Download citation
Download citation
link to html
The title compound, C17H13NO4, crystallizes in two polymorphic forms, each with two mol­ecules in the asymmetric unit and in the monoclinic space group P21/c. All of the mol­ecules have intra­molecular hydrogen bonds involving the amide group. The amide N atoms act as donors to the carbonyl group of the pyrone and also to the meth­oxy group of the benzene ring. The carbonyl O atom of the amide group acts as an acceptor of the [beta] and [beta]' C atoms belonging to the aromatic rings. These intra­molecular hydrogen bonds have a profound effect on the mol­ecular conformation. In one polymorph, the mol­ecules in the asymmetric unit are linked to form dimers by weak C-H...O inter­actions. In the other, the mol­ecules in the asymmetric unit are linked by a single weak C-H...O hydrogen bond. Two of these units are linked to form centrosymmetric tetra­mers by a second weak C-H...O inter­action. Further inter­actions of this type link the mol­ecules into chains, so forming a three-dimensional network. These inter­actions in both polymorphs are supplemented by [pi]-[pi] inter­actions between the chromone rings and between the chromone and meth­oxy­phenyl rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113017538/sk3500sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113017538/sk3500Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113017538/sk3500IIsup3.hkl
Contains datablock II

CCDC references: 964810; 964811

Introduction top

Neurodegenerative diseases, such as Alzheimer's and Parkinson's, are growing in incidence with the increase in life expe­cta­ncy of the human population. They remain an unmet clinical need, and the search for new targets and effective treatments with disease-modifying properties is still an incomplete endeavour.

Mono­amine oxidase (MAO), a mammalian enzyme present in two isoforms (MAO-A and MAO-B), is an attractive drug target as it plays a central role in neurotransmitter metabolism. In fact, MAO-B inhibitors are relevant drugs in the therapy of Parkinson's disease (Edmondson et al., 2004; Youdim & Buccafusco, 2005; Riederer et al., 2004) as they have the capacity to prolong the action of dopamine in the brain. However, the MAO-B inhibitors that are currently used in therapy have several associated side effects as they are of the irreversible type [The inhibitors or the side effects?] (Gaspar, Reis et al., 2011; Gaspar, Silva et al., 2011; Gaspar, Teixeira et al., 2011; Reis et al., 2012). Therefore, there is still a great need for the discovery of MAO-B inhibitors with an enhanced and a safer pharmacological profile.

The chromone scaffold has emerged as a fruitful approach to the discovery of novel drugs as it allows the attainment of a versatile chemistry platform and putative potent and selective agents for a range of different biological targets. In fact, the chromone scaffold has been the central core in diverse medicinal chemistry programmes (Alcaro et al., 2010; Gaspar, Reis, Kachler et al., 2012), for the development of novel MAO-B inhibitors (Alcaro et al., 2010; Gaspar, Reis et al., 2011; Gaspar, Silva et al., 2011; Gaspar, Teixeira et al., 2011) as well as of adenosine receptor ligands (Gaspar, Reis, Kachler et al., 2012; Gaspar, Reis, Matos et al., 2012). In this context, the structural characterization of the polymorphic forms of the title novel chromone carboxamide derivative, (I), is presented in this work. Unequivocal characterization of chromones is of the utmost importance in medicinal chemistry projects as it allows the speeding up of studies of structure–activity relationships and molecular docking. In fact, polymorphism has a special relevance in pharmaceutical processing and formulation due to its impact on key drug properties, such as dissolution rate and stability.

Experimental top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Synthesis and crystallization top

All chemicals were of analysis grade and were purchased from Sigma–Aldrich Química S.A. (Sintra, Portugal) and used without additional purification.

For the synthesis of (I), POCl3 (2.6 mmol) was added to a solution of chromone-3-carb­oxy­lic acid (1.3 mmol) in di­methyl­formamide (2 ml). The mixture was stirred at room temperature for 30 min, resulting in the formation of the corresponding acyl chloride in situ. 2-Meth­oxy­aniline (1.9 mmol) was then added and the solution stirred for 1 h. The mixture was then diluted with di­chloro­methane (20 ml) and washed with H2O (3 × 10 ml) and saturated NaHCO3 solution (3 × 10 ml). The organic phase was dried with Na2SO4, filtered and concentrated under reduced pressure. Crystals of (I) suitable for X-ray diffraction were obtained by recrystallization from ethyl acetate (for polymorph A) or CH2Cl2/n-hexane [Solvent ratio?] (for polymorph B).

Refinement top

H atoms were located in difference maps and treated as riding atoms, with aromatic C—H = 0.95 Å and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(C), and with methyl C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C). The positions of the N-bound H atom and the methyl groups were checked on a final difference map.

Results and discussion top

Molecular structure and conformation top

The title compound, (I), crystallizes in two polymorphic forms (Figs. 1 and 2), referred to as polymorphs A and B. In both structures, the compound crystallizes in the space group P21/c with two molecules (1 and 2) in the asymmetric unit. Here, atom labels have the general notation nx, where n = 1 or 2 referring to molecules 1 or 2 and x refers to the numbering of the atom, so that molecules 1 are labelled 1x and molecules 2 as 2x, in both polymorphs.

Molecular conformation may be the most relevant information that solid-state X-ray analysis can give with respect to the prediction of pharmacological activity of chromones and to give an insight concerning their structure–activity profiles, while the supra­molecular strucure may condition the bioavailability of the compound. The conformation of these molecules is driven by the carboxamide residue: they exhibit an anti configuration with respect to the C—N rotamer of the amide, which allows for the establishment of three or four intra­molecular hydrogen bonds. As can be seen by the information given in Table 1 and Fig. 3, amide atom Nn3 acts as a donor to the O atom of the meth­oxy group and to the carbonyl O atom of the chromone ring. This donation allows the formation of a six-membered S(5) ring (R3 in Fig. 3) and a five-membered S(6) ring (R1), respectively (Bernstein et al., 1995). Also, the amide O atom acts as an acceptor for a weak hydrogen-bond inter­action (Cn36—Hn36···On3; ortho position of the benzyl ring), forming another S(6) ring (Fig. 3). A fourth hydrogen-bond inter­action involving the amide O atom may also be considered, viz. Cn2—Hn2(ortho-chromene), giving an S(5) ring (Fig. 3).

There are slight differences in geometry between the molecules, although the hydrogen-bonding network restrains their geometry, particularly the rotation of the aromatic rings around the carboxamide group. The chromone rings are mostly planar, as expected. For polymorph A, the mean planes formed by all the non-H atoms of the chromone ring in molecules 1 and 2 have maximum deviations of -0.020 (1) and -0.017 (1) Å, respectively, for atoms C14 and C24, while for polymorph B the corresponding values are -0.044 (4) and -0.011 (4) Å, respectively, for atoms C12 and C27. Table 3 gives the values calculated for the dihedral angles between the mean planes of the chromone and benzene rings, θ1, between the mean plane of the chromone and the plane defined by atoms On31/Cn37/Nn3, θ2, and between the mean plane of the benzene ring and that defined by atoms On31/Cn37/Nn3 of the amide group, θ3. Molecule 2 of polymorph A is practically planar, whereas the remaining ones present slight torsions between the defined planes. In molecule 2 of polymorph B, the amide group is practically coplanar with the chromone ring, with the overall deviation from planarity being due to the torsion of the benzene substituent in relation to the On31—Cn37—Nn3 residue. In contrast, the deviations from planarity that both molecules 1 exhibit are due to some degree of bending of the Cα and Cα' atoms (Cn31 and Cn3) out of the On31—Cn37—Nn3 plane of the amide. This bending is followed by a lengthening of the inter­nal hydrogen-bond contacts involving carbonyl atom O131, thus making the pseudo-rings R2 and R4 less flat in these molecules.

The differences in conformation between molecules 1 and 2 of the polymorphs can be assessed by the quaternion fit method (Mackay, 1984), which fits molecule 1 onto molecule 2 of polymorph A with a rotation angle of -174° about the (pseudo)axis, giving a weighted fit of 0.131 Å and a unit weight r.m.s. fit of 0.137 Å for 22 fitted atoms. In polymorph B, molecule 1 fits onto molecule 2 with a rotation angle of -31° about the (pseudo)axis, with a weighted fit of 0.187 Å and a unit weight r.m.s. fit of 0.181 Å for the 22 fitted atoms (Figs. 4 and 5). Table 3 gives the quaternion fit parameters for all pairs of molecules. These values indicate that the differences in conformation are slightly greater for the molecules 1 and 2 of polymorph B and these differences can be appreciated graphically in Figs. 4 and 5. However, when the molecules of polymorph A are compared with those of polymorph B (Table 3), it can be seen that molecule 1 of polymorph A is very close in conformation to molecule 2 of polymorph B and, to a lesser extent, the conformation of molecule 2 of polymorph A is close to that of molecule 1 of polymorph B.

