, 2, 2′ (η2 = δ8 = ε)

µ−1δµδ δ−1ηδη η−1µηµ µ2 Φγ
e (k) Φµ

m(b(i)) Φµ
m(z + h) Φη

h (b(i)) Φδ
r8

(z + h)

1 ε ε ε ε 01
2 ã ã

2 + b̃ ã ã
2

2 ε ε ε 2z̄ 01
2 ã ã

2 + b̃ + 1
4 ã ã

2

3 ε 2z̄ 2z̄ ε 01
2 ã ã

2 + b̃ ã + 1
2

ta
2

4 2z̄ ε 2z̄ ε 01
2 ã ã

2 + b̃ ã + 1
2

ã
2 + 1

4

5 2z̄ ε 2z̄ 2z̄ 01
2 ã ã

2 + b̃ + 1
4 ã + 1

2
ã
2 + 1

4

6 2z̄ 2z̄ ε ε 01
2 ã ã

2 + b̃ ã ã
2 + 1

4

7 2z̄ 2z̄ ε 2z̄ 01
2 ã ã

2 + b̃ + 1
4 ã ã

2 + 1
4

Γe = 222, 2′2′2 (µ2x̄µ−1 = δ2x̄δ−1 = 2ȳ, η2x̄η−1 = 2x̄)

µ−1δµδ δ−1ηδη η−1µηµ µ2 Φ2∗x̄
e (b(i)c) Φ

2∗ȳ
e (b(i)c) Φµ

m(b(i)) Φµ
m(z + h) Φη

h (b(i)) Φδ
r8

(z + h)

8 2z̄ ε 2z̄ 2z̄
1
20 1

2
1
2 ã ã

2 + b̃ + 1
4 ã + 1

2
ã
2 + 1

4

Γe = n, n′ (ηnz̄η−1 = n−1
z̄ , δnz̄δ−1 = µnz̄µ−1, µ−1δµδ = (δ−1ηδη)−1, η−1µηµ = ε, δ8 = (µ−1δµδ)4)

δnz̄δ−1 µ−1δµδ µ2 Φn∗z̄
e (b(i)c) Φµ

m(b(i)) Φµ
m(z + h) Φη

h (b(i)) Φδ
r8

(z + h)

9 nz̄ ε ε 0 j
N ã ã

2 + b̃ ã ã
2

10 nz̄ ε nz̄ 0 j
n ã ã

2 + j
2n + b̃ ã ã

2

11 nz̄ nz̄ ε 0 j
n ã ã

2 + b̃ ã ã
2 + j

2n

12 nz̄ nz̄ nz̄ 0 j
n ã ã

2 + j
2n + b̃ ã ã

2 + j
2n

13 n−1
z̄ ε ε 1

2
j
n(n = 4) ã ã

2 + b̃ ã ã
2

14 n−1
z̄ n−1

z̄ ε 1
2

j
n(n = 4) ã + A0

ã
2 + b̃ ã + A0

ã
2 − 1

4

15 n−1
z̄ nz̄ ε 1

2
j
n(n = 4) ã + A0

ã
2 + b̃ ã + A0

ã
2 + 1

4
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Appendix C.
Octagonal spin space-group types:

Identification of the spin point-group generators
[Not to be included in the printed version of the

paper]

The following Tables list all the 3-dimensional octagonal spin
space-group types, explicitly identifying the spin-space opera-
tions δ, µ, η, andα appearing in the spin point-group genera-

tors. There are a total of 16 tables, one for each combination of
point groupG and lattice type. The first few columns of each
table give the structure of the spin point groupGS by listing Γe,
Gε, Γ, and the quotient groupG/Gε. Following these is a col-
umn that explicitly lists the generators(r8, δ), (r̄8, δ), (m, µ),
(d, α), and(h, η). The last column in each table refers to a line
in the corresponding spin space-group table in Appendix B. (Ta-
bles B-1–B-16), which gives the possible values of all the phase
functions for the generators of the spin point group, as well as a
rule for generating the spin space-group symbol.

Table C-1: Explicit list of octagonal spin space-group types withG = 8
onV-lattices. The last column refers to line numbers in Table B-1, where
the possible phase functions are listed, and rules are given to generate the
spin space-group symbol.

Γe Gε G/Gε Γ generator line
1 8 1 1 (r8, ε) 1

4 2 2∗ (r8, 2∗z̄) 1
1′ (r8, ε

′) 1
2 4 4∗ (r8, 4∗z̄) 1
1 8 8∗ (r8, 8∗z̄) 1

2 8 1 2 (r8, ε) 1
4 2 4∗ (r8, 4∗̄z) 1

2∗2∗2 (r8, 2∗x̄) 1
21′ (r8, ε

′) 1
2 4 8∗ (r8, 8∗z̄) 1
1 8 16∗ (r8, 16∗z̄) 2

1′ 8 1 1′ (r8, ε) 1
4 2 21′ (r8, 2z̄) 1
2 4 41′ (r8, 4z̄) 1
1 8 81′ (r8, 8z̄) 1

2′ 8 1 2′ (r8, ε) 1
4 2 2′2∗2′∗ (r8, 2∗̄x) 1

21′ (r8, ε
′) 1

2 4 41′ (r8, 4∗̄z) 1
1 8 81′ (r8, 8z̄) 1

21′ 8 1 21′ (r8, ε) 1
4 2 2′2′2′ (r8, 2x̄) 1

41′ (r8, 4z̄) 1
2 4 81′ (r8, 8z̄) 1
1 8 161′ (r8, 16z̄) 2

n 8 1 n (r8, ε) 5
4 2 (2n)∗ (r8, 2n∗z̄) 9

n1′ (r8, ε
′) 5

2 4 (4n)∗ (r8, 4n∗̄z) 7
1 8 (8n)∗ (r8, 8n∗z̄) 6

n′ 8 1 n′ (r8, ε) 5
4 2 n1′ (r8, ε

′) 5
2 4 (2n)1′ (r8, (2n)∗̄z) 9
1 8 (4n)1′ (r8, (4n)∗z̄) 7

n1′ 8 1 n1′ (r8, ε) 5
4 2 (2n)1′ (r8, 2nz̄) 9
2 4 (4n)1′ (r8, 4nz̄) 7

continued on next page
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Table C-1: continued

Γe Gε G/Gε Γ generator line
1 8 (8n)1′ (r8, 8nz̄) 6

222 8 1 222 (r8, ε) 3a
4 2 2′2′2′ (r8, ε

′) 3a
4∗2†2∗† (r8, 4∗z̄) 4

2′2′2 8 1 2′2′2 (r8, ε) 3
4 2 2′2′2′ (r8, ε

′) 3
4∗2†2∗† (r8, 4∗z̄) 4

2′2′2′ 8 1 2′2′2′ (r8, ε) 3a
4 2 4221′ (r8, 4z̄) 4

Table C-2: Explicit list of octagonal spin space-group types withG = 8
onS-lattices. The last column refers to line numbers in Table B-2, where
the possible phase functions are listed, and rules are given to generate the
spin space-group symbol.

Γe Gε G/Gε Γ generator line
1 8 1 1 (r8, ε) 1

4 2 2∗ (r8, 2∗z̄) 1
1′ (r8, ε

′) 1
2 4 4∗ (r8, 4∗z̄) 1
1 8 8∗ (r8, 8∗z̄) 1

2 8 1 2 (r8, ε) 1
4 2 4∗ (r8, 4∗̄z) 1

2∗2∗2 (r8, 2∗x̄) 1
21′ (r8, ε

′) 1
2 4 8∗ (r8, 8∗̄z) 1
1 8 16∗ (r8, 16∗z̄) 2

1′ 8 1 1′ (r8, ε) 1
4 2 21′ (r8, 2z̄) 1
2 4 41′ (r8, 4z̄) 1
1 8 81′ (r8, 8z̄) 1

2′ 8 1 2′ (r8, ε) 1
4 2 2′2∗2′∗ (r8, 2∗̄x) 1

21′ (r8, ε
′) 1

n 8 1 n (r8, ε) 4
4 2 (2n)∗ (r8, 2n∗̄z) 8

n1′ (r8, ε
′) 4

n2∗2∗ (r8, 2∗x̄) 4
2 4 (4n)∗ (r8, 4n∗̄z) 6
1 8 (8n)∗ (r8, 8n∗z̄) 5

n′ 8 1 n′ (r8, ε) 4
4 2 n1′ (r8, ε

′) 4
n′ 8 1 n1′ (r8, ε) 4

4 2 (2n)1′ (r8, nz̄) 8
2 4 (4n)1′ (r8, 4nz̄) 6
1 8 (8n)1′ (r8, 8nz̄) 5

2∗2∗2 4 2 4∗2†2∗† (r8, 4∗z̄) 3
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Table C-3: Explicit list of octagonal spin space-group types withG = 8̄
onV-lattices. The last column refers to line numbers in Table B-3, where
the possible phase functions are listed, and rules are given to generate the
spin space-group symbol.

Γe Gε G/Gε Γ generator line
1 8̄ 1 1 (r̄8, ε) 1

4 2 2∗ (r̄8, 2∗z̄) 1
1′ (r̄8, ε

′) 1
2 4 4∗ (r̄8, 4∗̄z) 1
1 8 8∗ (r̄8, 8∗z̄) 1

2 8̄ 1 2 (r̄8, ε) 1
4 2 4∗ (r̄8, 4∗z̄) 1

2∗2∗2 (r̄8, 2∗̄x) 1
21′ (r̄8, ε

′) 1
2 4 8∗ (r̄8, 8∗̄z) 1

2′ 8̄ 1 2′ (r̄8, ε) 1
4 2 2′2∗2′∗ (r̄8, 2∗x̄) 1

21′ (r̄8, ε
′) 1

2 4 41′ (r̄8, 4∗̄z) 1
1 8 81′ (r̄8, 8∗z̄) 1

1′ 8̄ 1 1′ (r̄8, ε) 1
4 2 21′ (r̄8, 2z̄) 1
2 4 41′ (r̄8, 4z̄) 1
1 8 81′ (r̄8, 8z̄) 1

21′ 8̄ 1 21′ (r̄8, ε) 1
4 2 41′ (r̄8, 4z̄) 1

2′2′2′ (r̄8, 2x̄) 1
2 4 81′ (r̄8, 8z̄) 1

n 4 2 n2∗2∗ (r̄8, 2∗̄x) 4
n′ 4 2 n′2∗n′∗ (r̄8, 2∗̄x) 4
n1′ 4 2 n221′ (r̄8, 2x̄) 4
222 8̄ 1 222 (r̄8, ε) 2a

4 2 2′2′2′ (r̄8, ε
′) 2a

4∗2†2∗† (r̄8, 4∗̄z) 3
2′2′2 8̄ 1 2′2′2 (r̄8, ε) 2

4 2 2′2′2′ (r̄8, ε
′) 2

4∗2†2∗† (r̄8, 4∗̄z) 3
2′2′2′ 4 2 4221′ (r̄8, 4z̄) 3

Table C-4: Explicit list of octagonal spin space-group types withG = 8̄
onS-lattices. The last column refers to line numbers in Table B-4, where
the possible phase functions are listed, and rules are given to generate the
spin space-group symbol.

Γe Gε G/Gε Γ generator line
1 8̄ 1 1 (r̄8, ε) 1

4 2 2∗ (r̄8, 2∗z̄) 1
1′ (r̄8, ε

′) 1
2 4 4∗ (r̄8, 4∗z̄) 1
1 8 8∗ (r̄8, 8∗̄z) 1

2 8̄ 1 2 (r̄8, ε) 1
4 2 4∗ (r̄8, 4∗z̄) 1

2∗2∗2 (r̄8, 2∗x̄) 1
21′ (r̄8, ε

′) 1
continued on next page
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Table C-4: continued

Γe Gε G/Gε Γ generator line
2 4 8∗ (r̄8, 8∗̄z) 1

2′ 8̄ 1 2′ (r̄8, ε) 1
4 2 2′2∗2′∗ (r̄8, 2∗x̄) 1

21′ (r̄8, ε
′) 1

2 4 41′ (r8, 4∗̄z) 1
2 4 41′ (r8, 8∗z̄) 1

1′ 8̄ 1 1′ (r̄8, ε) 1
4 2 21′ (r̄8, 2z̄) 1
2 4 41′ (r̄8, 4z̄) 1
1 8 81′ (r̄8, 8z̄) 1

n 8̄ 1 n (r̄8, ε) 4
4 2 (2n)∗ (r̄8, 2n∗̄z) 4

n2∗2∗ (r̄8, 2∗x̄) 3
n1′ (r̄8, ε

′) 4
n′ 8̄ 1 n′ (r̄8, ε) 4

4 2 n′2∗n′∗ (r̄8, 2∗x̄) 3
2∗2∗2 4 2 2′2′2′ (r̄8, ε

′) 2

Table C-5: Explicit list of octagonal spin space-group types withG =
8mmon V-lattices. The last column refers to line numbers in Table B-
5, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8mm 1 1 (r8, ε)(m, ε) 1

8 m 2 (r8, ε)(m, 2z̄) 1
2′ (r8, ε)(m, 2′z̄) 1
1′ (r8, ε)(m, ε′) 1

4mm 2 2∗ (r8, 2∗̄z)(m, ε) 1
1′ (r8, ε

′)(m, ε) 1
4m′m′ 2 2∗ (r8, 2∗̄z)(m, 2∗̄z) 1

1′ (r8, ε
′)(m, ε′) 1

4 2mm 2∗2†2∗† (r8, 2∗̄z)(m, 2†x̄) 1
21′ (r8, 2∗z̄)(m, ε′) 1

(r8, ε
′)(m, 2∗̄z) 1

(r8, 2∗z̄)(m, 2′∗z̄ ) 1
2 4mm 4∗2†2†∗ (r8, 4∗̄z)(m, 2†x̄) 1
1 8mm 8∗2†2∗† (r8, 8∗̄z)(m, 2†x̄) 1

(r8, 83∗)(m, 2†x̄) 1
Γe = 2
8mm 1 2 (r8, ε)(m, ε) 1

8 m 2∗2∗2 (r8, ε)(m, 2∗̄x) 1
21′ (r8, ε)(m, ε′) 1
4∗ (r8, ε)(m, 4∗z̄) 2

4mm 2 2∗2∗2 (r8, 2∗x̄)(m, ε) 1
21′ (r8, ε

′)(m, ε) 1
4∗ (r8, 4∗z̄)(m, ε) 3

4m′m′ 2 2∗2∗2 (r8, 2∗x̄)(m, 2∗x̄) 1
21′ (r8, ε

′)(m, ε′) 1
continued on next page
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Table C-5: continued

Gε G/Gε Γ generators line
4∗ (r8, 4∗z̄)(m, 4∗z̄) 4

4 2mm 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄) 1
(r8, 2†x̄)(m, 4∗z̄) 4
(r8, 2†x̄)(m, 2∗†x̄y ) 3