It is inter­esting to compare the inter­nal hydrogen-bond network presented by this compound with the analogous N-(2-meth­oxy­phenyl)-4-oxo-4H-2-chromone carboxamide (Gomes et al., 2013) having the same configuration (see Fig. 6). As can be seen, the amidic substitution at the 3-position of the chromone system `inverts' the relative position of the O-atom pair On1/On4 of the chromone ring with respect to the phenyl­amide, compared with the structure of the 2-chromone carboxamide. From a structural point of view, this inversion permits the formation of two pseudo-six-membered rings in the chrom-3-one, in contrast with one pseudo-six-membered ring and one pseudo-five-membered ring in the 2-substituted compound. Moreover, in the 3-substituted compound, the acceptor for the N-bound H atom is the oxo O atom of the chromone ring, instead of the heteroatom in the 2-substituted compounds. These differences suggest that 3-substituted chromones may be structurally more stable than their 2-substituted analogues. These particular differences may also determine the availability for docking when their pharmacological activities are kept in mind.

Supra­molecular structure top

In polymorph A, the molecules of the selected asymmetric unit are linked by weak C12—H12···O231 and C22—H22···O131 hydrogen bonds to form dimers (Fig. 1). In polymorph B, the molecules within the selected asymmetric unit are connected by a weak C25—H25···O11 hydrogen bond.

Inter­molecular hydrogen bonding top

Details for both compounds are given in Table 2. There are no inter­molecular hydrogen bonds in polymorph A other than those which form the dimer described above. The supra­molecular structure is determined by ππ stacking inter­actions as described below. In polymorph B, the supra­molecular hydrogen-bond pattern is best described in terms of the individual structures which comprise it. As described above, the molecules within the selected asymmetric unit are connected by a weak C25—H25···O11 hydrogen bond. The molecules in the asymmetric unit are linked to form a centrosymmetric R44(24) quadrimer [tetra­mer?] across a centre of symmetry at (1/2, 1/2, 1/2) by a C22—H22···O131 hydrogen bond (Fig. 7). In addition, the molecules in the asymmetric unit are linked by a weak C16—H16···O231(x + 1, y, z) hydrogen bond to form C22(13) chains, which run parallel to the a axis (Fig. 8). A weak C133—H133···O132(x, -y + 3/2, z + 1/2) hydrogen bond links molecules 1 into a C(4) chain produced by the action of a c-glide at y = 3/4 which runs along the c axis (Fig. 9).

ππ stacking inter­actions top

Table 5 gives details for the ππ stacking parameters between the chromone rings in both compounds. In all cases, packing takes place between centrosymetrically related molecules of the same type. Views of the packing perpendicular to the chromone rings are shown in Fig. 10 for polymorph A and in Fig. 11 for polymorph B. In polymorph A, in the case of molecule 2, there is a possible inter­action between the chromone ring and the 2-meth­oxy­phenyl ring at (-x + 1, -y + 1, -z + 1). The pyran ring is inclined to this latter ring at an angle of 2.82 (6)° [centroid separation 3.5263 (10) Å] and to the benzene ring of the chromone system at 2.14 (6)° [centroid separation 3.6509 (11) Å]. In all cases, the perpendicular distances between the centroids and the planes are less than 3.5 Å.

There are similar inter­actions between the chromone and meth­oxy­phenyl rings in polymorph B, where the centroid-to-centroid distance is less than 4 Å but the angles between the planes lie in the range 5–11°. In all cases, the perpendicular distances between the centroids and the planes are less than 3.5 Å. This overlap of rings for molecule 2 is shown in Fig. 7.

Related literature top

For related literature, see: Alcaro et al. (2010); Bernstein et al. (1995); Edmondson et al. (2004); Gaspar, Reis, Fonseca, Milhazes, Vina, Uriarte & Borges (2011); Gaspar, Reis, Kachler, Paoletta, Uriarte, Klotz, Moro & Borges (2012); Gaspar, Reis, Matos, Uriarte & Borges (2012); Gaspar, Silva, Yanez, Vina, Orallo, Ortuso, Uriarte, Alcaro & Borges (2011); Gaspar, Teixeira, Uriarte, Milhazes, Melo, Cordeiro, Ortuso, Alcaro & Borges (2011); Gomes et al. (2013); Mackay (1984); Reis et al. (2012); Riederer et al. (2004); Youdim & Buccafusco (2005).

Computing details top

For both compounds, data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: OSCAIL (McArdle et al., 2004) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OSCAIL (McArdle et al., 2004) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of polymorph A, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the intramolecular hydrogen bonds involving the amine N atom and the intermolecular hydrogen bonds which link the molecules in the chosen asymmetric unit.
[Figure 2] Fig. 2. A view of the asymmetric unit of polymorph B, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the intramolecular hydrogen bonds involving the amine N atom and the intermolecular hydrogen bonds which form a dimer.
[Figure 3] Fig. 3. A diagram showing the pseudo-rings formed by intramolecular N—H···O and weak C—H···O interactions.
[Figure 4] Fig. 4. A MOLFIT diagram of polymorph A, showing the fit of molecule 1 (red in the electronic version of the journal) on to molecule 2.
[Figure 5] Fig. 5. A MOLFIT diagram of polymorph A [B?], showing the fit of molecule 1 (red in the electronic version of the journal) on to molecule 2.
[Figure 6] Fig. 6. A schematic representation of the intramolecular hydrogen-bond network presented by (I) in both polymorphic forms (A) and of the 4-oxo-N-methoxyphenyl-4H-chromene-2-carboxamide (B) isomer. As can be seen, the amidic substitution at position number 3 of the chromone (A) `inverts' the relative position of atoms O1 and O4 of the chromone ring with respect to the phenylamide group, compared with the structure of the 2-carboxamide (B).
[Figure 7] Fig. 7. Part of the crystal structure of polymorph B, showing the quadrimer [tetramer] formed by the C22—H22···O131 hydrogen bond (dashed lines) linking the asymmetric unit into centrosymmetric pairs. H atoms not involved in the hydrogen bonding have been omitted.
[Figure 8] Fig. 8. Part of the crystal structure of polymorph B, showing the C2222 (13) chain formed by the weak C16—H16···O231(x + 1, y, z) hydrogen bond (dashed lines) linking the molecules in the asymmetric unit. The chain runs parallel to the a axis. H atoms not involved in hydrogen bonding have been omitted.
[Figure 9] Fig. 9. Part of the crystal structure of polymorph B, showing the C4 chain formed by the weak C133—H133···O132(x, -y + 3/2, z + 1/2) hydrogen bond (dashed lines) which links together molecules of type 1. The chain runs parallel to the a axis. H atoms not involved in hydrogen bonding have been omitted.
[Figure 10] Fig. 10. Views of the ππ stacking of the chromone rings in (a) molecule 1 and (b) molecule 2 of polymorph A. H atoms have been omitted.
[Figure 11] Fig. 11. Views of the ππ stacking of the chromone rings in (a) molecule 1 and (b) molecule 2 of polymorph B. H atoms have been omitted.
(I) N-(2-Methoxyphenyl)-4-oxo-4H-chromone-3-carboxamide top
Crystal data top
C17H13NO4F(000) = 1232
Mr = 295.28Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 7383 reflections
a = 8.9867 (18) Åθ = 2.4–30.1°
b = 20.669 (4) ŵ = 0.10 mm1
c = 14.856 (3) ÅT = 100 K
β = 93.545 (4)°Block, colourless
V = 2754.2 (9) Å30.24 × 0.18 × 0.05 mm
Z = 8
Data collection top
Rigaku Saturn724+
diffractometer
7417 independent reflections
Radiation source: rotating anode6703 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 30.1°, θmin = 2.5°
profile data from ω scansh = 129
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 2828
Tmin = 0.976, Tmax = 0.995l = 1920
24297 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0474P)2 + 1.2245P]
where P = (Fo2 + 2Fc2)/3
7417 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H13NO4V = 2754.2 (9) Å3
Mr = 295.28Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.9867 (18) ŵ = 0.10 mm1
b = 20.669 (4) ÅT = 100 K
c = 14.856 (3) Å0.24 × 0.18 × 0.05 mm
β = 93.545 (4)°
Data collection top
Rigaku Saturn724+
diffractometer
7417 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
6703 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.995Rint = 0.028
24297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
7417 reflectionsΔρmin = 0.26 e Å3
399 parameters
Special details top

Experimental. 1H and 13C NMR spectra of samples, in CDCl3, were recorded at room temperature in 5mm outside diameter (o.d.) tubes. Tetramethylsilane (TMS) was used as an internal standard, chemical shifts are expressed in p.p.m. (δ) and J in Hz. One-dimensional 13C NMR was recorded on a Bruker AMX 400 NMR spectrometer operating at 100MHz, typically with a 30° pulse flip angle, a pulse repetition time of 4.8 s, and a spectral width of 31 250 Hz with 32 K data points. For the DEPT sequence, the width of the 90° pulse for 13C was 4 µs, and that of the 90° pulse for 1H was 9.5°; the delay 2J C,H/1 was set to 3.5 µs. Spectra were collected in the t1 domain in 256 experiments with 2 K data points and spectral widths of 5050 and 27 669Hz in the F2(1H) and F2(13C) dimensions, respectively. The relaxation delay D1 was set to 2 s. The data have been processed using sine-bell weighting functions in both dimensions. A mass spectrum was obtained using a Hewlett–Packard 5988A spectrometer.

N-(2-methoxyphenyl)-4-oxo-4H-chromene-3-carboxamide: yield: 52%; 1H NMR (CDCl3, δ, p.p.m.): 4.02 (s, 3H), 6.95 (dd, J = 8.1 and 1.4 Hz, 1H), 7.00 (td, J = 7.6 and 1.1 Hz, 1H), 7.13-7.06 (m, 1H), 7.52 (ddd, J = 8.1, 7.2 and 1.1 Hz, 1H), 7.58 (dd, J = 8.5 and 0.6 Hz, 1H), 7.77 (ddd, J = 8.7, 7.1 and 1.7 Hz, 1H), 8.40-8.34 (m, 1H), 8.53 (dd, J = 8.0 and 1.6 Hz, 1H), 9.07 (s, 1H), 11.70 (s, 1H); 13C NMR (CDCl3, δ, p.p.m.): 56.2, 110.4, 116.6, 118.6, 121.0, 121.1, 124.3, 126.45, 126.54, 128.1, 134.8, 142.9, 156.3, 160.7, 162.9, 177.3. MS m/z(%) (ESI): 295(M+, 59), 264 (11), 187 (10), 173 (100), 121 (44).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.58072 (10)0.55610 (5)0.16260 (6)0.01977 (19)
O1310.19155 (11)0.62562 (5)0.25077 (6)0.0238 (2)
O140.27278 (11)0.62781 (5)0.02677 (6)0.0232 (2)
O1320.05197 (11)0.70644 (5)0.01921 (7)0.0285 (2)
N130.08753 (12)0.64098 (5)0.10799 (7)0.0193 (2)
H130.10240.63470.05060.023*
C14A0.51381 (15)0.58579 (6)0.00828 (9)0.0185 (2)
C18A0.61512 (15)0.56094 (6)0.07405 (9)0.0184 (2)
C120.44833 (14)0.57823 (6)0.18573 (9)0.0190 (2)
H120.42810.57620.24770.023*
C130.34071 (14)0.60327 (6)0.12775 (9)0.0181 (2)
C140.36595 (15)0.60760 (6)0.03191 (9)0.0185 (2)
C150.55592 (15)0.58818 (6)0.08112 (9)0.0217 (3)
H150.48870.60520.12700.026*
C160.69393 (16)0.56612 (7)0.10289 (9)0.0239 (3)
H160.72140.56750.16360.029*
C170.79343 (16)0.54160 (7)0.03503 (10)0.0242 (3)
H170.88880.52680.05010.029*
C180.75513 (15)0.53865 (7)0.05345 (9)0.0217 (3)
H180.82280.52180.09920.026*
C1310.05113 (14)0.66753 (6)0.12815 (9)0.0188 (2)
C1320.12700 (15)0.70253 (7)0.05784 (9)0.0217 (3)
C1330.26539 (15)0.72957 (7)0.07000 (10)0.0254 (3)
H1330.31600.75330.02260.030*
C1340.32990 (15)0.72173 (7)0.15240 (10)0.0255 (3)
H1340.42430.74050.16130.031*
C1350.25708 (15)0.68674 (7)0.22111 (10)0.0239 (3)
H1350.30260.68100.27660.029*
C1360.11717 (15)0.65982 (6)0.20948 (9)0.0206 (3)
H1360.06720.63620.25720.025*
C1380.12357 (19)0.73863 (8)0.09510 (11)0.0328 (3)
H13A0.21790.71680.11240.049*
H13B0.05860.73740.14570.049*
H13C0.14340.78370.07930.049*
C1370.20050 (14)0.62411 (6)0.16870 (9)0.0186 (2)
O210.09282 (10)0.59246 (4)0.47465 (6)0.01993 (19)
O2310.36612 (11)0.48270 (5)0.33124 (6)0.0247 (2)
O240.29544 (12)0.43766 (5)0.60396 (7)0.0275 (2)
O2320.55100 (11)0.32563 (5)0.55228 (6)0.0227 (2)
N230.43100 (12)0.41546 (5)0.44957 (7)0.0184 (2)
H230.41360.40760.50620.022*
C220.18795 (14)0.55393 (6)0.43330 (9)0.0184 (2)
H220.20640.56380.37250.022*
C28A0.06638 (14)0.57942 (6)0.56290 (9)0.0183 (2)
C230.25952 (14)0.50227 (6)0.47128 (8)0.0176 (2)
C24A0.13439 (14)0.52780 (6)0.60930 (9)0.0194 (3)
C240.23671 (14)0.48460 (6)0.56433 (9)0.0193 (3)
C250.10273 (16)0.51836 (7)0.69948 (10)0.0255 (3)
H250.14840.48370.73280.031*
C260.00585 (17)0.55905 (8)0.73998 (10)0.0297 (3)
H260.01470.55240.80130.036*
C270.06260 (16)0.61012 (7)0.69144 (10)0.0268 (3)
H270.13010.63770.71980.032*
C280.03276 (15)0.62065 (6)0.60302 (10)0.0220 (3)
H280.07880.65540.56990.026*
C2310.53231 (14)0.37398 (6)0.40980 (9)0.0179 (2)
C2320.59772 (14)0.32550 (6)0.46620 (9)0.0184 (2)
C2330.70050 (14)0.28289 (6)0.43362 (9)0.0209 (3)
H2330.74490.25050.47190.025*
C2340.73838 (15)0.28778 (6)0.34444 (10)0.0220 (3)
H2340.80850.25850.32190.026*
C2350.67471 (15)0.33496 (7)0.28847 (9)0.0216 (3)
H2350.70120.33790.22770.026*
C2360.57197 (15)0.37824 (6)0.32078 (9)0.0205 (3)
H2360.52890.41070.28210.025*
C2380.61362 (17)0.27814 (7)0.61341 (10)0.0271 (3)
H23A0.59010.23480.58990.041*
H23B0.57160.28340.67230.041*
H23C0.72210.28370.62000.041*
C2370.35733 (14)0.46628 (6)0.41011 (9)0.0182 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0206 (4)0.0231 (4)0.0156 (4)0.0013 (4)0.0013 (3)0.0019 (3)
O1310.0256 (5)0.0301 (5)0.0158 (5)0.0054 (4)0.0021 (4)0.0038 (4)
O140.0262 (5)0.0260 (5)0.0171 (5)0.0049 (4)0.0008 (4)0.0025 (4)
O1320.0257 (5)0.0373 (6)0.0221 (5)0.0013 (4)0.0007 (4)0.0114 (4)
N130.0207 (5)0.0220 (5)0.0151 (5)0.0003 (4)0.0006 (4)0.0000 (4)
C14A0.0225 (6)0.0158 (6)0.0173 (6)0.0018 (5)0.0012 (5)0.0001 (4)
C18A0.0230 (6)0.0170 (5)0.0154 (6)0.0029 (5)0.0014 (5)0.0004 (4)
C120.0205 (6)0.0187 (6)0.0180 (6)0.0011 (5)0.0030 (5)0.0010 (5)
C130.0213 (6)0.0160 (5)0.0169 (6)0.0006 (5)0.0011 (5)0.0004 (4)
C140.0238 (6)0.0153 (5)0.0164 (6)0.0001 (5)0.0005 (5)0.0008 (4)
C150.0265 (7)0.0215 (6)0.0172 (6)0.0006 (5)0.0016 (5)0.0012 (5)
C160.0280 (7)0.0263 (7)0.0179 (6)0.0012 (5)0.0041 (5)0.0011 (5)
C170.0223 (6)0.0268 (7)0.0240 (7)0.0002 (5)0.0042 (5)0.0024 (5)
C180.0211 (6)0.0235 (6)0.0204 (6)0.0001 (5)0.0003 (5)0.0007 (5)
C1310.0185 (6)0.0164 (5)0.0211 (6)0.0018 (5)0.0013 (5)0.0008 (5)
C1320.0226 (6)0.0205 (6)0.0217 (7)0.0042 (5)0.0008 (5)0.0024 (5)
C1330.0230 (6)0.0207 (6)0.0315 (8)0.0006 (5)0.0061 (5)0.0027 (5)
C1340.0197 (6)0.0234 (6)0.0329 (8)0.0004 (5)0.0020 (5)0.0050 (6)