41′ (r8, 4∗z̄)(m, ε′) 3
(r8, ε

′)(m, 4∗z̄) 2
(r8, 4∗̄z)(m, 4′∗̄z ) 4

2′2′2′ (r8, 2∗x̄)(m, ε′) 1
(r8, ε

′)(m, 2∗x̄) 1
(r8, 2∗̄x)(m, 2′∗̄x ) 1

2 4mm 8∗2†2∗† (r8, 8∗z̄)(m, 2†x̄) 1
Γe = 2′

8mm 1 2′ (r8, ε)(m, ε) 1
8 m 2′2∗2′∗ (r8, ε)(m, 2∗̄x) 1

21′ (r8, ε)(m, ε′) 1
4mm 2 2′2∗2′∗ (r8, 2∗x̄)(m, ε) 1

21′ (r8, ε
′)(m, ε) 1

4m′m′ 2 2′2∗2′∗ (r8, 2∗x̄)(m, 2∗x̄) 1
21′ (r8, ε

′)(m, ε′) 1
4 2mm 2′2′2′ (r8, 2∗̄x)(m, ε′) 1

(r8, ε
′)(m, 2∗x̄) 1

(r8, 2∗̄x)(m, 2′∗̄x ) 1
2 4mm 4221′ (r8, 4∗z̄)(m, 2†x̄) 1
1 8mm 8221′ (r8, 8∗̄z)(m, 2†x̄) 1

Γe = 1′

8mm 1 1′ (r8, ε)(m, ε) 1
8 m 21′ (r8, ε)(m, 2z̄) 1

4mm 2 21′ (r8, 2z̄)(m, ε) 1
4m′m′ 2 21′ (r8, 2z̄)(m, 2z̄) 1

4 2mm 2′2′2′ (r8, 2z̄)(m, 2x̄) 1
2 4mm 4221′ (r8, 4z̄)(m, 2x̄) 1
1 8mm 8221′ (r8, 8z̄)(m, 2x̄) 1

(r8, 83∗)(m, 2†x̄) 1
Γe = 21′

8mm 1 21′ (r8, ε)(m, ε) 1
8 m 41′ (r8, ε)(m, 4z̄) 2

2′2′2′ (r8, ε)(m, 2x̄) 1
4mm 2 41′ (r8, 4z̄)(m, ε) 3

2′2′2′ (r8, 2x̄)(m, ε) 1
4m′m′ 2 41′ (r8, 4z̄)(m, 4z̄) 4

2′2′2′ (r8, 2x̄)(m, 2x̄) 1
4 2mm 4221′ (r8, 4z̄)(m, 2x̄) 1

(r8, 2x̄)(m, 4z̄) 4
(r8, 2x̄)(m, 2x̄y) 3

2 4mm 8221′ (r8, 8z̄)(m, 2x̄) 1
Γe = n
8mm 1 n (r8, ε)(m, ε) 7

8 2 (2n)∗ (r8, ε)(m, (2n)∗z̄) 8
n1′ (r8, ε)(m, ε′) 7

4mm 2 (2n)∗ (r8, (2n)∗̄z)(m, ε) 9
continued on next page
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Table C-5: continued

Gε G/Gε Γ generators line
n1′ (r8, ε

′)(m, ε) 7
4m′m′ 2 (2n)∗ (r8, (2n)∗z̄)(m, (2n)∗z̄) 10

n1′ (r8, ε
′)(m, ε′) 7

4 2mm (2n)1′ (r8, (2n)∗z̄)(m, ε′) 9
(r8, ε

′)(m, (2n)∗̄z) 8
(r8, (2n)∗z̄)(m, (2n)′∗z̄ ) 10

Γe = n′

8mm 1 n′ (r8, ε)(m, ε) 7
8 m n1′ (r8, ε)(m, ε′) 7

4mm 2 n1′ (r8, ε
′)(m, ε) 7

4m′m′ 2 n1′ (r8, ε
′)(m, ε′) 7

Γe = n1′ or n′

8mm 1 n1′ (r8, ε)(m, ε) 7
8 m (2n)1′ (r8, ε)(m, (2n)z̄) 8

4mm 2 (2n)1′ (r8, (2n)z̄)(m, ε) 9
4m′m′ 2 (2n)1′ (r8, (2n)∗̄z)(m, (2n)∗̄z) 10
Γe = 222
8mm 1 222 (r8, ε)(m, ε) 5a

8 m 2′2′2′ (r8, ε)(m, ε′) 5a
4mm 2 2′2′2′ (r8, ε

′)(m, ε) 5a
4∗22∗ (r8, 4∗z̄)(m, ε) 6

4m′m′ 2 2′2′2′ (r8, ε
′)(m, ε′) 5a

4 2mm 4221′ (r8, 4∗z̄)(m, ε′) 6
Γe = 2′2′2
8mm 1 2′2′2 (r8, ε)(m, ε) 5

8 m 2′2′2′ (r8, ε)(m, ε′) 5
4mm 2 2′2′2′ (r8, ε

′)(m, ε) 5
4∗22∗ (r8, 4∗z̄)(m, ε) 6

4m′m′ 2 2′2′2′ (r8, ε
′)(m, ε′) 5

4 2mm 4221′ (r8, 4∗z̄)(m, ε′) 6
Γe = 2′2′2′

4mm 2 4221′ (r8, 4z̄)(m, ε) 6
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Table C-6: Explicit list of octagonal spin space-group types withG =
8mmon S-lattices. The last column refers to line numbers in Table B-
6, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8mm 1 1 (r8, ε)(m, ε) 1

8 m 2 (r8, ε)(m, 2z̄) 1
2′ (r8, ε)(m, 2′z̄) 1
1′ (r8, ε)(m, ε′) 1

4mm 2 2∗ (r8, 2∗z̄)(m, ε) 1
1′ (r8, ε

′)(m, ε) 1
4m′m′ 2 2∗ (r8, 2∗̄z)(m, 2∗̄z) 1

1′ (r8, ε
′)(m, ε′) 1

4 2mm 2∗2†2∗† (r8, 2∗z̄)(m, 2†x̄) 1
21′ (r8, 2∗z̄)(m, ε′) 1

(r8, ε
′)(m, 2∗̄z) 1

(r8, 2∗z̄)(m, 2′∗z̄ ) 1
2 4mm 4∗2†2†∗ (r8, 4∗z̄)(m, 2†x̄) 1
1 8mm 8∗2†2∗† (r8, 8∗z̄)(m, 2†x̄) 1

(r8, 83∗)(m, 2†x̄) 1
Γe = 2
8mm 1 2 (r8, ε)(m, ε) 1

8 m 2∗2∗2 (r8, ε)(m, 2∗x̄) 1
21′ (r8, ε)(m, ε′) 1
4∗ (r8, ε)(m, 4∗̄z) 2

4mm 2 2∗2∗2 (r8, 2∗̄x)(m, ε) 1
21′ (r8, ε

′)(m, ε) 1
4∗ (r8, 4∗z̄)(m, ε) 3

4m′m′ 2 2∗2∗2 (r8, 2∗x̄)(m, 2∗x̄) 1
21′ (r8, ε

′)(m, ε′) 1
4∗ (r8, 4∗z̄)(m, 4∗z̄) 4

4 2mm 4∗2†2∗† (r8, 4∗̄z)(m, 2†x̄) 1
(r8, 2†x̄)(m, 4∗̄z) 2
(r8, 2†x̄)(m, 2∗†x̄y ) 3

41′ (r8, 4∗z̄)(m, ε′) 3
(r8, ε

′)(m, 4∗̄z) 2
(r8, 4∗z̄)(m, 4′∗z̄ ) 4

2′2′2′ (r8, 2∗x̄)(m, ε′) 1
(r8, ε

′)(m, 2∗̄x) 1
(r8, 2∗x̄)(m, 2′∗x̄ ) 1

2 4mm 8∗2†2∗† (r8, 8∗̄z)(m, 2†x̄) 1
Γe = 2′

8mm 1 2′ (r8, ε)(m, ε) 1
8 m 2′2∗2′∗ (r8, ε)(m, 2∗x̄) 1

21′ (r8, ε)(m, ε′) 1
4mm 2 2′2∗2′∗ (r8, 2∗x̄)(m, ε) 1

21′ (r8, ε
′)(m, ε) 1

4m′m′ 2 2′2∗2′∗ (r8, 2∗̄x)(m, 2∗̄x) 1
21′ (r8, ε

′)(m, ε′) 1
4 2mm 2′2′2′ (r8, 2∗x̄)(m, ε′) 1

(r8, ε
′)(m, 2∗̄x) 1

(r8, 2∗x̄)(m, 2′∗x̄ ) 1
continued on next page
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Table C-6: continued

Gε G/Gε Γ generators line
2 4mm 4221′ (r8, 4∗z̄)(m, 2†x̄) 1
1 8mm 8221′ (r8, 8∗̄z)(m, 2†x̄) 1

Γe = 1′

8mm 1 1′ (r8, ε)(m, ε) 1
8 m 21′ (r8, ε)(m, 2z̄) 1

4mm 2 21′ (r8, 2z̄)(m, ε) 1
4m′m′ 2 21′ (r8, 2z̄)(m, 2z̄) 1

4 2mm 2′2′2′ (r8, 2z̄)(m, 2x̄) 1
2 4mm 4221′ (r8, 4z̄)(m, 2x̄) 1
1 8mm 8221′ (r8, 8z̄)(m, 2x̄) 1

(r8, 83∗)(m, 2†x̄) 1
Γe = n
8mm 1 n (r8, ε)(m, ε) 6

8 2 (2n)∗ (r8, ε)(m, (2n)∗z̄) 7
n1′ (r8, ε)(m, ε′) 6

4mm 2 (2n)∗ (r8, (2n)∗z̄)(m, ε) 8
n1′ (r8, ε

′)(m, ε) 6
4m′m′ 2 (2n)∗ (r8, (2n)∗z̄)(m, (2n)∗z̄) 9

n2∗2∗ (r8, 2∗x̄)(m2∗x̄) 10
n1′ (r8, ε

′)(m, ε′) 6
4 222 (2n)∗2†2∗† (r8, (2n)z̄2

∗†
x̄ )(m, 2†x̄) 11

n221′ (r8, 2∗̄x)(m, 2′∗̄x ) 10
(2n)1′ (r8, (2n)∗z̄)(m, ε′) 8

(r8, ε
′)(m, (2n)∗z̄) 7

(r8, (2n)∗̄z)(m, (2n)′∗̄z ) 9
Γe = n′

8mm 1 n′ (r8, ε)(m, ε) 6
8 m n1′ (r8, ε)(m, ε′) 6

4mm 2 n1′ (r8, ε
′)(m, ε) 6

4m′m′ 2 n′2∗2′∗ (r8, 2∗x̄)(m, 2∗x̄) 10
n1′ (r8, ε

′)(m, ε′) 6
4 222 n221′ (r8, 2∗x̄)(m, 2′∗x̄ ) 10

Γe = 2∗2∗2
4m′m′ 2 4†2∗2∗† (r8, 4†z̄)(m, 4†z̄) 5

4 2mm 4221′ (r8, 4†z̄)(m, 4†
′

z̄ ) 5
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Table C-7: Explicit list of octagonal spin space-group types withG =
8̄m2 onV-lattices. The last column refers to line numbers in Table B-
7, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8̄m2 1 1 (r̄8, ε)(m, ε) 1

8̄ 2 2∗ (r̄8, ε)(m, 2∗z̄) 1
1′ (r̄8, ε)(m, ε′) 1

4mm 2 2∗ (r̄8, 2∗̄z)(m, ε) 1
1′ (r̄8, ε

′)(m, ε) 1
42′2′ 2 2∗ (r̄8, 2∗z̄)(m, 2∗z̄) 1

1′ (r̄8, ε
′)(m, ε′) 1

4 222 2∗2†2∗† (r̄8, 2∗̄z)(m, 2†x̄) 1
21′ (r̄8, 2∗z̄)(m, ε′) 1

(r̄8, ε
′)(m, 2∗z̄) 1

(r̄8, 2∗̄z)(m, 2′∗̄z ) 1
2 422 4∗2†2†∗ (r̄8, 4∗̄z)(m, 2†x̄) 1
1 8̄m2 8∗2†2∗† (r̄8, 8∗̄z)(m, 2†x̄) 1

(r̄8, 83∗
z̄ )(m, 2†x̄) 1

Γe = 2
8̄m2 1 2 (r̄8, ε)(m, ε) 1

8̄ 2 2∗2∗2 (r̄8, ε)(m, 2∗̄x) 1
21′ (r̄8, ε)(m, ε′) 1

4mm 2 2∗2∗2 (r̄8, 2∗x̄)(m, ε) 1
21′ (r̄8, ε

′)(m, ε) 1
4∗ (r̄8, 4∗̄z)(m, ε) 2

42′2′ 2 2∗2∗2 (r̄8, 2∗̄x)(m, 2∗̄x) 1
21′ (r̄8, ε

′)(m, ε′) 1
4∗ (r̄8, 4∗z̄)(m, 4∗z̄) 3

4 222 4∗2†2∗† (r̄8, 4∗z̄)(m, 2†x̄) 1
(r̄8, 2†x̄)(m, 4∗z̄) 3
(r̄8, 2†x̄)(m, 2∗†x̄y ) 2

41′ (r̄8, 4∗̄z)(m, ε′) 2
(r̄8, 4∗z̄)(m, 4′∗z̄ ) 3

2′2′2′ (r̄8, 2∗x̄)(m, ε′) 1
(r̄8, ε

′)(m, 2∗̄x) 1
(r̄8, 2∗x̄)(m, 2′∗x̄ ) 1

2 422 8∗2†2∗† (r̄8, 8∗̄z)(m, 2†x̄) 1
Γe = 2′

8̄m2 1 2′ (r̄8, ε)(m, ε) 1
8̄ 2 2′2∗2′∗ (r̄8, ε)(m, 2∗̄x) 1

21′ (r̄8, ε)(m, ε′) 1
4mm 2 2′2∗2′∗ (r̄8, 2∗x̄)(m, ε) 1

21′ (r̄8, ε
′)(m, ε) 1

42′2′ 2 2′2∗2′∗ (r̄8, 2∗̄x)(m, 2∗̄x) 1
21′ (r̄8, ε

′)(m, ε′) 1
4 222 2′2′2′ (r̄8, 2∗x̄)(m, ε′) 1

(r̄8, ε
′)(m, 2∗x̄) 1

(r̄8, 2∗̄x)(m, 2′∗̄x ) 1
2 422 4221′ (r̄8, 4∗z̄)(m, 2†x̄) 1
1 8̄m2 8221′ (r̄8, 8∗̄z)(m, 2†x̄) 1

Γe = 1′

continued on next page
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Table C-7: continued

Gε G/Gε Γ generators line
8̄m2 1 1′ (r̄8, ε)(m, ε) 1

8̄ 2 21′ (r̄8, ε)(m, 2z̄) 1
4mm 2 21′ (r̄8, 2z̄)(m, ε) 1
42′2′ 2 21′ (r̄8, 2z̄)(m, 2z̄) 1

4 222 2′2′2′ (r̄8, 2z̄)(m, 2x̄) 1
2 422 4221′ (r̄8, 4z̄)(m, 2x̄) 1
1 8̄m2 8221′ (r̄8, 8z̄)(m, 2x̄) 1

(r̄8, 83
z̄)(m, 2x̄) 1

Γe = 21′

8̄m2 1 21′ (r̄8, ε)(m, ε) 1
8̄ 2 2′2′2′ (r̄8, ε)(m, 2x̄) 1

4mm 2 41′ (r̄8, 4z̄)(m, ε) 1
2′2′2′ (r̄8, 2x̄)(m, ε) 1

42′2′ 2 41′ (r̄8, 4z̄)(m, 4z̄) 3
2′2′2′ (r̄8, 2x̄)(m, 2x̄) 1

4 222 4221′ (r̄8, 4z̄)(m, 2x̄) 1
(r̄8, 2x̄)(m, 4z̄) 3
(r̄8, 2x̄)(m, 2x̄y) 2

2 422 8221′ (r̄8, 8z̄)(m, 2x̄) 1
Γe = n
4mm 2 n2∗2∗ (r̄8, 2∗x̄)(m, ε) 6

4 222 (2n)∗2†2∗† (r̄8, 2†x̄)(m, (2n)∗̄z) 7
n221′ (r̄8, 2∗x̄)(m, ε′) 6

Γe = n′

4mm 2 n′2∗2′∗ (r̄8, 2∗x̄)(m, ε) 6
4 222 n221′ (r̄8, 2∗x̄)(m, ε′) 6

Γe = n1′

4mm 2 n221′ (r̄8, 2x̄)(m, ε) 6
4 222 (2n)221′ (r̄8, 2x̄)(m, (2n)z̄) 7

Γe = 222
8̄m2 1 222 (r̄8, ε)(m, ε) 4a

8̄ 2 2′2′2′ (r̄8, ε)(m, ε′) 4a
4mm 2 2′2′2′ (r̄8, ε

′)(m, ε) 4a
4†2∗2∗† (r̄8, 4†z̄)(m, ε) 5

42′2′ 2 2′2′2′ (r̄8, ε
′)(m, ε′) 4a

4 222 4221′ (r̄8, 4†z̄)(m, ε′) 5
Γe = 2′2′2
8̄m2 1 2∗2∗2 (r̄8, ε)(m, ε) 4

8̄ 2 2′2′2′ (r̄8, ε)(m, ε′) 4
4mm 2 2′2′2′ (r̄8, ε

′)(m, ε) 4
4†2∗2∗† (r̄8, 4†z̄)(m, ε) 5

42′2′ 2 2′2′2′ (r̄8, ε
′)(m, ε′) 4

4 222 4221′ (r̄8, 4†z̄)(m, ε′) 5
Γe = 2′2′2′

4mm 2 4221′ (r̄8, 4z̄)(m, ε) 5
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Table C-8: Explicit list of octagonal spin space-group types withG =
8̄m2 on S-lattices. The last column refers to line numbers in Table B-
8, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8̄m2 1 1 (r̄8, ε)(m, ε) 1
¯̄8 2 2∗ (r̄8, ε)(m, 2∗z̄) 1

1′ (r̄8, ε)(m, ε′) 1
4mm 2 2∗ (r̄8, 2∗̄z)(m, ε) 1

1′ (r̄8, ε
′)(m, ε) 1

42′2′ 2 2∗ (r̄8, 2∗z̄)(m, 2∗z̄) 1
1′ (r̄8, ε

′)(m, ε′) 1
4 222 2∗2†2∗† (r̄8, 2∗̄z)(m, 2†x̄) 1

21′ (r̄8, 2∗z̄)(m, ε′) 1
(r̄8, ε

′)(m, 2∗z̄) 1
(r̄8, 2∗̄z)(m, 2′∗̄z ) 1

2 422 4∗2†2†∗ (r̄8, 4∗̄z)(m, 2†x̄) 1
1 8̄m2 8∗2†2∗† (r̄8, 8∗̄z)(m, 2†x̄) 1

(r̄8, 83∗
z̄ )(m, 2†x̄) 1

Γe = 2
8̄m2 1 2 (r̄8, ε)(m, ε) 1
¯̄8 2 2∗2∗2 (r̄8, ε)(m, 2∗̄x) 1

21′ (r̄8, ε)(m, ε′) 1
4mm 2 2∗2∗2 (r̄8, 2∗x̄)(m, ε) 1

21′ (r̄8, ε
′)(m, ε) 1

42′2′ 2 2∗2∗2 (r̄8, 2∗x̄)(m, 2∗x̄) 1
21′ (r̄8, ε

′)(m, ε′) 1
4∗ (r̄8, 4∗z̄)(m, 4∗z̄) 2

4 222 4∗2†2∗† (r̄8, 4∗̄z)(m, 2†x̄) 1
(r̄8, 2†x̄)(m, 4∗̄z) 2

41′ (r̄8, 4∗z̄)(m, 4′∗z̄ ) 2
2′2′2′ (r̄8, 2∗x̄)(m, ε′) 1

(r̄8, ε
′)(m, 2∗̄x) 1

(r̄8, 2∗x̄)(m, 2′∗x̄ ) 1
2 422 8∗2†2∗† (r̄8, 8∗̄z)(m, 2†x̄) 1

Γe = 2′

8̄m2 1 2′ (r̄8, ε)(m, ε) 1
¯̄8 2 2′2∗2′∗ (r̄8, ε)(m, 2∗̄z) 1

21′ (r̄8, ε)(m, ε′) 1
4mm 2 2′2∗2′∗ (r̄8, 2∗x̄)(m, ε) 1

21′ (r̄8, ε
′)(m, ε) 1

42′2′ 2 2′2∗2′∗ (r̄8, 2∗̄x)(m, 2∗̄x) 1
21′ (r̄8, ε

′)(m, ε′) 1
4 222 2′2′2′ (r̄8, 2∗x̄)(m, ε′) 1

(r̄8, ε
′)(m, 2∗x̄) 1

(r̄8, 2∗̄x)(m, 2′∗̄x ) 1
2 422 4221′ (r̄8, 4∗z̄)(m, 2†x̄) 1
1 8̄m2 8221′ (r̄8, 8∗̄z)(m, 2†x̄) 1

Γe = 1′

8̄m2 1 1′ (r̄8, ε)(m, ε) 1
¯̄8 2 21′ (r̄8, ε)(m, 2z̄) 1

4mm 2 21′ (r̄8, 2z̄)(m, ε) 1
continued on next page
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Table C-8: continued

Gε G/Gε Γ generators line
42′2′ 2 21′ (r̄8, 2z̄)(m, 2z̄) 1

4 222 2′2′2′ (r̄8, 2z̄)(m, 2x̄) 1
2 422 4221′ (r̄8, 4z̄)(m, 2x̄) 1
1 8̄m2 8221′ (r̄8, 8z̄)(m, 2x̄) 1

(r̄8, 83
z̄)(m, 2x̄) 1

Γe = n
¯̄8 2 n2∗2∗ (r̄8, ε)(m, 2∗x̄) 6

4mm 2 (2n)∗n2∗2∗ (r̄8, 2∗x̄)(m, ε) 4
4 222 (2n)∗2†2∗† (r̄8, (2n)∗̄z)(m, 2†x̄) 6

(r̄8, 2†x̄)(m, (2n)∗̄z) 5
n221′ (r̄8, 2∗x̄)(m, ε′) 4

(r̄8, ε
′)(m, 2∗x̄) 6

Γe = n′
¯̄8 2 n′2∗2′∗ (r̄8, ε)(m, 2∗̄x) 6

4mm 2 n′2∗2′∗ (r̄8, 2∗̄x)(m, ε) 4
4 222 n221′ (r̄8, 2∗̄x)(m, ε′) 4

(r̄8, ε
′)(m, 2∗x̄) 6

2 422 (2n)221′ (r̄8, (2n)∗̄z)(m, 2†x̄) 6
Γe = 2∗2∗2
42′2′ 2 4†2∗2†∗ (r̄8, 4†z̄)(m, 4†z̄) 3

4 222 4221′ (r̄8, 4†z̄)(m, 4′†z̄ ) 3

Table C-9: Explicit list of octagonal spin space-group types withG =
822 onV-lattices. The last column refers to line numbers in Table B-
9, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
822 1 1 (r8, ε)(d, ε) 1
8 m 2∗ (r8, ε)(d, 2∗z̄) 1

1′ (r8, ε)(d, ε′) 1
422 2 2∗ (r8, 2∗z̄)(d, ε) 1

1′ (r8, ε
′)(d, ε) 1

42′2′ 2 2∗ (r8, 2∗z̄)(d, 2∗z̄) 1
1′ (r8, ε

′)(d, ε′) 1
4 222 2∗2†2∗† (r8, 2∗z̄)(d, 2†x̄) 1

21′ (r8, 2∗z̄)(d, ε′) 1
(r8, ε

′)(d, 2∗z̄) 1
(r8, 2∗z̄)(d, 2′∗z̄ ) 1

2 422 4∗2†2†∗ (r8, 4∗z̄)(d, 2†x̄) 1
1 822 8∗2†2∗† (r8, 8∗z̄)(d, 2†x̄) 1

(r8, 83∗̄
z )(d, 2†x̄) 1

Γe = 2
822 1 2 (r8, ε)(d, ε) 1
8 m 2∗2∗2 (r8, ε)(d, 2∗x̄) 1

21′ (r8, ε)(d, ε′) 1
422 2 2∗2∗2 (r8, 2∗x̄)(d, ε) 1

21′ (r8, ε
′)(d, ε) 1

4∗ (r8, 4∗z̄)(d, ε) 3
continued on next page
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Table C-9: continued

Gε G/Gε Γ generators line
42′2′ 2 2∗2∗2 (r8, 2∗x̄)(d, 2∗x̄) 1

21′ (r8, ε
′)(d, ε′) 1

4 222 4∗2†2∗† (r8, 4∗̄z)(d, 2†x̄) 1
(r8, 2†x̄)(d, 2∗†x̄y ) 3

41′ (r8, 4∗z̄)(d, ε′) 3
2′2′2′ (r8, 2∗x̄)(d, ε′) 1

(r8, ε
′)(d, 2∗x̄) 1

(r8, 2∗̄x)(d, 2′∗̄x ) 1
2 422 8∗2†2∗† (r8, 8∗z̄)(d, 2†x̄) 1
1 822 (16)∗2†2∗† (r8, 16∗̄z)(d, 2†x̄) 2

(r8, 163∗)(d, 2†x̄) 2
Γe = 2′

822 1 2′ (r8, ε)(d, ε) 1
8 m 2′2∗2′∗ (r8, ε)(d, 2∗̄x) 1

21′ (r8, ε)(d, ε′) 1
422 2 2′2∗2′∗ (r8, 2∗x̄)(d, ε) 1

21′ (r8, ε
′)(d, ε) 1

42′2′ 2 2′2∗2′∗ (r8, 2∗̄x)(d, 2∗̄x) 1
21′ (r8, ε

′)(d, ε′) 1
4 222 2′2′2′ (r8, 2∗x̄)(d, ε′) 1

(r8, ε
′)(d, 2∗x̄) 1

(r8, 2∗̄x)(d, 2′∗̄x ) 1
2 422 4221′ (r8, 4∗z̄)(d, 2†x̄) 1
1 822 8221′ (r8, 8∗̄z)(d, 2†x̄) 1

Γe = 1′

822 1 1′ (r8, ε)(d, ε) 1
8 m 21′ (r8, ε)(d, 2z̄) 1

422 2 21′ (r8, 2z̄)(d, ε) 1
42′2′ 2 21′ (r8, 2z̄)(d, 2z̄) 1

4 222 2′2′2′ (r8, 2z̄)(d, 2x̄) 1
2 422 4221′ (r8, 4z̄)(d, 2x̄) 1
1 822 8221′ (r8, 8z̄)(d, 2x̄) 1

(r8, 83
z̄)(d, 2x̄) 1

Γe = 21′

822 1 21′ (r8, ε)(d, ε) 1
8 m 2′2′2′ (r8, ε)(d, 2x̄) 1

422 2 41′ (r8, 4z̄)(d, ε) 3
2′2′2′ (r8, 2x̄)(d, ε) 1

42′2′ 2 2′2′2′ (r8, 2x̄)(d, 2x̄) 1
4 222 4221′ (r8, 4z̄)(d, 2x̄) 1

(r8, 2x̄)(d, 2x̄y) 3
2 422 8221′ (r8, 8z̄)(d, 2x̄) 1
1 822 (16)221′ (r8, 16z̄)(d, 2x̄) 2

(r8, 163
z̄)(d, 2x̄) 2

Γe = n
8 2 n2∗2∗ (r8, ε)(d, 2∗x̄) 6
4 222 (2n)∗2†2∗† (r8, (2n)∗̄z)(d, 2†x̄) 10

n221′ (r8, ε
′)(d, 2∗x̄) 6

2 422 (4n)∗2†2∗† (r8, (4n)z̄)(d, 2†x̄) 9
1 822 (8n)∗2†2∗† (r8, (8n)∗z̄)(d, 2†x̄) 7
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Table C-9: continued

Gε G/Gε Γ generators line
(r8, (8n)3∗

z̄ )(d, 2†x̄) 8
Γe = n′

8 m n′2∗2′∗ (r8, ε)(d, 2∗̄x) 6
4 222 n221′ (r8, ε

′)(d, 2∗̄x) 6
2 422 (2n)221′ (r8, (2n)∗z̄)(d, 2†x̄) 10
1 822 (4n)221′ (r8, (4n)∗̄z)(d, 2†x̄) 9

Γe = n1′

8 2 n221′ (r8, ε)(d, 2x̄) 6
4 222 (2n)221′ (r8, (2n)z̄)(d, 2x̄) 10
2 422 (4n)221′ (r8, (4n)z̄)(d, 2x̄) 9
1 822 (8n)221′ (r8, (8n)z̄)(d, 2x̄) 7

(r8, (8n)3
z̄)(d, 2x̄) 8

Γe = 222
822 1 222 (r8, ε)(d, ε) 4a
8 m 2′2′2′ (r8, ε)(d, ε′) 4a

422 2 2′2′2′ (r8, ε
′)(d, ε) 4a

4†2∗2∗† (r8, 4†z̄)(d, ε) 5
42′2′ 2 2′2′2′ (r8, ε

′)(d, ε′) 4a
4 222 4221′ (r8, 4†z̄)(d, ε′) 5

Γe = 2′2′2
822 1 2′2′2 (r8, ε)(d, ε) 4
8 m 2′2′2′ (r8, ε)(d, ε′) 4

422 2 2′2′2′ (r8, ε
′)(d, ε) 4

4†2∗2∗† (r8, 4†z̄)(d, ε) 5
42′2′ 2 2′2′2′ (r8, ε

′)(d, ε′) 4
4 222 4221′ (r8, 4†z̄)(d, ε′) 5

Γe = 2′2′2′

822 1 2′2′2′ (r8, ε)(d, ε) 4a
422 2 4221′ (r8, 4z̄)(d, ε) 5
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Table C-10: Explicit list of octagonal spin space-group types withG =
822 onS-lattices. The last column refers to line numbers in Table B-
10, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
822 1 1 (r8, ε)(d, ε) 1
8 2 2∗ (r8, ε)(d, 2∗z̄) 1