C1350.0216 (6)0.0258 (7)0.0243 (7)0.0019 (5)0.0011 (5)0.0059 (5)
C1360.0212 (6)0.0207 (6)0.0195 (6)0.0017 (5)0.0020 (5)0.0017 (5)
C1380.0379 (8)0.0360 (8)0.0235 (7)0.0007 (7)0.0066 (6)0.0097 (6)
C1370.0221 (6)0.0154 (5)0.0182 (6)0.0004 (5)0.0011 (5)0.0028 (4)
O210.0228 (4)0.0188 (4)0.0182 (5)0.0031 (4)0.0015 (3)0.0008 (3)
O2310.0322 (5)0.0245 (5)0.0182 (5)0.0064 (4)0.0072 (4)0.0049 (4)
O240.0323 (5)0.0307 (5)0.0201 (5)0.0122 (4)0.0057 (4)0.0081 (4)
O2320.0270 (5)0.0232 (5)0.0179 (5)0.0053 (4)0.0018 (4)0.0036 (4)
N230.0195 (5)0.0209 (5)0.0150 (5)0.0025 (4)0.0021 (4)0.0012 (4)
C220.0199 (6)0.0186 (6)0.0169 (6)0.0004 (5)0.0022 (5)0.0007 (5)
C28A0.0170 (6)0.0192 (6)0.0189 (6)0.0037 (5)0.0018 (4)0.0008 (5)
C230.0173 (6)0.0191 (6)0.0164 (6)0.0007 (5)0.0011 (4)0.0004 (5)
C24A0.0172 (6)0.0215 (6)0.0196 (6)0.0010 (5)0.0023 (5)0.0002 (5)
C240.0179 (6)0.0220 (6)0.0181 (6)0.0002 (5)0.0007 (5)0.0017 (5)
C250.0255 (7)0.0297 (7)0.0218 (7)0.0030 (6)0.0059 (5)0.0043 (5)
C260.0307 (7)0.0364 (8)0.0230 (7)0.0031 (6)0.0108 (6)0.0023 (6)
C270.0231 (6)0.0284 (7)0.0299 (8)0.0015 (6)0.0082 (6)0.0038 (6)
C280.0194 (6)0.0199 (6)0.0266 (7)0.0001 (5)0.0017 (5)0.0013 (5)
C2310.0168 (5)0.0181 (6)0.0186 (6)0.0004 (5)0.0002 (4)0.0019 (5)
C2320.0184 (6)0.0189 (6)0.0179 (6)0.0022 (5)0.0005 (5)0.0007 (5)
C2330.0202 (6)0.0174 (6)0.0248 (7)0.0010 (5)0.0014 (5)0.0006 (5)
C2340.0196 (6)0.0199 (6)0.0267 (7)0.0000 (5)0.0021 (5)0.0049 (5)
C2350.0218 (6)0.0241 (6)0.0192 (6)0.0004 (5)0.0027 (5)0.0035 (5)
C2360.0223 (6)0.0209 (6)0.0182 (6)0.0002 (5)0.0001 (5)0.0007 (5)
C2380.0353 (8)0.0253 (7)0.0202 (7)0.0067 (6)0.0016 (6)0.0038 (5)
C2370.0185 (6)0.0191 (6)0.0172 (6)0.0011 (5)0.0014 (4)0.0003 (5)
Geometric parameters (Å, º) top
O11—C121.3392 (16)O21—C221.3443 (15)
O11—C18A1.3734 (15)O21—C28A1.3735 (15)
O131—C1371.2271 (16)O231—C2371.2270 (16)
O14—C141.2431 (16)O24—C241.2361 (16)
O132—C1321.3663 (17)O232—C2321.3704 (16)
O132—C1381.4276 (17)O232—C2381.4288 (16)
N13—C1371.3611 (16)N23—C2371.3555 (16)
N13—C1311.4106 (17)N23—C2311.4070 (16)
N13—H130.88N23—H230.88
C14A—C18A1.3919 (18)C22—C231.3518 (18)
C14A—C151.4041 (18)C22—H220.9500
C14A—C141.4662 (18)C28A—C24A1.3909 (18)
C18A—C181.3917 (19)C28A—C281.3933 (18)
C12—C131.3573 (18)C23—C241.4565 (18)
C12—H120.9500C23—C2371.5001 (18)
C13—C141.4583 (18)C24A—C251.4002 (18)
C13—C1371.4960 (18)C24A—C241.4715 (18)
C15—C161.3785 (19)C25—C261.376 (2)
C15—H150.9500C25—H250.9500
C16—C171.400 (2)C26—C271.399 (2)
C16—H160.9500C26—H260.9500
C17—C181.3805 (19)C27—C281.374 (2)
C17—H170.9500C27—H270.9500
C18—H180.9500C28—H280.9500
C131—C1361.3878 (18)C231—C2361.3936 (18)
C131—C1321.4112 (18)C231—C2321.4109 (18)
C132—C1331.385 (2)C232—C2331.3850 (18)
C133—C1341.396 (2)C233—C2341.3919 (19)
C133—H1330.9500C233—H2330.9500
C134—C1351.382 (2)C234—C2351.3823 (19)
C134—H1340.9500C234—H2340.9500
C135—C1361.3955 (19)C235—C2361.3920 (18)
C135—H1350.9500C235—H2350.9500
C136—H1360.9500C236—H2360.9500
C138—H13A0.9800C238—H23A0.9800
C138—H13B0.9800C238—H23B0.9800
C138—H13C0.9800C238—H23C0.9800
C12—O11—C18A118.50 (10)C22—O21—C28A118.19 (10)
C132—O132—C138117.87 (12)C232—O232—C238117.41 (11)
C137—N13—C131126.25 (11)C237—N23—C231127.02 (11)
C137—N13—H13116.9C237—N23—H23116.5
C131—N13—H13116.9C231—N23—H23116.5
C18A—C14A—C15118.30 (12)O21—C22—C23125.23 (12)
C18A—C14A—C14120.56 (12)O21—C22—H22117.4
C15—C14A—C14121.13 (12)C23—C22—H22117.4
O11—C18A—C18116.53 (11)O21—C28A—C24A121.80 (11)
O11—C18A—C14A121.54 (12)O21—C28A—C28116.18 (12)
C18—C18A—C14A121.92 (12)C24A—C28A—C28122.02 (12)
O11—C12—C13125.23 (12)C22—C23—C24120.19 (12)
O11—C12—H12117.4C22—C23—C237114.85 (11)
C13—C12—H12117.4C24—C23—C237124.94 (11)
C12—C13—C14119.69 (12)C28A—C24A—C25118.16 (12)
C12—C13—C137115.89 (12)C28A—C24A—C24120.54 (12)
C14—C13—C137124.42 (11)C25—C24A—C24121.29 (12)
O14—C14—C13124.51 (12)O24—C24—C23124.59 (12)
O14—C14—C14A121.10 (12)O24—C24—C24A121.36 (12)
C13—C14—C14A114.39 (11)C23—C24—C24A114.04 (11)
C16—C15—C14A120.62 (12)C26—C25—C24A120.32 (13)
C16—C15—H15119.7C26—C25—H25119.8
C14A—C15—H15119.7C24A—C25—H25119.8
C15—C16—C17119.64 (13)C25—C26—C27120.38 (14)
C15—C16—H16120.2C25—C26—H26119.8
C17—C16—H16120.2C27—C26—H26119.8
C18—C17—C16121.04 (13)C28—C27—C26120.44 (13)
C18—C17—H17119.5C28—C27—H27119.8
C16—C17—H17119.5C26—C27—H27119.8
C17—C18—C18A118.48 (13)C27—C28—C28A118.67 (13)
C17—C18—H18120.8C27—C28—H28120.7
C18A—C18—H18120.8C28A—C28—H28120.7
C136—C131—N13124.83 (12)C236—C231—N23124.76 (12)
C136—C131—C132119.36 (12)C236—C231—C232119.13 (12)
N13—C131—C132115.78 (12)N23—C231—C232116.11 (11)
O132—C132—C133125.38 (12)O232—C232—C233125.22 (12)
O132—C132—C131114.18 (12)O232—C232—C231114.35 (11)
C133—C132—C131120.45 (13)C233—C232—C231120.43 (12)
C132—C133—C134119.50 (13)C232—C233—C234119.61 (12)
C132—C133—H133120.3C232—C233—H233120.2
C134—C133—H133120.3C234—C233—H233120.2
C135—C134—C133120.33 (13)C235—C234—C233120.48 (12)
C135—C134—H134119.8C235—C234—H234119.8
C133—C134—H134119.8C233—C234—H234119.8
C134—C135—C136120.42 (13)C234—C235—C236120.30 (13)
C134—C135—H135119.8C234—C235—H235119.8
C136—C135—H135119.8C236—C235—H235119.8
C131—C136—C135119.94 (13)C235—C236—C231120.05 (12)
C131—C136—H136120.0C235—C236—H236120.0
C135—C136—H136120.0C231—C236—H236120.0
O132—C138—H13A109.5O232—C238—H23A109.5
O132—C138—H13B109.5O232—C238—H23B109.5
H13A—C138—H13B109.5H23A—C238—H23B109.5
O132—C138—H13C109.5O232—C238—H23C109.5
H13A—C138—H13C109.5H23A—C238—H23C109.5
H13B—C138—H13C109.5H23B—C238—H23C109.5
O131—C137—N13124.05 (12)O231—C237—N23124.66 (12)
O131—C137—C13121.33 (12)O231—C237—C23121.07 (12)
N13—C137—C13114.63 (11)N23—C237—C23114.27 (11)
C12—O11—C18A—C18178.63 (11)C28A—O21—C22—C230.84 (18)
C12—O11—C18A—C14A2.52 (17)C22—O21—C28A—C24A0.34 (17)