1′ (r8, ε)(d, ε′) 1
422 2 2∗ (r8, 2∗̄z)(d, ε) 1

1′ (r8, ε
′)(d, ε) 1

42′2′ 2 2∗ (r8, 2∗z̄)(d, 2∗z̄) 1
1′ (r8, ε

′)(d, ε′) 1
4 222 2∗2†2∗† (r8, 2∗̄z)(d, 2†x̄) 1

21′ (r8, 2∗z̄)(d, ε′) 1
(r8, ε

′)(d, 2∗z̄) 1
(r8, 2∗̄z)(d, 2′∗̄z ) 1

2 422 4∗2†2†∗ (r8, 4∗̄z)(d, 2†x̄) 1
1 822 8∗2†2∗† (r8, 8∗̄z)(d, 2†x̄) 1

(r8, 83∗
z̄ )(d, 2†x̄) 1

Γe = 2
822 1 2 (r8, ε)(d, ε) 1
8 2 2∗2∗2 (r8, ε)(d, 2∗̄x) 1

21′ (r8, ε)(d, ε′) 1
422 2 2∗2∗2 (r8, 2∗x̄)(d, ε) 1

21′ (r8, ε
′)(d, ε) 1

42′2′ 2 2∗2∗2 (r8, 2∗x̄)(d, 2∗x̄) 1
21′ (r8, ε

′)(d, ε′) 1
4∗ (r8, 4∗z̄)(d, 4∗z̄) 3

4 222 4∗2†2∗† (r8, 4∗̄z)(d, 2†x̄) 1
(r8, 2†x̄)(d, 4∗̄z) 1
(r8, 4∗z̄)(d, 4′∗z̄ ) 1

2′2′2′ (r8, 2∗x̄)(d, ε′) 1
(r8, ε

′)(d, 2∗̄x) 1
(r8, 2∗x̄)(d, 2′∗x̄ ) 1

2 422 8∗2†2∗† (r8, 8∗̄z)(d, 2†x̄) 1
1 822 (16)∗2†2∗† (r8, 16∗z̄)(d, 2†x̄) 2

(r8, 163∗)(d, 2†x̄) 2
Γe = 2′

822 1 2′ (r8, ε)(d, ε) 1
8 2 2′2∗2′∗ (r8, ε)(d, 2∗x̄) 1

21′ (r8, ε)(d, ε′) 1
422 2 2′2∗2′∗ (r8, 2∗̄x)(d, ε) 1

21′ (r8, ε
′)(d, ε) 1

42′2′ 2 2′2∗2′∗ (r8, 2∗x̄)(d, 2∗x̄) 1
21′ (r8, ε

′)(d, ε′) 1
4 222 2′2′2′ (r8, 2∗x̄)(d, ε′) 1

(r8, ε
′)(d, 2∗̄x) 1

(r8, 2∗x̄)(d, 2′∗x̄ ) 1
2 422 4221′ (r8, 4∗̄z)(d, 2†x̄) 1
1 822 8221′ (r8, 8∗z̄)(d, 2†x̄) 1

Γe = 1′

822 1 1′ (r8, ε)(d, ε) 1
continued on next page

30    Even-Dar Mandel & Lifshitz · Magnetic symmetry of octagonal quasicrystals Acta Cryst. (2004). A60, 179–194

IUCr macros version 2.0β13: 2003/12/24



research papers

Table C-10: continued

Gε G/Gε Γ generators line
8 2 21′ (r8, ε)(d, 2z̄) 1

422 2 21′ (r8, 2z̄)(d, ε) 1
42′2′ 2 21′ (r8, 2z̄)(d, 2z̄) 1

4 222 2′2′2′ (r8, 2z̄)(d, 2x̄) 1
2 422 4221′ (r8, 4z̄)(d, 2x̄) 1
1 822 8221′ (r8, 8z̄)(d, 2x̄) 1

(r8, 83
z̄)(d, 2x̄) 1

Γe = n
8 2 n2∗2∗ (r8, ε)(d, 2∗x̄) 5

422 2 n2∗2∗ (r8, 2∗x̄)(d, ε) 10
4 222 (2n)∗2†2∗† (r8, (2n)∗z̄)(d, 2†x̄) 9

n221′ (r8, 2∗x̄)(d, ε′) 10
(r8, ε

′)(d, 2∗̄x) 5
2 422 (4n)∗2†2∗† (r8, (4n)z̄)(d, 2†x̄) 7
1 822 (8n)∗2†2∗† (r8, (8n)∗̄z)(d, 2†x̄) 6

(r8, (8n)3∗̄
z )(d, 2†x̄) 8

Γe = n′

8 2 n′2∗2′∗ (r8, ε)(d, 2∗̄x) 5
422 2 n′2∗2′∗ (r8, 2∗̄x)(d, ε) 10
4 222 n221′ (r8, 2∗̄x)(d, ε′) 10

(r8, ε
′)(d, 2∗x̄) 5

2 422 (2n)221′ (r8, (2n)∗̄z)(d, 2†x̄) 5
1 822 (4n)221′ (r8, (4n)∗z̄)(d, 2†x̄) 5

Γe = 2∗2∗2
42′2′ 2 4†2∗2†∗ (r8, 4†z̄)(d, 4†z̄) 4

4 222 4221′ (r8, 4†z̄)(d, 4′†z̄ ) 4
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Table C-11: Explicit list of octagonal spin space-group types withG =
8̄2m on V-lattices. The last column refers to line numbers in Table B-
11, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8̄m2 1 1 (r̄8, ε)(d, ε) 1

8̄ 2 2∗ (r̄8, ε)(d, 2∗z̄) 1
1′ (r̄8, ε)(d, ε′) 1

4mm 2 2∗ (r̄8, 2∗̄z)(d, ε) 1
1′ (r̄8, ε

′)(d, ε) 1
42′2′ 2 2∗ (r̄8, 2∗z̄)(d, 2∗z̄) 1

1′ (r̄8, ε
′)(d, ε′) 1

222 2∗2†2∗† (r̄8, 2∗̄z)(d, 2†x̄) 1
21′ (r̄8, 2∗z̄)(d, ε′) 1

(r̄8, ε
′)(d, 2∗z̄) 1

(r̄8, 2∗̄z)(d, 2′∗̄z ) 1
2 422 4∗2†2†∗ (r̄8, 4∗̄z)(d, 2†x̄) 1
1 8̄m2 8∗2†2∗† (r̄8, 8∗̄z)(d, 2†x̄) 1

(r̄8, 83∗
z̄ )(d, 2†x̄) 1

Γe = 2
8̄2m 1 2 (r̄8, ε)(d, ε) 1

8̄ 2 2∗2∗2 (r̄8, ε)(d, 2∗̄x) 1
21′ (r̄8, ε)(d, ε′) 1

422 2 2∗2∗2 (r̄8, 2∗x̄)(d, ε) 1
21′ (r̄8, ε

′)(d, ε) 1
4m′m′ 2 2∗2∗2 (r̄8, 2∗x̄)(d, 2∗x̄) 1

21′ (r̄8, ε
′)(d, ε′) 1

4 222 4∗2†2∗† (r̄8, 4∗z̄)(d, 2†x̄) 1
(r̄8, 2†x̄)(d, 2∗†x̄y ) 2

2′2′2′ (r̄8, 2∗x̄)(d, ε′) 1
(r̄8, ε

′)(d, 2∗x̄) 1
(r̄8, 2∗x̄)(d, 2∗

′
x̄ ) 1

41′ (r̄8, 4∗̄z)(d, ε′) 2
2 422 8∗2†2∗† (r̄8, 8∗z̄)(d, 2†x̄) 1

Γe = 2′

8̄m2 1 2′ (r̄8, ε)(d, ε) 1
8̄ 2 2′2∗2′∗ (r̄8, ε)(d, 2∗x̄) 1

21′ (r̄8, ε)(d, ε′) 1
4mm 2 2′2∗2′∗ (r̄8, 2∗x̄)(d, ε) 1

21′ (r̄8, ε
′)(d, ε) 1

42′2′ 2 2′2∗2′∗ (r̄8, 2∗̄x)(d, 2∗̄x) 1
21′ (r̄8, ε

′)(d, ε′) 1
4 222 2′2′2′ (r̄8, 2∗x̄)(d, ε′) 1

(r̄8, ε
′)(d, 2∗x̄) 1

(r̄8, 2∗x̄)(d, 2′∗x̄ ) 1
2 422 4221′ (r̄8, 4∗z̄)(d, 2†x̄) 1
1 8̄m2 8221′ (r̄8, 8∗z̄)(d, 2†x̄) 1

Γe = 1′

8̄m2 1 1′ (r̄8, ε)(d, ε) 1
8̄ 2 21′ (r̄8, ε)(d, 2z̄) 1

4mm 2 21′ (r̄8, 2z̄)(d, ε) 1
42′2′ 2 21′ (r̄8, 2z̄)(d, 2z̄) 1
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Table C-11: continued

Gε G/Gε Γ generators line
4 222 2′2′2′ (r̄8, 2z̄)(d, 2x̄) 1
2 422 4221′ (r̄8, 4z̄)(d, 2x̄) 1
1 8̄m2 8221′ (r̄8, 8z̄)(d, 2x̄) 1

(r̄8, 83
z̄)(d, 2x̄) 1

Γe = 21′

8̄2m 1 21′ (r̄8, ε)(d, ε) 1
8̄ 2 2′2′2′ (r̄8, ε)(d, 2x̄) 1

422 2 41′ (r̄8, 4z̄)(d, ε) 2
2′2′2′ (r̄8, 2x̄)(d, ε) 1

4m′m′ 2 2′2′2′ (r̄8, 2x̄)(d, 2x̄) 1
4 222 4221′ (r̄8, 4z̄)(d, 2x̄) 1

(r̄8, 2x̄)(d, 2x̄y) 2
2 422 8221′ (r̄8, 8z̄)(d, 2x̄) 1

Γe = n
4m′m′ 2 n2∗2∗ (r̄8, 2∗̄x)(d, 2∗̄x) 5

4 222 (2n)∗2†2∗† (r̄8, 2†x̄(2n)∗z̄)(d, 2†x̄) 6
n221′ (r̄8, 2∗x̄)(d, 2∗

′
x̄ ) 5

Γe = n′

4m′m′ 2 n′2∗2∗
′

(r̄8, 2∗x̄)(d, 2∗x̄) 5
4 222 n221′ (r̄8, 2∗̄x)(d, 2∗

′
x̄ ) 5

Γe = n1′

4m′m′ 2 n221′ (r̄8, 2x̄)(d, 2x̄) 5
4 222 (2n)221′ (r̄8, 2x̄(2n)z̄)(d, 2x̄) 6

Γe = 222
8̄2m 1 222 (r̄8, eps)(d, ε) 3a

8̄ 2 2′2′2′ (r̄8, ε), (d, ε′) 3a
422 2 2′2′2′ (r̄8, ε

′)(d, ε) 3a
4∗22∗ (r̄8, 4∗z̄)(d, ε) 4

4m′m′ 2 2′2′2′ (r̄8, ε
′)(d, ε′) 3a

4 222 42′2′2′ (r̄8, 4∗z̄)(d, ε′) 4
Γe = 2′2′2
8̄2m 1 2′2′2 (r̄8, eps)(d, ε) 3

8̄ 2 2′2′2′ (r̄8, ε), (d, ε′) 3
422 2 2′2′2′ (r̄8, ε

′)(d, ε) 3
4∗22∗ (r̄8, 4∗z̄)(d, ε) 4

4m′m′ 2 2′2′2′ (r̄8, ε
′)(d, ε′) 3

4 222 42′2′2′ (r̄8, 4∗z̄)(d, ε′) 4
Γe = 2′2′2′

8̄2m 1 2′2′2′ (r̄8, ε)(d, ε) 3a
422 2 4221′ (r̄8, 4z̄)(d, ε) 4

Table C-12: Explicit list of octagonal spin space-group types withG =
8̄2m on S-lattices. The last column refers to line numbers in Table B-
12, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8̄2m 1 1 (r̄8, ε)(d, ε) 1
¯̄8 2 2∗ (r̄8, ε)(d, 2∗z̄) 1

continued on next page
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Table C-12: continued

Gε G/Gε Γ generators line
1′ (r̄8, ε)(d, ε′) 1

422 2 2∗ (r̄8, 2∗z̄)(d, ε) 1
1′ (r̄8, ε

′)(d, ε) 1
4m′m′ 2 2∗ (r̄8, 2∗z̄)(d, 2∗z̄) 1

1′ (r̄8, ε
′)(d, ε′) 1

4 222 2∗2†2∗† (r̄8, 2∗z̄)(d, 2†x̄) 1
21′ (r̄8, 2∗̄z)(d, ε′) 1

(r̄8, ε
′)(d, 2∗z̄) 1

(r̄8, 2∗z̄)(d, 2′∗z̄ ) 1
2 422 4∗2†2†∗ (r̄8, 4∗z̄)(d, 2†x̄) 1
1 8̄m2 8∗2†2∗† (r̄8, 8∗z̄)(d, 2†x̄) 1

(r̄8, 83∗
z̄ )(d, 2†x̄) 1

Γe = 2
8̄2m 1 2 (r̄8, ε)(m, ε) 1

8̄ 2 4∗ (r̄8, ε)(d, 4∗z̄) 2
2∗2∗2 (r̄8, ε)(d, 2∗̄x) 1

21′ (r̄8, ε)(d, ε′) 1
422 2 4∗ (r̄8, 4∗z̄)(d, ε) 2

2∗2∗2 (r̄8, 2∗̄x)(d, ε) 1
21′ (r̄8, ε

′)(d, ε) 1
4m′m′ 2 4∗ (r̄8, 4∗z̄)(d, 4∗z̄) 2

2∗2∗2 (r̄8, 2∗x̄)(d, 2∗x̄) 1
21′ (r̄8, ε

′)(d, ε′) 1
4 222 4∗2†2∗† (r̄8, 4∗z̄)(d, 2†x̄) 1

(r̄8, 2x̄)(d, 4∗̄z) 4
(r̄8, 2†x̄)(d, 2∗†x̄y ) 3

2′2′2′ (r̄8, 2∗x̄)(d, ε′) 1
(r̄8, ε

′)(d, 2∗̄x) 1
(r̄8, 2∗̄x)(s, 2∗

′
x̄ ) 1

41′ (r̄8, 4∗z̄)(d, ε′) 3
(r̄8, ε

′)(d, ε) 2
(r̄8, 4∗̄z)(d, 4z̄∗′) 4

2 422 8∗2†2∗† (r̄8, 8∗z̄)(d, 2†x̄) 1
Γe = 2′

8̄2m 1 2′ (r̄8, ε)(d, ε) 1
8̄ 2 2′2∗2′∗ (r̄8, ε)(d, 2∗z̄) 1

21′ (r̄8, ε)(d, ε′) 1
422 2 2′2∗2′∗ (r̄8, 2∗̄x)(d, ε) 1

21′ (r̄8, ε
′)(d, ε) 1

4m′m′ 2 2′2∗2′∗ (r̄8, 2∗x̄)(d, 2∗x̄) 1
21′ (r̄8, ε

′)(d, ε′) 1
4 222 2′2′2′ (r̄8, 2∗̄x)(d, ε′) 1

(r̄8, ε
′)(d, 2∗x̄) 1

(r̄8, 2∗x̄)(d, 2′∗x̄ ) 1
2 422 4221′ (r̄8, 4∗z̄)(d, 2†x̄) 1
1 8̄m2 8221′ (r̄8, 8∗z̄)(d, 2†x̄) 1

Γe = 1′

8̄2m 1 1′ (r̄8, ε)(d, ε) 1
8̄ 2 21′ (r̄8, ε)(d, 2z̄) 1

422 2 21′ (r̄8, 2z̄)(d, ε) 1
continued on next page
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Table C-12: continued

Gε G/Gε Γ generators line
4m′m′ 2 21′ (r̄8, 2z̄)(d, 2z̄) 1

4 222 2′2′2′ (r̄8, 2z̄)(d, 2x̄) 1
2 422 4221′ (r̄8, 4z̄)(d, 2x̄) 1
1 8̄m2 8221′ (r̄8, 8z̄)(d, 2x̄) 1

(r̄8, 83
z̄)(d, 2x̄) 1

Γe = n
8̄2m 1 n (r̄8, ε)(d, ε) 8

8̄ 2 n1′ (r̄8, ε)(d, ε′) 8
422 2 n1′ (r̄8, ε

′)(d, ε) 8
4m′m′ 2 n2∗2∗ (r̄8, 2∗x̄)(d2∗x̄) 6

n1′ (r̄8, ε
′)(d, ε′) 8

4 222 (2n)∗2†2∗† (r̄8, 2†x̄(2n)∗z̄)(d, 2†x̄) 7
n221′ (r̄8, 2∗x̄)(d, 2∗

′
x̄ ) 6

(2n)1′ (r̄8, (2n)∗̄z)(d, ε′) 9
Γe = n′

8̄2m 1 n′ (r̄8, ε
′)(d, ε′) 8

8̄ 2 n1′ (r̄8, ε)(d, ε′) 8
422 2 n1′ (r̄8, ε

′)(d, ε) 8
4m′m′ 2 n1′ (r̄8, ε

′)(d, ε′) 8
n′2∗2∗

′
(r̄8, 2∗̄x)(d, 2∗̄x) 6

4 222 n221′ (r̄8, 2∗x̄)(d, 2∗
′

x̄ ) 6
Γe = 2∗2∗2
4m′m′ 2 4∗22∗ (r̄8, 4∗z̄)(d, 4∗z̄) 5

4 222 4221′ (r̄8, 4∗z̄)(s, 4∗
′

z̄ ) 5

Table C-13: Explicit list of octagonal spin space-group types withG =
8/m on V-lattices. The last column refers to line numbers in Table B-
13, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8/m 1 1 (r8, ε)(h, ε) 1
8 2 2∗ (r8, ε)(h, 2∗z̄) 1

1′ (r8, ε)(h, ε′) 1
8̄ 2 2∗ (r8, 2∗̄z)(h, 2∗̄z) 1

1′ (r8, ε
′)(h, ε′) 1

4/m 2 2∗ (r8, 2∗z̄)(h, ε) 1
1′ (r8, ε

′)(h, ε) 1
4 222 2∗2†2∗† (r8, 2∗z̄)(h, 2†x̄) 1

21′ (r8, 2∗z̄)(h, ε′) 1
(r8, ε

′)(h, 2∗̄z) 1
(r8, 2∗z̄)(h, 2∗z̄

′) 1
4̄ 4 4∗ (r8, 4∗z̄)(h, 2z̄) 1

2/m 4 4∗ (r8, 4∗z̄)(h, ε) 1
2 4/m 41′ (r8, 4∗z̄)(h, ε′) 1

(r8, 4∗̄z)(h, 2′̄z) 1
2̄ 8 8∗ (r8, 8∗̄z)(h, ε) 1

(r8, 8∗z̄
3)(h, ε) 1

1̄ 8 8∗ (r8, 8∗z̄)(h, 2z̄) 1
continued on next page
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Table C-13: continued

Gε G/Gε Γ generators line
(r8, 8∗̄z

3)(h, 2z̄) 1
1 8/m 81′ (r8, 8∗z̄)(h, ε′) 1

(r8, 8∗z̄
3)(h, ε′) 1

(r8, 8∗̄z)(h, 2′̄z) 1
(r8, 8∗z̄

3)(h, 2′z̄) 1
Γe = 2
8/m 1 2 (r8, ε)(h, ε) 1
8 2 2∗2∗2 (r8, ε)(h, 2∗̄x) 1

21′ (r8, ε)(h, ε′) 1
8̄ 2 2∗2∗2 (r8, 2∗x̄)(h, 2∗x̄) 1

21′ (r8, ε
′)(h, ε′) 1

4/m 2 4∗ (r8, 4∗z̄)(h, ε) 1
2∗2∗2 (r8, 2∗̄x)(h, ε) 1

21′ (r8, ε
′)(h, ε) 1

4 2/m 4∗2†2∗† (r8, 4∗̄z)(h, 2†x̄) 2
(r8, 2†x̄)(h, 2∗†x̄y ) 2

41′ (r8, 4∗z̄)(h, ε′) 1
2′2′2′ (r8, 2∗̄x)(m, ε′) 1

(r8, ε
′)(h, 2∗x̄) 1

(r8, 2∗x̄)(h, 2′∗x̄ ) 1
2/m 4 8∗ (r8, 8∗̄z)(h, ε) 1
Γe = 2′

8/m 1 2′ (r8, ε)(h, ε) 1
8 2 21′ (r8, ε)(h, ε′) 1

2′2∗2′∗ (r8, ε)(h, 2∗x̄) 1
8̄ 2 21′ (r8, ε

′)(h, ε′) 1
2′2∗2′∗ (r8, 2∗x̄)(h, 2∗x̄) 1

4/m 2 21′ (r8, ε
′)(h, ε) 1

2′2∗2′∗ (r8, 2∗x̄)(h, ε) 1
4 2/m 2′2′2′ (r8, 2∗x̄)(h, ε′) 1

(r8, ε
′)(h, 2∗x̄) 1

(r8, 2∗̄x)(h, 2′∗̄x ) 1
4̄ 4 41′ (r8, 4∗̄z)(h, 2z̄) 1

2/m 4 41′ (r8, 4∗̄z)(h, ε) 1
2̄ 8 81′ (r8, 8∗z̄)(h, ε) 1
1̄ 8 81′ (r8, 8∗z̄)(h, 2z̄) 1

Γe = 1′

8/m 1 1′ (r8, ε)(h, ε) 1
8 2 21′ (r8, ε)(h, 2z̄) 1
8̄ 2 21′ (r8, 2z̄)(h, 2z̄) 1

4/m 2 21′ (r8, 2z̄)(h, ε) 1
4 2/m 2′2′2′ (r8, 2z̄)(h, 2x̄) 1
4̄ 4 41′ (r8, 4z̄)(h, 2z̄) 1

2/m 4 41′ (r8, 4z̄)(h, ε) 1
2̄ 8 81′ (r8, 8z̄)(h, ε) 1

(r8, 33
z̄)(h, ε) 1

1̄ 8 81′ (r8, 8z̄)(h, 2z̄) 1
(r8, 83

z̄)(h, 2z̄) 1
Γe = 21′

8/m 1 21′ (r8, ε)(h, ε) 1
continued on next page
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Table C-13: continued

Gε G/Gε Γ generators line
8 2 2′2′2′ (r8, ε)(h, 2x̄) 1
8̄ 2 2′2′2′ (r8, 2x̄)(h, 2x̄) 1

4/m 2 2′2′2′ (r8, 2x̄)(h, h, ε) 1
41′ (r8, 4z̄)(h, ε) 1

4 222 4221′ (r8, 4z̄)(h, 2x̄) 2
(r8, 2x̄)(h, 2x̄y) 2

2/m 4 81′ (r8, 8z̄)(h, ε) 1
Γe = n
8 2 n2∗2∗ (r8, 2∗̄x)(h, 2∗̄x) 5
4 2/m n221′ (r8, ε

′)(h, 2∗̄x) 5
(2n)∗2†2∗† (r8, 2n∗̄z)(h, 2†x̄) 6

Γe = n′

8 2 n′2∗2′∗ (r8, ε)(h, 2∗̄x) 5
4 2/m n221′ (r8, ε

′)(h, 2∗̄x) 5
Γe = n1′

8 2 n221′ (r8, ε)(h, 2x̄) 5
4 2/m (2n)221′ (r8, 2nz̄)(h, 2x̄) 6

Γe = 222
8/m 1 222 (r8, ε)(h, ε) 3a
8 2 2′2′2′ (r8, ε)(h, ε′) 3a
8̄ 2 2′2′2′ (r8, ε

′)(h, ε′) 3a
4/m 2 2′2′2′ (r8, ε

′)(h, ε) 3a
4†2∗2∗† (r8, 4†z̄)(h, ε) 4

4 2/m 4221′ (r8, 4†z̄)(h, ε′) 4
Γe = 2′2′2
8/m 1 2′2′2 (r8, ε)(h, ε) 3
8 2 2′2′2′ (r8, ε)(h, ε′) 3
8̄ 2 2′2′2′ (r8, ε

′)(h, ε′) 3
4/m 2 2′2′2′ (r8, ε

′)(h, ε) 3
4†2∗2∗† (r8, 4†z̄)(h, ε) 4

4 2/m 4221′ (r8, 4†z̄)(h, ε′) 4
Γe = 2′2′2′

4/m 2 4221′ (r8, 4z̄)(h, ε) 4

Table C-14: Explicit list of octagonal spin space-group types withG =
8/m on S-lattices. The last column refers to line numbers in Table B-
14, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8/m 1 1 (r8, ε)(h, ε) 1
8 2 2∗ (r8, ε)(h, 2∗z̄) 1

1′ (r8, ε)(h, ε′) 1
8̄ 2 2∗ (r8, 2∗̄z)(h, 2∗̄z) 1

1′ (r8, ε
′)(h, ε′) 1

4/m 2 2∗ (r8, 2∗z̄)(h, ε) 1
1′ (r8, ε

′)(h, ε) 1
4 222 2∗2†2∗† (r8, 2∗z̄)(h, 2†x̄) 1

21′ (r8, 2∗̄z)(h, ε′) 1
continued on next page
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Table C-14: continued

Gε G/Gε Γ generators line
(r8, ε

′)(h, 2∗̄z) 1
(r8, 2∗z̄)(h, 2∗z̄

′) 1
4̄ 4 4∗ (r8, 4∗z̄)(h, 2z̄) 1

2/m 4 4∗ (r8, 4∗z̄)(h, ε) 1
2 4/m 41′ (r8, 4∗z̄)(h, ε′) 1

(r8, 4∗z̄)(h, 2′z̄) 1
2̄ 8 8∗ (r8, 8∗̄z)(h, ε) 1

(r8, 8∗z̄
3)(h, ε) 1

1̄ 8 8∗ (r8, 8∗z̄)(h, 2z̄) 1
(r8, 8∗̄z

3)(h, 2z̄) 1
1 8/m 81′ (r8, 8∗̄z)(h, ε′) 1

(r8, 8∗z̄
3)(h, ε′) 1

(r8, 8∗̄z)(h, 2′̄z) 1
(r8, 8∗z̄

3)(h, 2′z̄) 1
Γe = 2
8/m 1 2 (r8, ε)(h, ε) 1
8 2 2∗2∗2 (r8, ε)(h, 2∗̄x) 1

21′ (r8, ε)(h, ε′) 1
8̄ 2 2∗2∗2 (r8, 2∗x̄)(h, 2∗x̄) 1

21′ (r8, ε
′)(h, ε′) 1

4/m 2 4∗ (r8, 4∗z̄)(h, ε) 1
2∗2∗2 (r8, 2∗̄x)(h, ε) 1

21′ (r8, ε
′)(h, ε) 1

4 2/m 4∗2†2∗† (r8, 4∗̄z)(h, 2†x̄) 2
(r8, 2†x̄)(h, 2∗†x̄y) 2

41′ (r8, 4∗z̄)(h, ε′) 1
2′2′2′ (r8, 2∗̄x)(m, ε′) 1

(r8, ε
′)(h, 2∗x̄) 1

(r8, 2∗x̄)(h, 2′∗x̄ ) 1
2/m 4 8∗ (r8, 8∗z̄)(h, ε) 1
Γe = 2′

8/m 1 2′ (r8, ε)(h, ε) 1
8 2 21′ (r8, ε)(h, ε′) 1

2′2∗2′∗ (r8, ε)(h, 2∗x̄) 1
8̄ 2 21′ (r8, ε

′)(h, ε′) 1
2′2∗2′∗ (r8, 2∗x̄)(h, 2∗x̄) 1

4/m 2 21′ (r8, ε
′)(h, ε) 1

2′2∗2′∗ (r8, 2∗x̄)(h, ε) 1
4 2/m 2′2′2′ (r8, 2∗x̄)(h, ε′) 1

(r8, ε
′)(h, 2∗x̄) 1

(r8, 2∗̄x)(h, 2′∗̄x ) 1
4̄ 4 41′ (r8, 4∗̄z)(h, 2z̄) 1

2/m 4 41′ (r8, 4∗̄z)(h, ε) 1
2̄ 8 81′ (r8, 8∗̄z)(h, ε) 1
1̄ 8 81′ (r8, 8∗z̄)(h, 2z̄) 1

Γe = 1′

8/m 1 1′ (r8, ε)(h, ε) 1
8 2 21′ (r8, ε)(h, 2z̄) 1
8̄ 2 21′ (r8, 2z̄)(h, 2z̄) 1

4/m 2 21′ (r8, 2z̄)(h, ε) 1
continued on next page
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Table C-14: continued

Gε G/Gε Γ generators line
4 2/m 2′2′2′ (r8, 2z̄)(h, 2x̄) 1
4̄ 4 41′ (r8, 4z̄)(h, 2z̄) 1

2/m 4 41′ (r8, 4z̄)(h, ε) 1
2̄ 8 81′ (r8, 8z̄)(h, ε) 1

(r8, 33
z̄)(h, ε) 1

1̄ 8 81′ (r8, 8z̄)(h, 2z̄) 1
(r8, 83

z̄)(h, 2z̄) 1
Γe = n
8 2 n2∗2∗ (r8, 2∗̄x)(h, 2∗̄x) 4
8̄ 2 n2∗2∗ (r8, 2∗̄x)(h, 2∗̄x) 6
4 2/m n221′ (r8, ε

′)(h, 2∗̄x) 4
(r8, 2∗x̄)(h, 2′∗x̄ ) 6

(2n)∗2†2∗† (r8, 2n∗z̄)(h, 2†x̄) 5
(r8, 2†x̄)(h, (2n)z̄2

∗†
x̄ ) 7

Γe = n′

8 2 n′2∗2′∗ (r8, ε)(h, 2∗x̄) 4
8̄ 2 n′2∗2′∗ (r8, 2∗x̄)(h, 2∗x̄) 6
4 2/m n221′ (r8, ε

′)(h, 2∗x̄) 4
(r8, 2∗x̄)(2

′∗
x̄ ) 6

Γe = 2∗2∗2
4/m 2 4†2∗2∗† (r8, 4†z̄)(h, ε) 3
4 2/m 4221′ (r8, 4†z̄)(h, ε′) 3

Table C-15: Explicit list of octagonal spin space-group types withG =
8/mmmonV-lattices. The last column refers to line numbers in Table B-
15, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε G/Gε Γ generators line
Γe = 1
8/mmm 1 1 (r8, ε)(m, ε)(h, ε) 1
8mm 2 2∗ (r8, ε)(m, ε)(h, 2∗̄z) 1