C15—C14A—C18A—O11178.89 (11)C22—O21—C28A—C28179.90 (11)
C14—C14A—C18A—O110.11 (18)O21—C22—C23—C240.2 (2)
C15—C14A—C18A—C180.09 (19)O21—C22—C23—C237178.72 (11)
C14—C14A—C18A—C18178.68 (12)O21—C28A—C24A—C25179.23 (12)
C18A—O11—C12—C132.69 (19)C28—C28A—C24A—C251.03 (19)
O11—C12—C13—C140.1 (2)O21—C28A—C24A—C240.73 (19)
O11—C12—C13—C137179.13 (11)C28—C28A—C24A—C24179.02 (12)
C12—C13—C14—O14177.60 (13)C22—C23—C24—O24178.77 (13)
C137—C13—C14—O141.6 (2)C237—C23—C24—O240.0 (2)
C12—C13—C14—C14A2.41 (17)C22—C23—C24—C24A0.81 (17)
C137—C13—C14—C14A178.41 (11)C237—C23—C24—C24A179.63 (12)
C18A—C14A—C14—O14177.52 (12)C28A—C24A—C24—O24178.34 (13)
C15—C14A—C14—O141.22 (19)C25—C24A—C24—O241.7 (2)
C18A—C14A—C14—C132.49 (17)C28A—C24A—C24—C231.25 (18)
C15—C14A—C14—C13178.76 (12)C25—C24A—C24—C23178.70 (12)
C18A—C14A—C15—C160.32 (19)C28A—C24A—C25—C260.5 (2)
C14—C14A—C15—C16178.45 (12)C24—C24A—C25—C26179.50 (14)
C14A—C15—C16—C170.5 (2)C24A—C25—C26—C270.3 (2)
C15—C16—C17—C180.5 (2)C25—C26—C27—C280.7 (2)
C16—C17—C18—C18A0.3 (2)C26—C27—C28—C28A0.2 (2)
O11—C18A—C18—C17178.94 (12)O21—C28A—C28—C27179.57 (12)
C14A—C18A—C18—C170.1 (2)C24A—C28A—C28—C270.7 (2)
C137—N13—C131—C13624.5 (2)C237—N23—C231—C2361.1 (2)
C137—N13—C131—C132157.55 (12)C237—N23—C231—C232178.25 (12)
C138—O132—C132—C1332.7 (2)C238—O232—C232—C2330.19 (19)
C138—O132—C132—C131177.35 (12)C238—O232—C232—C231179.49 (11)
C136—C131—C132—O132179.41 (12)C236—C231—C232—O232179.99 (11)
N13—C131—C132—O1321.30 (17)N23—C231—C232—O2320.64 (16)
C136—C131—C132—C1330.67 (19)C236—C231—C232—C2330.29 (19)
N13—C131—C132—C133178.78 (12)N23—C231—C232—C233179.06 (11)
O132—C132—C133—C134179.82 (13)O232—C232—C233—C234179.85 (12)
C131—C132—C133—C1340.3 (2)C231—C232—C233—C2340.48 (19)
C132—C133—C134—C1350.6 (2)C232—C233—C234—C2350.3 (2)
C133—C134—C135—C1361.1 (2)C233—C234—C235—C2360.1 (2)
N13—C131—C136—C135178.11 (12)C234—C235—C236—C2310.3 (2)
C132—C131—C136—C1350.18 (19)N23—C231—C236—C235179.38 (12)
C134—C135—C136—C1310.7 (2)C232—C231—C236—C2350.09 (19)
C131—N13—C137—O1315.6 (2)C231—N23—C237—O2312.0 (2)
C131—N13—C137—C13174.15 (11)C231—N23—C237—C23178.52 (11)
C12—C13—C137—O1318.53 (18)C22—C23—C237—O2311.85 (18)
C14—C13—C137—O131172.26 (12)C24—C23—C237—O231177.02 (12)
C12—C13—C137—N13171.73 (11)C22—C23—C237—N23178.61 (11)
C14—C13—C137—N137.48 (18)C24—C23—C237—N232.52 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O140.881.982.6954 (15)138
N13—H13···O1320.882.242.5845 (15)103
N23—H23···O240.881.952.7020 (15)142
N23—H23···O2320.882.182.5952 (15)108
C12—H12···O1310.952.362.7374 (17)103
C12—H12···O2310.952.383.0519 (16)127
C22—H22···O1310.952.213.0921 (17)154
C22—H22···O2310.952.312.7074 (16)104
C136—H136···O1310.952.342.8918 (17)116
C236—H236···O2310.952.242.8538 (17)122
(II) N-(2-Methoxyphenyl)-4-oxo-4H-chromone-3-carboxamide top
Crystal data top
C17H13NO4F(000) = 1232
Mr = 295.28Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 5164 reflections
a = 14.614 (13) Åθ = 2.2–31.2°
b = 23.95 (2) ŵ = 0.10 mm1
c = 8.125 (7) ÅT = 100 K
β = 102.069 (17)°Lath, colourless
V = 2781 (4) Å30.42 × 0.07 × 0.02 mm
Z = 8
Data collection top
Rigaku Saturn724+
diffractometer
4410 independent reflections
Radiation source: rotating anode3407 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.066
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.9°
profile data from ω scansh = 178
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 2828
Tmin = 0.959, Tmax = 0.998l = 79
9112 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0313P)2 + 3.3953P]
where P = (Fo2 + 2Fc2)/3
4410 reflections(Δ/σ)max < 0.001
399 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H13NO4V = 2781 (4) Å3
Mr = 295.28Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.614 (13) ŵ = 0.10 mm1
b = 23.95 (2) ÅT = 100 K
c = 8.125 (7) Å0.42 × 0.07 × 0.02 mm
β = 102.069 (17)°
Data collection top
Rigaku Saturn724+
diffractometer
4410 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
3407 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.998Rint = 0.066
9112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0890 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.19Δρmax = 0.21 e Å3
4410 reflectionsΔρmin = 0.26 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.85050 (19)0.54340 (11)0.4167 (3)0.0261 (7)
O141.0374 (2)0.63055 (12)0.7691 (3)0.0335 (7)
O1310.7779 (2)0.57666 (14)0.8624 (4)0.0432 (9)
O1321.02878 (19)0.69568 (11)1.1360 (3)0.0278 (7)
N130.8992 (2)0.63738 (13)0.9462 (4)0.0238 (8)
H130.95040.65030.91880.029*
C120.8303 (3)0.55851 (16)0.5639 (5)0.0274 (10)
H120.77080.54800.58370.033*
C130.8875 (3)0.58737 (15)0.6858 (5)0.0215 (9)
C140.9808 (3)0.60293 (16)0.6646 (5)0.0248 (9)
C14A1.0047 (3)0.58316 (15)0.5082 (5)0.0217 (9)
C151.0943 (3)0.59176 (17)0.4729 (6)0.0305 (10)
H151.14160.60970.55340.037*
C161.1130 (3)0.57425 (17)0.3221 (5)0.0313 (10)
H161.17320.58030.29860.038*
C171.0440 (3)0.54759 (17)0.2035 (5)0.0291 (10)
H171.05750.53600.09930.035*
C180.9566 (3)0.53783 (15)0.2357 (5)0.0256 (9)
H180.90960.51950.15540.031*
C18A0.9390 (3)0.55547 (16)0.3889 (5)0.0223 (9)
C1310.8781 (3)0.65819 (15)1.0960 (5)0.0235 (9)
C1320.9477 (3)0.69070 (16)1.1968 (5)0.0244 (9)
C1330.9331 (3)0.71472 (16)1.3441 (5)0.0279 (10)
H1330.97990.73771.40970.033*
C1340.8494 (3)0.70496 (16)1.3953 (5)0.0298 (10)
H1340.83930.72101.49700.036*
C1350.7808 (3)0.67205 (16)1.2993 (5)0.0276 (10)
H1350.72410.66531.33590.033*
C1360.7943 (3)0.64870 (15)1.1489 (5)0.0241 (9)
H1360.74670.62641.08260.029*
C1370.8496 (3)0.59976 (16)0.8401 (5)0.0257 (10)
C1381.1057 (3)0.72489 (18)1.2394 (5)0.0385 (12)
H13A1.08970.76451.24510.058*
H13B1.16140.72121.19070.058*
H13C1.11860.70891.35300.058*
O210.45233 (19)0.42667 (10)0.1389 (3)0.0243 (6)
O240.61752 (19)0.56118 (11)0.3188 (3)0.0280 (7)