1′ (r8, ε)(m, ε)(h, ε′) 1
822 2 2∗ (r8, ε)(m, 2∗z̄)(h, 2∗z̄) 1

1′ (r8, ε)(m, ε′)(h, ε′) 1
8/8 2 2∗ (r8, ε)(m, 2∗̄z)(h, ε) 1

1′ (r8, ε)(m, ε′)(h, ε) 1
8̄m2 2 2∗ (r8, 2∗z̄)(m, ε)(h, 2∗z̄) 1

1′ (r8, ε
′)(m, ε)(h, ε′) 1

8̄2m 2 2∗ (r8, 2∗z̄)(m, 2∗z̄)(h, 2∗z̄) 1
1′ (r8, ε

′)(m, ε′)(h, ε′) 1
4/mmm 2 2∗ (r8, 2∗̄z)(m, ε)(h, ε) 1

1′ (r8, ε
′)(m, ε)(h, ε) 1

4/mm′m′ 2 2∗ (r8, 2∗z̄)(m, 2∗z̄)(h, ε) 1
1′ (r8, ε

′)(m, ε′)(h, ε) 1
8 222 2∗2†2∗† (r8, ε)(m, 2∗z̄)(h, 2†x̄) 1

21′ (r8, ε)(m, 2∗z̄)(h, ε′) 1
(r8, ε)(m, ε′)(h, 2∗z̄) 1
(r8, ε)(m, 2∗z̄)(h, 2∗z̄

′) 1
8̄ 222 2∗2†2∗† (r8, 2∗̄z)(m, 2†x̄)(h, 2∗̄z) 1
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Table C-15: continued

Gε G/Gε Γ generators line
21′ (r8, 2∗̄z)(m, ε′)(h, 2∗̄z) 1

(r8, ε
′)(m, 2∗z̄)(h, ε′) 1

(r8, 2∗z̄)(m, 2∗z̄
′)(h, 2∗z̄) 1

4mm 222 2∗2†2∗† (r8, 2∗z̄)(m, ε)(h, 2†x̄) 1
21′ (r8, 2∗z̄)(m, ε)(h, ε′) 1

(r8, ε
′)(m, ε)(h, 2∗̄z) 1

(r8, 2∗z̄)(m, ε)(h, 2∗z̄
′) 1

4m′m′ 2 2∗2†2∗† (r8, 2∗̄z)(m, 2∗̄z)(h, 2†x̄) 1
21′ (r8, 2∗z̄)(m, 2∗z̄)(h, ε′) 1

(r8, ε
′)(m, ε′)(h, 2∗z̄) 1

(r8, 2∗̄z)(m, 2∗̄z)(h, 2∗̄z
′) 1

422 222 2∗2†2∗† (r8, 2∗z̄)(m, 2†x̄)(h, 2†x̄) 1
21′ (r8, 2∗̄z)(m, ε′)(h, ε′) 1

(r8, ε
′)(m, 2∗z̄)(h, 2∗z̄) 1

(r8, 2∗z̄)(m, 2∗z̄
′)(h, 2∗z̄

′) 1
42′2′ 222 2∗2†2∗† (r8, 2∗̄z)(m, 2†x̄)(h, 2∗†x̄y ) 1

21′ (r8, 2∗̄z)(m, ε′)(h, 2∗̄z
′) 1

(r8, ε
′)(m, 2∗z̄)(h, 2∗z̄

′) 1
(r8, 2∗z̄)(m, 2∗z̄

′)(h, ε′) 1
4/m 222 2∗2†2∗† (r8, 2∗z̄)(m, 2†x̄)(h, ε) 1

21′ (r8, 2∗z̄)(m, ε′)(h, ε) 1
(r8, ε

′)(m, 2∗̄z)(h, ε) 1
(r8, 2∗z̄)(m, 2∗z̄

′)(h, ε) 1
4 2′2′2′ 2′2′2′ (r8, 2∗̄z)(m, 2†x̄)(h, ε′) 1

(r8, 2∗z̄)(m, ε′)(h, 2†x̄) 1
(r8, ε

′)(m, 2∗z̄)(h, 2†x̄) 1
(r8, 2′̄z)(m, 2x̄)(h, 2ȳ) 1
(r8, 2x̄)(m, 2′z̄)(h, 2ȳ) 1
(r8, 2ȳ)(m, 2x̄)(h, 2′z̄) 1
(r8, 2′̄z)(m, 2′̄x)(h, 2′̄y) 1
(r8, 2∗z̄)(m, 2∗z̄

′)(h, 2†x̄) 1
(r8, 2∗z̄)(m, 2†x̄)(h, 2∗z̄

′) 1
(r8, 2†x̄)(m, 2∗z̄)(h, 2∗z̄

′) 1
4̄ 422 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄)(h, 2z̄) 1

2/m 422 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄)(h, ε) 1
2 4221′ 4221′ (r8, 4∗z̄)(m, 2†x̄)(h, ε′) 1

(r8, 4∗z̄)(m, ε′)(h, 2†x̄) 1
(r8, 4∗z̄), (m, 2†x̄)(h, 2′†ȳ ) 1
(r8, 4∗z̄)(m, 2†x̄)(h, 2′†x̄ ) 1
(r8, 4∗z̄)(m, 2′z̄)(h, 2†x̄) 1
(r8, 4∗z̄)(m, 2†x̄)(h, 2′z̄) 1

2̄ 822 8∗2†2∗† (r8, 8∗̄z)(m, 2†x̄)(h, ε) 1
(r8, 8∗̄z)(m, 2†x̄)(h, ε) 1

1̄ 922 8∗2†2∗† (r8, 8∗z̄)(m, 2†x̄)(h, 2z̄) 1
(r8, 8∗z̄

3)(m, 2†x̄)(h, 2z̄) 1
1 8/mmm 8221′ (r8, 8∗̄z)(m, 2†x̄)(h, ε′) 1

(r8, 8∗z̄
3)(m, 2†x̄)(h, ε′) 1

(r8, 8∗z̄)(m, ε′)(h, 2†x̄) 1
(r8, 8∗z̄

3)(m, ε′)(h, 2†x̄) 1
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Table C-15: continued

Gε G/Gε Γ generators line
(r8, 8∗z̄)(m, 2†x̄)(h, 2′†ȳ ) 1
(r8, 8∗z̄

3)(m, 2†x̄)(h, 2′†ȳ ) 1
(r8, 8∗̄z)(m, 2†x̄)(h, 2′†x̄ ) 1
(r8, 8∗z̄

3)(m, 2†x̄)(h, 2′†x̄ ) 1
(r8, 8∗z̄)(m, 2′z̄)(h, 2†x̄) 1
(r8, 8∗z̄

3)(m, 2′z̄)(h, 2†x̄) 1
(r8, 8∗z̄)(m, 2†x̄)(h, 2′z̄) 1

Γe = 2
8/mmm 1 2 (r8, ε)(m, ε)(h, ε) 1
8mm 2 2∗2∗2 (r8, ε)(m, ε)(h, 2∗x̄) 1

21′ (r8, ε)(m, ε)(h, ε′) 1
822 2 2∗2∗2 (r8, ε)(m, 2∗̄x)(h, 2∗̄x) 1

21′ (r8, ε)(m, ε′)(h, ε′) 1
8/m 2 2∗2∗2 (r8, ε)(m, 2∗x̄)(h, ε) 1

21′ (r8, ε)(m, ε′)(h, ε) 1
8̄m2 2 2∗2∗2 (r8, 2∗x̄)(m, ε)(h, 2∗x̄) 1

21′ (r8, ε
′)(m, ε)(h, ε′) 1

8̄2m 2 2∗2∗2 (r8, 2∗x̄)(m, 2∗x̄)(h, 2∗x̄) 1
21′ (r8, ε

′)(m, ε′)(h, ε′) 1
4/mmm 2 4∗ (r8, 4∗z̄)(m, ε)(h, ε) 4

2∗2∗2 (r8, 2∗̄x)(m, ε)(h, ε) 1
21′ (r8, ε

′)(m, ε)(h, ε) 1
4/mm′m′ 2 2∗2∗2 (r8, 2∗x̄)(m, 2∗x̄)(h, ε) 1

8 222 4∗2†2∗† (r8, ε)(m, 4∗̄z)(h, 2†x̄) 2
2′2′2′ (r8, ε)(m, 2∗x̄)(h, ε′) 1

(r8, ε)(m, ε′)(h, 2∗x̄) 1
(r8, ε)(m, 2∗̄x)(h, 2′∗̄x ) 1

8̄ 222 2′2′2′ (r8, 2∗x̄)(m, ε′)(h, 2∗x̄) 1
(r8, ε

′)(m, 2∗x̄)(h, ε′) 1
(r8, 2∗̄x)(m, 2′∗̄x )(h, 2∗̄x) 1

4mm 222 4∗2†2∗† (r8, 4∗z̄)(m, ε)(h, 2†x̄) 5
(r8, 2†x̄)(m, ε)(h, 2∗†x̄y ) 3

2′2′2′ (r8, 2∗̄x)(m, ε)(h, ε′) 1
(r8, ε

′)(m, ε)(h, 2∗x̄) 1
(r8, 2∗̄x)(m, ε)(h, 2′∗̄x ) 1

41′ (r8, 4∗z̄)(m, ε)(h, ε′) 4
4m′m′ 222 4∗2†2∗† (r8, 4∗z̄)(m, 4∗z̄)(h, 2†x̄) 6

2′2′2′ (r8, 2∗̄x)(m, 2∗̄x)(h, ε′) 1
(r8, ε

′)(m, ε′)(h, 2∗x̄) 1
(r8, 2∗̄x)(m, 2∗̄x)(h, 2′∗̄x ) 1

422 222 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄)(h, 2†x̄) 3
(r8, 2†x̄)(m, 2∗†x̄y )(h, 2∗†x̄y) 5

2′2′2′ (r8, 2∗̄x)(m, ε′)(h, ε′) 1
(r8, ε

′)(m, 2∗x̄)(h, 2∗x̄) 1
(r8, 2∗x̄)(m, 2′∗x̄ )(h, 2′∗x̄ ) 1

41′ (r8, 4∗z̄)(m, ε′)(h, ε′) 4
42′2′ 222 4∗2†2∗† (r8, 2†x̄)(m, 4∗z̄)(h, 2∗†x̄y ) 6

2′2′2′ (r8, 2∗x̄)(m, ε′)(h, 2′∗x̄ ) 1
(r8, ε

′)(m, 2∗̄x)(h, 2′∗̄x ) 1
(r8, 2∗x̄)(m, 2′∗x̄ )(h, ε′) 1
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Table C-15: continued

Gε G/Gε Γ generators line
4/m 222 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄)(h, ε) 1

(r8, 2†x̄)(m, 2∗†x̄y ) 4
2′2′2′ (r8, 2∗̄x)(m, ε′)(h, ε) 1

(r8, ε
′)(m, 2∗x̄))(h, ε) 1

(r8, 2∗x̄)(m, 2′∗x̄ )(h, ε) 1
41′ (r8, 4∗̄z)(m, ε′)(h, ε) 4

4 2/mmm 4221′ (r8, 4∗z̄)(m, 2†x̄)(h, ε′) 1
(r8, 4∗z̄)(m, ε′)(h, 2†x̄) 5
(r8, ε

′)(m, 4∗z̄)(h, 2†x̄) 2
(r8, 4∗z̄)(m, 4′∗z̄ )(h, 2†x̄) 6
(r8, 4∗̄z)(m, 2†x̄)(h, 2′†x̄ ) 3
(r8, 2∗†x̄y )(m, 2†x̄)(2

′†
x̄ ) 5

(r8, 2†x̄)(m, 4∗z̄
′)(h, 2∗†x̄y ) 6

(r8, 2†x̄)(m, 2∗†x̄y )(h, ε′) 4
(r8, 2†x̄)(m, ε′)(h, 2∗†x̄y ) 3

2/m 422 8∗2†2∗† (r8, 8∗z̄)(m, 2†x̄)(h, ε) 1
2 4/mmm 8221′ (r8, 8∗z̄)(m, 2†x̄)(h, ε′) 1
2̄ 822 (16)∗2†2∗† (r8, 16∗̄z)(m, 2†x̄)(h, ε) 1

(r8, 16∗z̄
3)(m, 2†x̄)(h, ε) 1

1 8/mmm (16)221′ (r8, 16∗z̄)(m, 2†x̄)(h, ε′) 1
(r8, 16∗̄z

3)(m, 2†x̄)(h, ε′) 1
Γe = 2′

8/mmm 1 2′ (r8, ε)(m, ε)(h, ε) 1
8mm 2 2′2∗2′∗ (r8, ε)(m, ε)(h, 2∗x̄) 1

21′ (r8, ε)(m, ε)(h, ε′) 1
822 2 2′2∗2′∗ (r8, ε)(m, 2∗x̄)(h, 2∗x̄) 1

21′ (r8, ε)(m, ε′)(h, ε′) 1
8/m 2 2′2∗2′∗ (r8, ε)(m, 2∗̄x)(h, ε) 1

21′ (r8, ε)(m, ε′)(h, ε) 1
8̄m2 2 2′2∗2′∗ (r8, 2∗x̄)(m, ε)(h, 2∗x̄) 1

21′ (r8, ε
′)(m, ε)(h, ε′) 1

8̄2m 2 2′2∗2′∗ (r8, 2∗̄x)(m2∗̄x)(h, 2∗̄x) 1
21′ (r8, ε

′)(m, ε′)(h, ε′) 1
4/mmm 2 2′2∗2′∗ (r8, 2∗x̄)(m, ε)(h, ε) 1

21′ (r8, ε
′)(m, ε)(h, ε) 1

4/mm′m′ 2 2′2∗2′∗ (r8, 2∗x̄)(m, 2∗x̄)(h, ε) 1
21′ (r8, ε

′)(m, ε′)(h, ε) 1
8 222 2′2′2′ (r8, ε)(m, 2∗x̄)(h, ε′) 1

(r8, ε)(m, ε′)(h, 2∗x̄) 1
(r8, ε)(m, 2∗̄x)(h, 2′∗̄x ) 1

8̄ 222 2′2′2′ (r8, 2∗̄x)(m, ε′)(h, 2∗̄x) 1
(r8, ε

′)(m, 2∗x̄)(h, ε′) 1
(r8, 2∗x̄)(m, 2′∗x̄ )(h, 2∗x̄) 1

4mm 222 2′2′2′ (r8, 2∗̄x)(m, ε)(h, ε′) 1
(r8, ε

′)(m, ε)(h, 2∗x̄) 1
(r8, 2∗x̄)(m, ε)(h, 2′∗x̄ ) 1

4m′m′ 222 2′2′2′ (r8, 2∗x̄)(m, 2∗x̄)(h, ε′) 1
(r8, ε

′)(m, ε′)(h, 2∗̄x) 1
(r8, 2∗x̄)(m, 2∗x̄)(h, 2′∗x̄ ) 1

continued on next page

42     Even-Dar Mandel & Lifshitz · Magnetic symmetry of octagonal quasicrystals Acta Cryst. (2004). A60, 179–194

IUCr macros version 2.0β13: 2003/12/24



research papers

Table C-15: continued

Gε G/Gε Γ generators line
422 222 2′2′2′ (r8, 2∗̄x)(m, ε′)(h, ε′) 1

(r8, ε
′)(m, 2∗x̄)(h, 2∗x̄) 1

(r8, 2∗x̄)(m, 2′∗x̄ )(h, 2′∗x̄ ) 1
42′2′ 222 2′2′2′ (r8, 2∗x̄)(m, ε′)(h, 2′∗x̄ ) 1