O2310.33787 (19)0.54582 (11)0.3871 (3)0.0282 (7)
O2320.59615 (19)0.67071 (11)0.5794 (4)0.0303 (7)
N230.4678 (2)0.60146 (12)0.4318 (4)0.0207 (7)
H230.52450.60410.41160.025*
C220.4206 (3)0.46871 (15)0.2216 (5)0.0231 (9)
H220.35800.46620.23660.028*
C230.4703 (3)0.51407 (15)0.2852 (5)0.0197 (9)
C240.5668 (3)0.52078 (15)0.2658 (5)0.0229 (9)
C24A0.6003 (3)0.47434 (15)0.1739 (5)0.0212 (9)
C250.6920 (3)0.47412 (18)0.1443 (5)0.0284 (10)
H250.73290.50450.18190.034*
C260.7228 (3)0.42988 (19)0.0610 (5)0.0350 (11)
H260.78490.42980.04260.042*
C270.6634 (3)0.38579 (18)0.0041 (5)0.0325 (11)
H270.68540.35550.05270.039*
C280.5727 (3)0.38505 (16)0.0287 (5)0.0262 (10)
H280.53150.35510.01180.031*
C28A0.5436 (3)0.42991 (16)0.1150 (5)0.0219 (9)
C2310.4380 (3)0.64603 (15)0.5221 (5)0.0214 (9)
C2320.5074 (3)0.68349 (16)0.6012 (5)0.0243 (9)
C2330.4851 (3)0.72817 (16)0.6914 (5)0.0316 (11)
H2330.53280.75310.74410.038*
C2340.3926 (3)0.73714 (17)0.7061 (5)0.0345 (11)
H2340.37700.76800.76830.041*
C2350.3241 (3)0.70023 (17)0.6286 (5)0.0325 (10)
H2350.26110.70600.63810.039*
C2360.3461 (3)0.65470 (16)0.5368 (5)0.0264 (10)
H2360.29830.62970.48450.032*
C2370.4186 (3)0.55521 (16)0.3733 (5)0.0204 (9)
C2380.6719 (3)0.70235 (18)0.6756 (6)0.0364 (11)
H23A0.66610.74140.63920.055*
H23B0.73140.68720.65810.055*
H23C0.66990.70010.79520.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0274 (17)0.0299 (15)0.0225 (16)0.0042 (13)0.0086 (13)0.0034 (13)
O140.0274 (18)0.0423 (18)0.0301 (18)0.0127 (14)0.0043 (13)0.0066 (15)
O1310.037 (2)0.060 (2)0.0363 (19)0.0301 (17)0.0176 (15)0.0187 (16)
O1320.0257 (17)0.0311 (15)0.0245 (16)0.0117 (13)0.0004 (12)0.0009 (13)
N130.029 (2)0.0211 (16)0.0224 (19)0.0069 (15)0.0067 (15)0.0016 (15)
C120.035 (3)0.026 (2)0.024 (2)0.0045 (19)0.010 (2)0.0023 (19)
C130.025 (2)0.0201 (19)0.018 (2)0.0024 (17)0.0022 (17)0.0018 (17)
C140.027 (2)0.022 (2)0.025 (2)0.0010 (18)0.0039 (19)0.0065 (18)
C14A0.019 (2)0.0207 (19)0.024 (2)0.0027 (17)0.0017 (17)0.0043 (18)
C150.026 (3)0.031 (2)0.034 (3)0.0002 (19)0.006 (2)0.001 (2)
C160.025 (3)0.033 (2)0.039 (3)0.001 (2)0.013 (2)0.004 (2)
C170.025 (3)0.028 (2)0.035 (3)0.0039 (19)0.008 (2)0.001 (2)
C180.033 (3)0.0184 (19)0.025 (2)0.0010 (18)0.0035 (19)0.0006 (18)
C18A0.022 (2)0.0207 (19)0.026 (2)0.0041 (17)0.0092 (18)0.0038 (17)
C1310.031 (3)0.0178 (19)0.021 (2)0.0006 (18)0.0036 (18)0.0058 (17)
C1320.027 (2)0.020 (2)0.026 (2)0.0032 (18)0.0048 (19)0.0075 (18)
C1330.038 (3)0.0186 (19)0.025 (2)0.0041 (19)0.0003 (19)0.0020 (18)
C1340.040 (3)0.023 (2)0.026 (2)0.001 (2)0.006 (2)0.0007 (19)
C1350.029 (3)0.023 (2)0.030 (2)0.0057 (19)0.0059 (19)0.0008 (19)
C1360.028 (2)0.019 (2)0.023 (2)0.0004 (17)0.0002 (18)0.0009 (17)
C1370.027 (3)0.028 (2)0.022 (2)0.0057 (19)0.0046 (19)0.0024 (19)
C1380.039 (3)0.042 (3)0.030 (3)0.017 (2)0.003 (2)0.005 (2)
O210.0287 (16)0.0191 (14)0.0269 (16)0.0049 (12)0.0098 (13)0.0057 (12)
O240.0229 (16)0.0295 (15)0.0323 (17)0.0052 (13)0.0073 (13)0.0106 (13)
O2310.0199 (16)0.0358 (16)0.0310 (17)0.0058 (13)0.0103 (13)0.0080 (14)
O2320.0265 (17)0.0284 (15)0.0366 (18)0.0093 (13)0.0079 (14)0.0123 (14)
N230.0217 (19)0.0208 (16)0.0205 (18)0.0033 (14)0.0064 (14)0.0022 (14)
C220.030 (2)0.021 (2)0.020 (2)0.0004 (18)0.0100 (18)0.0013 (18)
C230.022 (2)0.0196 (19)0.017 (2)0.0014 (16)0.0026 (16)0.0025 (17)
C240.026 (2)0.022 (2)0.019 (2)0.0040 (18)0.0000 (17)0.0023 (18)
C24A0.024 (2)0.023 (2)0.017 (2)0.0010 (17)0.0057 (17)0.0022 (17)
C250.021 (2)0.037 (2)0.027 (2)0.0015 (19)0.0032 (18)0.010 (2)
C260.029 (3)0.047 (3)0.030 (3)0.001 (2)0.009 (2)0.010 (2)
C270.040 (3)0.030 (2)0.027 (2)0.012 (2)0.007 (2)0.007 (2)
C280.033 (3)0.020 (2)0.025 (2)0.0013 (19)0.0044 (19)0.0003 (18)
C28A0.019 (2)0.024 (2)0.023 (2)0.0011 (17)0.0065 (17)0.0045 (18)
C2310.030 (2)0.0169 (19)0.019 (2)0.0043 (17)0.0074 (17)0.0009 (17)
C2320.026 (2)0.023 (2)0.022 (2)0.0001 (18)0.0032 (18)0.0012 (18)
C2330.044 (3)0.020 (2)0.031 (3)0.001 (2)0.008 (2)0.0028 (19)
C2340.049 (3)0.026 (2)0.030 (3)0.012 (2)0.011 (2)0.004 (2)
C2350.035 (3)0.033 (2)0.030 (3)0.009 (2)0.009 (2)0.003 (2)
C2360.031 (3)0.026 (2)0.023 (2)0.0009 (19)0.0079 (19)0.0053 (18)
C2370.027 (2)0.021 (2)0.011 (2)0.0003 (17)0.0004 (17)0.0002 (16)
C2380.029 (3)0.037 (2)0.042 (3)0.013 (2)0.004 (2)0.012 (2)
Geometric parameters (Å, º) top
O11—C121.340 (4)O21—C221.345 (4)
O11—C18A1.388 (5)O21—C28A1.390 (5)
O14—C141.245 (5)O24—C241.240 (4)
O131—C1371.231 (5)O231—C2371.230 (5)
O132—C1321.381 (5)O232—C2321.380 (5)
O132—C1381.437 (5)O232—C2381.431 (5)
N13—C1371.349 (5)N23—C2371.352 (5)
N13—C1311.408 (5)N23—C2311.415 (5)
N13—H130.8800N23—H230.8800
C12—C131.346 (5)C22—C231.348 (5)
C12—H120.9500C22—H220.9500
C13—C141.458 (5)C23—C241.460 (5)
C13—C1371.502 (5)C23—C2371.510 (5)
C14—C14A1.465 (5)C24—C24A1.478 (5)
C14A—C18A1.383 (5)C24A—C28A1.371 (5)
C14A—C151.412 (5)C24A—C251.411 (5)
C15—C161.375 (6)C25—C261.383 (6)
C15—H150.9500C25—H250.9500
C16—C171.395 (6)C26—C271.384 (6)
C16—H160.9500C26—H260.9500
C17—C181.377 (6)C27—C281.382 (6)
C17—H170.9500C27—H270.9500
C18—C18A1.388 (5)C28—C28A1.397 (5)
C18—H180.9500C28—H280.9500
C131—C1361.399 (6)C231—C2361.389 (5)
C131—C1321.401 (6)C231—C2321.405 (5)
C132—C1331.384 (5)C232—C2331.374 (5)
C133—C1341.392 (6)C233—C2341.398 (6)
C133—H1330.9500C233—H2330.9500
C134—C1351.381 (6)C234—C2351.384 (6)
C134—H1340.9500C234—H2340.9500
C135—C1361.395 (5)C235—C2361.396 (5)
C135—H1350.9500C235—H2350.9500
C136—H1360.9500C236—H2360.9500
C138—H13A0.9800C238—H23A0.9800
C138—H13B0.9800C238—H23B0.9800
C138—H13C0.9800C238—H23C0.9800
C12—O11—C18A118.4 (3)C22—O21—C28A117.9 (3)
C132—O132—C138117.3 (3)C232—O232—C238116.9 (3)
C137—N13—C131127.1 (3)C237—N23—C231127.0 (3)
C137—N13—H13116.4C237—N23—H23116.5
C131—N13—H13116.4C231—N23—H23116.5
O11—C12—C13125.2 (4)O21—C22—C23125.5 (4)