(r8, ε
′)(m, 2∗̄x)(h, 2′∗̄x ) 1

(r8, 2∗x̄)(m, 2′∗x̄ )(h, ε′) 1
4/m 222 2′2′2′ (r8, 2∗x̄)(m, ε′)(h, ε) 1

(r8, ε
′)(m, 2∗̄x)(h, ε) 1

(r8, 2∗x̄)(m, 2′∗x̄ )(h, ε) 1
4̄ 422 4221′ (r8, 4∗z̄)(m, 2†x̄)(h, 2z̄) 1

2/m 422 4221′ (r8, 4∗z̄)(m, 2†x̄)(h, ε) 1
2̄ 822 8221′ (r8, 8∗̄z)(m, 2†x̄)(h, ε) 1
1̄ 822 8221′ (r8, 8∗z̄)(m, 2†x̄)(h, 2z̄) 1

Γe = 1′

8/mmm 1 1′ (r8, ε)(m, ε)(h, ε) 1
8mm 2 21′ (r8, ε)(m, ε)(h, 2z̄) 1
822 2 21′ (r8, ε)(m, 2z̄)(h, 2z̄) 1
8/m 2 21′ (r8, ε)(m, 2z̄)(h, ε) 1
8̄m2 2 21′ (r8, 2z̄)(m, ε)(h, 2z̄) 1
8̄2m 2 21′ (r8, 2z̄)(m, 2z̄)(h, 2z̄) 1

4/mmm 2 21′ (r8, 2z̄)(m, ε)(h, ε) 1
4/mm′m′ 2 21′ (r8, 2z̄)(m, 2z̄)(h, ε) 1

8 222 2′2′2′ (r8, ε)(m, 2z̄)(h, 2x̄) 1
8̄ 222 2′2′2′ (r8, 2z̄)(m, 2x̄)(h, 2z̄) 1

4mm 222 2′2′2′ (r8, 2z̄)(m, ε)(h, 2x̄) 1
4m′m′ 222 2′2′2′ (r8, 2z̄)(m, 2z̄)(h, 2x̄) 1
422 222 2′2′2′ (r8, 2z̄)(m, 2x̄)(h, 2x̄) 1

42′2′ 222 2′2′2′ (r8, 2z̄)(m, 2x̄)(h, 2ȳ) 1
4/m 222 2′2′2′ (r8, 2z̄)(m, 2x̄)(h, ε) 1
4̄ 422 4221′ (r8, 4z̄)(m, 2x̄)(h, 2z̄) 1

2/m 422 4221′ (r8, 4z̄)(m, 2x̄)(h, ε) 1
2̄ 822 8221′ (r8, 8z̄)(m, 2x̄)(h, ε) 1

(r8, 83
z̄)(m, 2x̄)(h, ε) 1

1̄ 822 8221′ (r8, 8z̄)(m, 2x̄)(h, 2z̄) 1
(r8, 83

z̄)(m, 2x̄)(h, 2z̄) 1
Γe = 21′

8/mmm 1 21′ (r8, ε)(m, ε)(h, ε) 1
8mm 2 2′2′2′ (r8, ε)(m, ε)(h, 2x̄) 1
822 2 2′2′2′ (r8, ε)(m, 2x̄)(h, 2x̄) 1
8/m 2 2′2′2′ (r8, ε)(m, ε)(h, 2x̄) 1
8̄m2 2 2′2′2′ (r8, 2x̄)(m, ε)(h, 2x̄) 1
8̄2m 2 2′2′2′ (r8, 2x̄)(m, 2x̄)(h, 2x̄) 1

4/mmm 2 41′ (r8, 4z̄)(m, ε)(h, ε) 4
2′2′2′ (r8, 2x̄)(m, ε)(h, ε) 1
2′2′2′ (r8, 2x̄)(m, 2x̄)(h, ε) 1

8 222 4221′ (r8, ε)(m, 4z̄)(h, 2x̄) 2
4mm 222 4221′ (r8, 4z̄)(m, ε)(h, 2x̄) 5

(r8, 2x̄)(m, ε)(h, 2x̄y) 3
4m′m′ 222 4221′ (r8, 4z̄)(m, 4z̄)(h, 2x̄) 6
422 222 4221′ (r8, 4z̄)(m, 2x̄)(h, 2x̄) 3
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Table C-15: continued

Gε G/Gε Γ generators line
(r8, 2x̄)(m, 2x̄y)(h, 2x̄y) 5

42′2′ 222 4221′ (r8, 2x̄)(m, 4z̄)(h, 2x̄y) 6
4/m 222 4221′ (r8, 4z̄)(m, 2x̄)(h, ε) 1

(r8, 2x̄)(m, 2x̄y)(h, ε) 4
2/m 422 8221′ (r8, 8z̄)(m, 2x̄)h, ε) 1
2̄ 822 (16)221′ (r8, 16z̄)(m, 2x̄)(h, ε) 1

(r8, 163
z̄(m, 2x̄)(h, ε) 1

Γe = n
8mm 2 n2∗2∗ (r8, ε)(m, ε)(h, 2∗x̄) 9

8 222 n221′ (r8, ε)(m, ε′)(h, 2∗x̄) 9
(2n)∗2†2∗† (r8, ε)(m, 2n∗z̄)(h, 2†x̄) 10

4mm 222 n221′ (r8, ε
′)(m, ε)(h, 2∗x̄) 9

(2n)∗2†2∗† (r8, 2n∗̄z)(m, ε)(h, 2†x̄) 11
4m′m′ 222 n221′ (r8, ε

′)(m, ε′)(h, 2∗̄x) 9
(2n)∗2†2∗† (r8, 2n∗̄z)(m, 2n∗̄z)(h, 2†x̄) 12

4 2′2′2′ (2n)221′ (r8, 2n∗z̄)(m, ε′)(h, 2†x̄) 11
(r8, ε

′)(m2n∗z̄)(h, 2†x̄) 10
(r8, 2n∗z̄)(m, 2n′∗z̄ )(h, 2†x̄) 12

Γe = n′

8mm 2 n′2∗2′∗ (r8, ε)(m, ε)(h, 2∗x̄) 9
8 222 n221′ (r8, ε)(m, ε′)(h, 2∗x̄) 9

4mm 222 n221′ (r8, ε
′)(m, ε)(h, 2∗x̄) 9

4m′m′ 222 n221′ (r8, ε
′)(m, ε′)(h, 2∗x̄) 9

Γe = n1′

8 222 (2n)221′ (r8, ε)(h, (2n)z̄)(h, 2x̄) 10
4mm 222 (2n)221′ (r8, (2n)z̄)(m, ε)(h, 2x̄) 11
4m′m′ 222 (2n)221′ (r8, (2n)z̄)(m, (2n)z̄)(h, 2x̄) 12

Γe = 222
8/mmm 1 222 (r8, ε)(m, ε)(h, ε) 7a
8mm 2 2′2′2′ (r8, ε)(m, ε)(h, ε′) 7a
822 2 2′2′2′ (r8, ε)(m, ε′)(h, ε′) 7a
8/m 2 2′2′2′ (r8, ε)(m, ε′)(h, ε) 7a
8̄m2 2 2′2′2′ (r8, ε

′)(m, ε)(h, ε′) 7a
8̄2m 2 2′2′2′ (r8, ε

′)(m, ε′)(h, ε′) 7a
4/mmm 2 2′2′2′ (r8, ε

′)(m, ε)(h, ε) 7a
4†2∗2∗† (r8, 4†z̄)(m, ε)(h, ε) 8

4/mm′m′ 2 2′2′2′ (r8, ε
′)(m, ε′)(h, ε) 7a

4mm 222 4221′ (r8, 4†z̄)(m, ε)(h, ε′) 8
422 222 4221′ (r8, 4†z̄)(m, ε′)(h, ε′) 8
4/m 222 4221′ (r8, 4†z̄)(m, ε′)(h, ε) 8

Γe = 2′2′2
8/mmm 1 2′2′2 (r8, ε)(m, ε)(h, ε) 7
8mm 2 2′2′2′ (r8, ε)(m, ε)(h, ε′) 7
822 2 2′2′2′ (r8, ε)(m, ε′)(h, ε′) 7
8/m 2 2′2′2′ (r8, ε)(m, ε′)(h, ε) 7
8̄m2 2 2′2′2′ (r8, ε

′)(m, ε)(h, ε′) 7
8̄2m 2 2′2′2′ (r8, ε

′)(m, ε′)(h, ε′) 7
4/mmm 2 2′2′2′ (r8, ε

′)(m, ε)(h, ε) 7
4†2∗2∗† (r8, 4†z̄)(m, ε)(h, ε) 8
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Table C-15: continued

Gε G/Gε Γ generators line
4/mm′m′ 2 2′2′2′ (r8, ε

′)(m, ε′)(h, ε) 7
4mm 222 4221′ (r8, 4†z̄)(m, ε)(h, ε′) 8
422 222 4221′ (r8, 4†z̄)(m, ε′)(h, ε′) 8
4/m 222 4221′ (r8, 4†z̄)(m, ε′)(h, ε) 8

Γe = 2′2′2′

4/mmm 2 4221′ (r8, 4z̄)(m, ε)(h, ε) 8

Table C-16: Explicit list of octagonal spin space-group types withG =
8/mmmonS-lattices. The last column refers to line numbers in Table B-
16, where the possible phase functions are listed, and rules are given to
generate the spin space-group symbol.

Gε Γ generators line
Γe = 1
8/mmm 1 (r8, ε)(m, ε)(h, ε) 1
8mm 2∗ (r8, ε)(m, ε)(h, 2∗z̄) 1

1′ (r8, ε)(m, ε)(h, ε′) 1
822 2∗ (r8, ε)(m, 2∗̄z)(h, 2∗̄z) 1

1′ (r8, ε)(m, ε′)(h, ε′) 1
8/m 2∗ (r8, ε)(m, 2∗z̄)(h, ε) 1

1′ (r8, ε)(m, ε′)(h, ε) 1
8̄m2 2∗ (r8, 2∗̄z)(m, ε)(h, 2∗̄z) 1

1′ (r8, ε
′)(m, ε)(h, ε′) 1

8̄2m 2∗ (r8, 2∗z̄)(m, 2∗z̄)(h, 2∗z̄) 1
1′ (r8, ε

′)(m, ε′)(h, ε′) 1
4/mmm 2∗ (r8, 2∗̄z)(m, ε)(h, ε) 1

1′ (r8, ε
′)(m, ε)(h, ε) 1

4/mm′m′ 2∗ (r8, 2∗z̄)(m, 2∗z̄)(h, ε) 1
1′ (r8, ε

′)(m, ε′)(h, ε) 1
8 2∗2†2∗† (r8, ε)(m, 2∗z̄)(h, 2†x̄) 1

21′ (r8, ε)(m, 2∗z̄)(h, ε′) 1
(r8, ε)(m, ε′)(h, 2∗̄z) 1
(r8, ε)(m, 2∗z̄)(h, 2∗z̄

′) 1
8̄ 2∗2†2∗† (r8, 2∗̄z)(m, 2†x̄)(h, 2∗̄z) 1

21′ (r8, 2∗z̄)(m, ε′)(h, 2∗z̄) 1
(r8, ε

′)(m, 2∗z̄)(h, ε′) 1
(r8, 2∗̄z)(m, 2∗̄z

′)(h, 2∗̄z) 1
4mm 2∗2†2∗† (r8, 2∗z̄)(m, ε)(h, 2†x̄) 1

21′ (r8, 2∗̄z)(m, ε)(h, ε′) 1
(r8, ε

′)(m, ε)(h, 2∗z̄) 1
(r8, 2∗z̄)(m, ε)(h, 2∗z̄

′) 1
4m′m′ 2∗2†2∗† (r8, 2∗̄z)(m, 2∗̄z)(h, 2†x̄) 1

21′ (r8, 2∗z̄)(m, 2∗z̄)(h, ε′) 1
(r8, ε

′)(m, ε′)(h, 2∗̄z) 1
(r8, 2∗z̄)(m, 2∗z̄)(h, 2∗z̄

′) 1
422 2∗2†2∗† (r8, 2∗z̄)(m, 2†x̄)(h, 2†x̄) 1

21′ (r8, 2∗z̄)(m, ε′)(h, ε′) 1
(r8, ε

′)(m, 2∗z̄)(h, 2∗z̄) 1
(r8, 2∗̄z)(m, 2∗̄z

′)(h, 2∗̄z
′) 1

42′2′ 2∗2†2∗† (r8, 2∗z̄)(m, 2†x̄)(h, 2∗†x̄y ) 1
continued on next page
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Table C-16: continued

Gε Γ generators line
21′ (r8, 2∗̄z)(m, ε′)(h, 2∗̄z

′) 1
(r8, ε

′)(m, 2∗z̄)(h, 2∗z̄
′) 1

(r8, 2∗z̄)(m, 2∗z̄
′)(h, ε′) 1

4/m 2∗2†2∗† (r8, 2∗z̄)(m, 2†x̄)(h, ε) 1
21′ (r8, 2∗z̄)(m, ε′)(h, ε) 1

(r8, ε
′)(m, 2∗̄z)(h, ε) 1

(r8, 2∗z̄)(m, 2∗z̄
′)(h, ε) 1

4 2′2′2′ (r8, 2∗̄z)(m, 2†x̄)(h, ε′) 1
(r8, 2∗z̄)(m, ε′)(h, 2†x̄) 1
(r8, ε

′)(m, 2∗z̄)(h, 2†x̄) 1
(r8, 2′̄z)(m, 2x̄)(h, 2ȳ) 1
(r8, 2x̄)(m, 2′z̄)(h, 2ȳ) 1
(r8, 2ȳ)(m, 2x̄)(h, 2′z̄) 1
(r8, 2′̄z)(m, 2′̄x)(h, 2′̄y) 1
(r8, 2∗z̄)(m, 2∗z̄

′)(h, 2†x̄) 1
(r8, 2∗z̄)(m, 2†x̄)(h, 2∗z̄

′) 1
(r8, 2†x̄)(m, 2∗̄z)(h, 2∗̄z

′) 1
4̄ 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄)(h, 2z̄) 1

2/m 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄)(h, ε) 1
2 4221′ (r8, 4∗z̄)(m, 2†x̄)(h, ε′) 1

(r8, 4∗z̄)(m, ε′)(h, 2†x̄) 1
(r8, 4∗z̄), (m, 2†x̄)(h, 2′†ȳ ) 1
(r8, 4∗z̄)(m, 2†x̄)(h, 2′†x̄ ) 1
(r8, 4∗z̄)(m, 2′z̄)(h, 2†x̄) 1
(r8, 4∗z̄)(m, 2†x̄)(h, 2′z̄) 1