O11—C12—H12117.4O21—C22—H22117.3
C13—C12—H12117.4C23—C22—H22117.3
C12—C13—C14119.8 (4)C22—C23—C24120.2 (4)
C12—C13—C137115.8 (4)C22—C23—C237115.1 (3)
C14—C13—C137124.4 (3)C24—C23—C237124.7 (3)
O14—C14—C13124.0 (4)O24—C24—C23124.7 (4)
O14—C14—C14A121.2 (4)O24—C24—C24A121.7 (4)
C13—C14—C14A114.8 (3)C23—C24—C24A113.6 (3)
C18A—C14A—C15117.7 (4)C28A—C24A—C25117.6 (4)
C18A—C14A—C14120.4 (4)C28A—C24A—C24121.4 (4)
C15—C14A—C14121.9 (4)C25—C24A—C24121.0 (4)
C16—C15—C14A120.1 (4)C26—C25—C24A120.3 (4)
C16—C15—H15119.9C26—C25—H25119.8
C14A—C15—H15119.9C24A—C25—H25119.8
C15—C16—C17120.3 (4)C25—C26—C27120.2 (4)
C15—C16—H16119.8C25—C26—H26119.9
C17—C16—H16119.8C27—C26—H26119.9
C18—C17—C16120.8 (4)C28—C27—C26121.0 (4)
C18—C17—H17119.6C28—C27—H27119.5
C16—C17—H17119.6C26—C27—H27119.5
C17—C18—C18A118.2 (4)C27—C28—C28A117.7 (4)
C17—C18—H18120.9C27—C28—H28121.2
C18A—C18—H18120.9C28A—C28—H28121.2
C14A—C18A—C18122.8 (4)C24A—C28A—O21121.4 (3)
C14A—C18A—O11121.3 (3)C24A—C28A—C28123.2 (4)
C18—C18A—O11115.8 (3)O21—C28A—C28115.4 (3)
C136—C131—C132119.1 (4)C236—C231—C232118.9 (4)
C136—C131—N13124.9 (4)C236—C231—N23124.5 (4)
C132—C131—N13116.0 (4)C232—C231—N23116.6 (3)
O132—C132—C133124.9 (4)C233—C232—O232125.1 (4)
O132—C132—C131114.3 (4)C233—C232—C231120.8 (4)
C133—C132—C131120.8 (4)O232—C232—C231114.0 (3)
C132—C133—C134119.5 (4)C232—C233—C234120.4 (4)
C132—C133—H133120.2C232—C233—H233119.8
C134—C133—H133120.2C234—C233—H233119.8
C135—C134—C133120.4 (4)C235—C234—C233118.9 (4)
C135—C134—H134119.8C235—C234—H234120.6
C133—C134—H134119.8C233—C234—H234120.6
C134—C135—C136120.3 (4)C234—C235—C236121.1 (4)
C134—C135—H135119.9C234—C235—H235119.5
C136—C135—H135119.9C236—C235—H235119.5
C135—C136—C131119.8 (4)C231—C236—C235119.9 (4)
C135—C136—H136120.1C231—C236—H236120.1
C131—C136—H136120.1C235—C236—H236120.1
O131—C137—N13124.5 (4)O231—C237—N23124.6 (4)
O131—C137—C13120.5 (3)O231—C237—C23120.6 (3)
N13—C137—C13115.0 (3)N23—C237—C23114.8 (3)
O132—C138—H13A109.5O232—C238—H23A109.5
O132—C138—H13B109.5O232—C238—H23B109.5
H13A—C138—H13B109.5H23A—C238—H23B109.5
O132—C138—H13C109.5O232—C238—H23C109.5
H13A—C138—H13C109.5H23A—C238—H23C109.5
H13B—C138—H13C109.5H23B—C238—H23C109.5
C18A—O11—C12—C133.6 (6)C28A—O21—C22—C230.4 (5)
O11—C12—C13—C142.1 (6)O21—C22—C23—C240.4 (6)
O11—C12—C13—C137179.8 (3)O21—C22—C23—C237179.8 (3)
C12—C13—C14—O14178.4 (4)C22—C23—C24—O24179.5 (4)
C137—C13—C14—O143.6 (6)C237—C23—C24—O240.3 (6)
C12—C13—C14—C14A1.9 (5)C22—C23—C24—C24A0.1 (5)
C137—C13—C14—C14A176.1 (3)C237—C23—C24—C24A179.9 (3)
O14—C14—C14A—C18A176.1 (4)O24—C24—C24A—C28A179.7 (4)
C13—C14—C14A—C18A4.3 (5)C23—C24—C24A—C28A0.1 (5)
O14—C14—C14A—C153.5 (6)O24—C24—C24A—C250.5 (6)
C13—C14—C14A—C15176.1 (4)C23—C24—C24A—C25179.9 (4)
C18A—C14A—C15—C161.8 (6)C28A—C24A—C25—C261.0 (6)
C14—C14A—C15—C16177.8 (4)C24—C24A—C25—C26178.8 (4)
C14A—C15—C16—C170.4 (6)C24A—C25—C26—C270.8 (6)
C15—C16—C17—C180.7 (6)C25—C26—C27—C280.2 (7)
C16—C17—C18—C18A0.3 (6)C26—C27—C28—C28A1.0 (6)
C15—C14A—C18A—C182.3 (6)C25—C24A—C28A—O21179.9 (3)
C14—C14A—C18A—C18177.3 (3)C24—C24A—C28A—O210.1 (6)
C15—C14A—C18A—O11177.4 (3)C25—C24A—C28A—C280.2 (6)
C14—C14A—C18A—O113.0 (5)C24—C24A—C28A—C28179.6 (4)
C17—C18—C18A—C14A1.2 (6)C22—O21—C28A—C24A0.2 (5)
C17—C18—C18A—O11178.5 (3)C22—O21—C28A—C28179.9 (3)
C12—O11—C18A—C14A1.0 (5)C27—C28—C28A—C24A0.8 (6)
C12—O11—C18A—C18178.7 (3)C27—C28—C28A—O21178.9 (3)
C137—N13—C131—C1369.1 (6)C237—N23—C231—C23613.3 (6)
C137—N13—C131—C132170.9 (4)C237—N23—C231—C232166.6 (4)
C138—O132—C132—C1334.4 (6)C238—O232—C232—C2338.3 (6)
C138—O132—C132—C131175.4 (3)C238—O232—C232—C231171.5 (3)
C136—C131—C132—O132177.7 (3)C236—C231—C232—C2330.2 (6)
N13—C131—C132—O1322.3 (5)N23—C231—C232—C233179.8 (4)
C136—C131—C132—C1332.0 (6)C236—C231—C232—O232179.6 (3)
N13—C131—C132—C133177.9 (3)N23—C231—C232—O2320.4 (5)
O132—C132—C133—C134177.7 (4)O232—C232—C233—C234179.7 (4)
C131—C132—C133—C1342.1 (6)C231—C232—C233—C2340.0 (6)
C132—C133—C134—C1350.7 (6)C232—C233—C234—C2350.1 (6)
C133—C134—C135—C1360.7 (6)C233—C234—C235—C2360.1 (6)
C134—C135—C136—C1310.7 (6)C232—C231—C236—C2350.3 (6)
C132—C131—C136—C1350.7 (6)N23—C231—C236—C235179.8 (4)
N13—C131—C136—C135179.3 (3)C234—C235—C236—C2310.1 (6)
C131—N13—C137—O1311.9 (7)C231—N23—C237—O2312.0 (6)
C131—N13—C137—C13177.5 (3)C231—N23—C237—C23178.4 (3)
C12—C13—C137—O13111.6 (6)C22—C23—C237—O2311.7 (5)
C14—C13—C137—O131166.4 (4)C24—C23—C237—O231178.5 (4)
C12—C13—C137—N13167.8 (4)C22—C23—C237—N23177.9 (3)
C14—C13—C137—N1314.1 (5)C24—C23—C237—N231.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O140.881.992.718 (5)139
N13—H13···O1320.882.182.587 (4)108
N23—H23···O240.881.982.720 (4)142
N23—H23···O2320.882.212.601 (4)106
C25—H25···O110.952.473.297 (5)146
C12—H12···O1310.952.352.726 (5)103
C22—H22···O2310.952.322.713 (5)104
C136—H136···O1310.952.272.868 (5)120
C236—H236···O2310.952.282.869 (5)120
C16—H16···O231i0.952.503.289 (6)140
C22—H22···O131ii0.952.233.040 (5)142
C133—H133···O132iii0.952.433.286 (5)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H13NO4C17H13NO4
Mr295.28295.28
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)8.9867 (18), 20.669 (4), 14.856 (3)14.614 (13), 23.95 (2), 8.125 (7)
β (°) 93.545 (4) 102.069 (17)
V3)2754.2 (9)2781 (4)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.24 × 0.18 × 0.050.42 × 0.07 × 0.02
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Rigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.976, 0.9950.959, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
24297, 7417, 6703 9112, 4410, 3407
Rint0.0280.066
(sin θ/λ)max1)0.7060.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.119, 1.09 0.089, 0.161, 1.19
No. of reflections74174410
No. of parameters399399
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.260.21, 0.26