2̄ 8∗2†2∗† (r8, 8∗̄z)(m, 2†x̄)(h, ε) 1
(r8, 8∗̄z)(m, 2†x̄)(h, ε) 1

1̄ 8∗2†2∗† (r8, 8∗z̄)(m, 2†x̄)(h, 2z̄) 1
(r8, 8∗z̄

3)(m, 2†x̄)(h, 2z̄) 1
1 8221′ (r8, 8∗z̄)(m, 2†x̄)(h, ε′) 1

(r8, 8∗z̄
3)(m, 2†x̄)(h, ε′) 1

(r8, 8∗z̄)(m, ε′)(h, 2†x̄) 1
(r8, 8∗z̄

3)(m, ε′)(h, 2†x̄) 1
(r8, 8∗z̄)(m, 2†x̄)(h, 2′†ȳ ) 1
(r8, 8∗z̄

3)(m, 2†x̄)(h, 2′†ȳ ) 1
(r8, 8∗z̄)(m, 2†x̄)(h, 2′†x̄ ) 1
(r8, 8∗z̄

3)(m, 2†x̄)(h, 2′†x̄ ) 1
(r8, 8∗z̄)(m, 2′z̄)(h, 2†x̄) 1
(r8, 8∗z̄

3)(m, 2′z̄)(h, 2†x̄) 1
(r8, 8∗z̄)(m, 2†x̄)(h, 2′z̄) 1

Γe = 2
8/mmm 2 (r8, ε)(m, ε)(h, ε) 1
8mm 2∗2∗2 (r8, ε)(m, ε)(h, 2∗x̄) 1

21′ (r8, ε)(m, ε)(h, ε′) 1
822 2∗2∗2 (r8, ε)(m, 2∗x̄)(h, 2∗x̄) 1

21′ (r8, ε)(m, ε′)(h, ε′) 1
8/m 2∗2∗2 (r8, ε)(m, 2∗x̄)(h, ε) 1

21′ (r8, ε)(m, ε′)(h, ε) 1
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Table C-16: continued

Gε Γ generators line
8̄m2 2∗2∗2 (r8, 2∗̄x)(m, ε)(h, 2∗̄x) 1

21′ (r8, ε
′)(m, ε)(h, ε′) 1

8̄2m 2∗2∗2 (r8, 2∗x̄)(m, 2∗x̄)(h, 2∗x̄) 1
21′ (r8, ε

′)(m, ε′)(h, ε′) 1
4/mmm 2∗2∗2 (r8, 2∗x̄)(m, ε)(h, ε) 1

21′ (r8, ε
′)(m, ε)(h, ε) 1

4/mm′m′ 4∗ (r8, 4∗z̄)(m, 4∗z̄)(h, ε) 5
2∗2∗2 (r8, 2∗x̄)(m, 2∗x̄)(h, ε) 1

8 4∗2†2∗† (r8, ε)(m, 4∗̄z)(h, 2†x̄) 2
2′2′2′ (r8, ε)(m, 2∗x̄)(h, ε′) 1

(r8, ε)(m, ε′)(h, 2∗̄x) 1
(r8, ε)(m, 2∗x̄)(h, 2′∗x̄ ) 1

8̄ 4∗2†2∗† (r8, 2†x̄)(m, 2∗†x̄y )(h, 2†x̄) 4
2′2′2′ (r8, 2∗x̄)(m, ε′)(h, 2∗x̄) 1

(r8, ε
′)(m, 2∗̄x)(h, ε′) 1

(r8, 2∗x̄)(m, 2′∗x̄ )(h, 2∗x̄) 1
4mm 4∗2†2∗† (r8, 4∗̄z)(m, ε)(h, 2†x̄) 6

2′2′2′ (r8, 2∗x̄)(m, ε)(h, ε′) 1
(r8, ε

′)(m, ε)(h, 2∗x̄) 1
(r8, 2∗̄x)(m, ε)(h, 2′∗̄x ) 1

4m′m′ 4∗2†2∗† (r8, 4∗z̄)(m, 4∗z̄)(h, 2†x̄) 7
2′2′2′ (r8, 2∗̄x)(m, 2∗̄x)(h, ε′) 1

(r8, ε
′)(m, ε′)(h, 2∗x̄) 1

(r8, 2∗x̄)(m, 2∗x̄)(h, 2′∗x̄ ) 1
41′ (r8, 4∗̄z)(m, 4∗̄z)(h, ε′) 5

422 4∗2†2∗† (r8, 2†x̄)(m, 2∗†x̄y )(h, 2∗†x̄y) 4
2′2′2′ (r8, 2∗x̄)(m, ε′)(h, ε′) 1

(r8, ε
′)(m, 2∗x̄)(h, 2∗x̄) 1

(r8, 2∗̄x)(m, 2′∗̄x )(h, 2′∗̄x ) 1
42′2′ 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄)(h, 2∗†x̄y ) 3

(r8, 2†x̄)(m, 4∗̄z)(h, 2∗†x̄y ) 7
2′2′2′ (r8, 2∗x̄)(m, ε′)(h, 2′∗x̄ ) 1

(r8, ε
′)(m, 2∗̄x)(h, 2′∗̄x ) 1

(r8, 2∗x̄)(m, 2′∗x̄ )(h, ε′) 1
41′ (r8, 4∗z̄)(m, 4′∗z̄ )(h, ε′) 5

4/m 4∗2†2∗† (r8, 4∗z̄)(m, 2†x̄)(h, ε) 1
(r8, 2†x̄)(m, 4∗z̄)(h, ε) 5

2′2′2′ (r8, 2∗x̄)(m, ε′)(h, ε) 1
(r8, ε

′)(m, 2∗̄x))(h, ε) 1
(r8, 2∗x̄)(m, 2′∗x̄ )(h, ε) 1

41′ (r8, 4∗z̄)(m, 4′∗z̄ )(h, ε) 5
4 4221′ (r8, 4∗z̄)(m, 2†x̄)(h, ε′) 1

(r8, 4∗̄z)(m, ε′)(h, 2†x̄) 6
(r8, 2†x̄)(m, 4∗̄z)(h, ε′) 5
(r8, ε

′)(m, 4∗z̄)(h, 2†x̄) 2
(r8, 4∗z̄)(m, 4′∗z̄ )(h, 2†x̄) 7
(r8, 2†x̄)(m, 2′†x̄ )(h, 2∗†x̄y ) 3
(r8, 2∗†x̄y )(m, 2†x̄)(2

′†
x̄ ) 6

(r8, 2†x̄)(m, 4∗̄z
′)(h, 2∗†x̄y ) 7

continued on next page

Acta Cryst. (2004). A60, 179–194 Even-Dar Mandel & Lifshitz · Magnetic symmetry of octagonal quasicrystals 47
IUCr macros version 2.0β13: 2003/12/24



research papers

Table C-16: continued

Gε Γ generators line
(r8, 4∗z̄

′)(m, 2†x̄)(h, 2∗†x̄y ) 3
2/m 8∗2†2∗† (r8, 8∗z̄)(m, 2†x̄)(h, ε) 1
2 8221′ (r8, 8∗z̄)(m, 2†x̄)(h, ε′) 1
2̄ (16)∗2†2∗† (r8, 16∗z̄)(m, 2†x̄)(h, ε) 1

(r8, 16∗z̄
3)(m, 2†x̄)(h, ε) 1

1 (16)221′ (r8, 16∗̄z)(m, 2†x̄)(h, ε′) 1
(r8, 16∗̄z

3)(m, 2†x̄)(h, ε′) 1
Γe = 2′

8/mmm 2′ (r8, ε)(m, ε)(h, ε) 1
8mm 2′2∗2′∗ (r8, ε)(m, ε)(h, 2∗̄x) 1

21′ (r8, ε)(m, ε)(h, ε′) 1
822 2′2∗2′∗ (r8, ε)(m, 2∗x̄)(h, 2∗x̄) 1

21′ (r8, ε)(m, ε′)(h, ε′) 1
8/m 2′2∗2′∗ (r8, ε)(m, 2∗̄x)(h, ε) 1

21′ (r8, ε)(m, ε′)(h, ε) 1
8̄m2 2′2∗2′∗ (r8, 2∗x̄)(m, ε)(h, 2∗x̄) 1

21′ (r8, ε
′)(m, ε)(h, ε′) 1

8̄2m 2′2∗2′∗ (r8, 2∗̄x)(m2∗̄x)(h, 2∗̄x) 1
21′ (r8, ε

′)(m, ε′)(h, ε′) 1
4/mmm 2′2∗2′∗ (r8, 2∗x̄)(m, ε)(h, ε) 1

21′ (r8, ε
′)(m, ε)(h, ε) 1

4/mm′m′ 2′2∗2′∗ (r8, 2∗x̄)(m, 2∗x̄)(h, ε) 1
21′ (r8, ε

′)(m, ε′)(h, ε) 1
8 2222′2′2′ (r8, ε)(m, 2∗̄x)(h, ε′) 1

(r8, ε)(m, ε′)(h, 2∗x̄) 1
(r8, ε)(m, 2∗̄x)(h, 2′∗̄x ) 1

8̄ 2′2′2′ (r8, 2∗̄x)(m, ε′)(h, 2∗̄x) 1
(r8, ε

′)(m, 2∗x̄)(h, ε′) 1
(r8, 2∗x̄)(m, 2′∗x̄ )(h, 2∗x̄) 1

4mm 2′2′2′ (r8, 2∗x̄)(m, ε)(h, ε′) 1
(r8, ε

′)(m, ε)(h, 2∗̄x) 1
(r8, 2∗x̄)(m, ε)(h, 2′∗x̄ ) 1

4m′m′ 2′2′2′ (r8, 2∗x̄)(m, 2∗x̄)(h, ε′) 1
(r8, ε

′)(m, ε′)(h, 2∗̄x) 1
(r8, 2∗x̄)(m, 2∗x̄)(h, 2′∗x̄ ) 1

422 2′2′2′ (r8, 2∗x̄)(m, ε′)(h, ε′) 1
(r8, ε

′)(m, 2∗x̄)(h, 2∗x̄) 1
(r8, 2∗̄x)(m, 2′∗̄x )(h, 2′∗̄x ) 1

42′2′ 2′2′2′ (r8, 2∗̄x)(m, ε′)(h, 2′∗̄x ) 1
(r8, ε

′)(m, 2∗x̄)(h, 2′∗x̄ ) 1
(r8, 2∗̄x)(m, 2′∗̄x )(h, ε′) 1

4/m 2′2′2′ (r8, 2∗̄x)(m, ε′)(h, ε) 1
(r8, ε

′)(m, 2∗x̄)(h, ε) 1
(r8, 2∗x̄)(m, 2′∗x̄ )(h, ε) 1

4̄ 4221′ (r8, 4∗z̄)(m, 2†x̄)(h, 2z̄) 1
2/m 4221′ (r8, 4∗z̄)(m, 2†x̄)(h, ε) 1
2̄ 8221′ (r8, 8∗z̄)(m, 2†x̄)(h, ε) 1
1̄ 8221′ (r8, 8∗̄z)(m, 2†x̄)(h, 2z̄) 1

Γe = 1′

8/mmm 1′ (r8, ε)(m, ε)(h, ε) 1
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Table C-16: continued

Gε Γ generators line
8mm 21′ (r8, ε)(m, ε)(h, 2z̄) 1
822 21′ (r8, ε)(m, 2z̄)(h, 2z̄) 1
8/m 21′ (r8, ε)(m, 2z̄)(h, ε) 1
8̄m2 21′ (r8, 2z̄)(m, ε)(h, 2z̄) 1
8̄2m 21′ (r8, 2z̄)(m, 2z̄)(h, 2z̄) 1

4/mmm 21′ (r8, 2z̄)(m, ε)(h, ε) 1
4/mm′m′ 21′ (r8, 2z̄)(m, 2z̄)(h, ε) 1

8 2′2′2′ (r8, ε)(m, 2z̄)(h, 2x̄) 1
8̄ 2′2′2′ (r8, 2z̄)(m, 2x̄)(h, 2z̄) 1

4mm 2′2′2′ (r8, 2z̄)(m, ε)(h, 2x̄) 1
4m′m′ 2′2′2′ (r8, 2z̄)(m, 2z̄)(h, 2x̄) 1
422 2′2′2′ (r8, 2z̄)(m, 2x̄)(h, 2x̄) 1
42′2′ 2′2′2′ (r8, 2z̄)(m, 2x̄)(h, 2ȳ) 1
4/m 2′2′2′ (r8, 2z̄)(m, 2x̄)(h, ε) 1
4̄ 4221′ (r8, 4z̄)(m, 2x̄)(h, 2z̄) 1

2/m 4221′ (r8, 4z̄)(m, 2x̄)(h, ε) 1
2̄ 8221′ (r8, 8z̄)(m, 2x̄)(h, ε) 1

(r8, 83
z̄)(m, 2x̄)(h, ε) 1

1̄ 8221′ (r8, 8z̄)(m, 2x̄)(h, 2z̄) 1
(r8, 83

z̄)(m, 2x̄)(h, 2z̄) 1
Γe = n

8mm n2∗2∗ (r8, ε)(m, ε)(h, 2∗x̄) 9
8̄2m n2∗2∗ (r8, 2∗x̄)(m, 2∗x̄)(h, 2∗x̄) 13

8 n221′ (r8, ε)(m, ε′)(h, 2∗x̄) 9
(2n)∗2†2∗† (r8, ε)(m, 2n∗z̄)(h, 2†x̄) 10

8̄ n221′ (r8, 2∗x̄)(m, 2′∗x̄ )(h, 2∗x̄) 13
4mm n221′ (r8, ε

′)(m, ε)(h, 2∗x̄) 9
(2n)∗2†2∗† (r8, 2n∗z̄)(m, ε)(h, 2†x̄) 11

4m′m′ n221′ (r8, ε
′)(m, ε′)(h, 2∗x̄) 9

(r8, 2∗̄x)(m, 2∗̄x)(h, 2′∗̄x ) 13
(2n)∗2†2∗† (r8, 2n∗̄z)(m, 2n∗̄z)(h, 2†x̄) 12

422 n221′ (r8, 2∗̄x)(m2′∗̄x )(h, 2′∗̄x ) 13
(2n)∗2†2∗† (r8, 2†x̄)(m, (2nz̄)2

∗†
x̄ )(h, (2nz̄)2

∗†
x̄ ) 15

4 (2n)221′ (r8, 2n∗z̄)(m, ε′)(h, 2†x̄) 11
(r8, ε

′)(m2n∗̄z)(h, 2†x̄) 10
(r8, 2n∗̄z)(m, 2n′∗̄z )(h, 2†x̄) 12
(r8, (2nz̄)2

†
x̄)(m, 2∗̄x)(h, 2′∗̄x ) 14

Γe = n′

8mm n′2∗2′∗ (r8, ε)(m, ε)(h, 2∗̄x) 9
8̄2m n′2∗2′∗ (r8, 2∗̄x)(m, 2∗̄x)(h, 2∗̄x) 13

8 n221′ (r8, ε)(m, ε′)(h, 2∗̄x) 9
8̄ n221′ (r8, 2∗̄x)(m, 2′∗̄x )(h, 2∗̄x) 13

4mm n221′ (r8, ε
′)(m, ε)(h, 2∗x̄) 9

4m′m′ n221′ (r8, ε
′)(m, ε′)(h, 2∗x̄) 9

422 n221′ (r8, 2∗x̄)(m, 2′∗x̄ )(h, 2′∗x̄ ) 13
Γe = 2∗2∗2

4†2∗2∗† (r8, 4†z̄)(m, 4†z̄)(h, ε) 8
4m′m′ 4221′ (r8, 4†z̄)(m, 4†z̄)(h, ε′) 8
42′2′ 4221′ (r8, 4†z̄)(m, 4′†z̄ )(h, ε′) 8
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Table C-16: continued

Gε Γ generators line
4/m 4221′ (r8, 4†z̄)(m, 4′†z̄ )(h, ε) 8
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