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), OSCAIL (McArdle et al., 2004) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O140.881.982.6954 (15)138
N13—H13···O1320.882.242.5845 (15)103
N23—H23···O240.881.952.7020 (15)142
N23—H23···O2320.882.182.5952 (15)108
C12—H12···O1310.952.362.7374 (17)103
C12—H12···O2310.952.383.0519 (16)127
C22—H22···O1310.952.213.0921 (17)154
C22—H22···O2310.952.312.7074 (16)104
C136—H136···O1310.952.342.8918 (17)116
C236—H236···O2310.952.242.8538 (17)122
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O140.881.992.718 (5)139
N13—H13···O1320.882.182.587 (4)108
N23—H23···O240.881.982.720 (4)142
N23—H23···O2320.882.212.601 (4)106
C25—H25···O110.952.473.297 (5)146
C12—H12···O1310.952.352.726 (5)103
C22—H22···O2310.952.322.713 (5)104
C136—H136···O1310.952.272.868 (5)120
C236—H236···O2310.952.282.869 (5)120
C16—H16···O231i0.952.503.289 (6)140
C22—H22···O131ii0.952.233.040 (5)142
C133—H133···O132iii0.952.433.286 (5)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2.
Selected dihedral angles (°) top
θ1 is the dihedral angle between the mean planes of the chromene system and the benzene ring. θ2 is the dihedral angle between the mean plane of the chromone ring and the plane defined by atoms O3/C41/N3. θ3 is the dihedral angle between the mean plane of the phenyl ring and the plane defined by atoms O3/C41/N3.
Compoundθ1θ2θ3
Polymorph A
Molecule 111.64 (5)8.72 (14)20.35 (13)
Molecule 22.47 (5)1.75 (2)2.2 (2)
Polymorph B
Molecule 16.50 (18)15.0 (5)10.1 (6)
Molecule 210.52 (17)1.8 (6)12.27 (6)
Molecular fit parameters (°, Å) for the 22 non-H atoms top
Column A is the fit rotation angle about the (pseudo)axis [l,m,n]. Columns B and C are, respectively, the weighted and unit weight r.m.s. fits. The asterisk (*) denotes an inverted molecule.
MoleculesABC
A1—A21740.1310.137
B1—B2310.1870.181
A1—B1-1210.1730.171
A1—B2-1090.0460.071
A2*—B1310.0970.105
A2—B2-1680.1470.135
Selected torsion angles (°) top
Cg1, Cg2, Cg5 and Cg6 are the centroids of the rings containing atoms O11, C15, O21 and C25, respectively. In (A), the planes in molecule 1* are inclined at an angle of 0.09 (6)° and those in molecule 2** at 0.79 (6)°. In (B), the planes in molecule 2** are inclined at 0.66 (18)°. The perpendicular distances marked with an asterisk (* or **) are average values.
ππCentroid-to-centroid ditsance (Å)Perpendicular distance between rings (Å)Slippage (Å)
Polymorph A
Cg1···Cg2(-x+1, -y+1, -z)3.4421 (10)3.3636*0.731*
Cg2···Cg2(-x+1, -y+1, -z)3.8640 (11)3.3729 (6)1.885
Cg5···Cg5(-x, -y+1, -z+1)3.3830(103.143 (5)0.679
Cg5···Cg6(-x, -y+1, -z+1)3.7596 (11)3.327**1.942**
Polymorph B
Cg1···Cg1(-x+2, -y+1, -z+1)4.354 (4)3.4119 (15)2.705
Cg2···Cg2(-x+2, -y+1, -z+1)4.063 (4)3.4114 (16)2.206
Cg5···Cg5(-x+1, -y+1, -z)3.468 (4)3.3235 (15)0.991
Cg5···Cg6(-x+1, -y+1, -z)3.663 (4)3.245**1.635**
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds