Download citation
Download citation
link to html
The crystal structure of the title compound, [Mg4Br2(CH3O)6(C4D8O)6], consists of discrete mol­ecules with imposed symmetry Ci. The tetranuclear compound exhibits two crystallographically independent Mg atoms having distorted octahedral and trigonal–bipyramidal ­coordination spheres. The Mg atoms are bridged by two μ3-OMe and four μ2-OMe ligands, and their coordination is completed by two terminal Br and six tetra­hydro­furan ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010401933X/jz1633sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401933X/jz1633Isup2.hkl
Contains datablock I

CCDC reference: 254896

Comment top

Mg exhibits a rich coordination chemistry, ranging from mononuclear to polymeric species with linear two-coordinate up to ten-coordinate Mg atoms. With typical bridging ligands, such as halides, alkoxides, amides and organyls, Mg tends to form cluster and cage compounds (Fenton, 1987; Holloway & Melnik, 1994). Here, we report the structure of the title methoxo-bridged tetranuclear complex, (I), having µ2– and µ3-bridging methoxo ligands and also terminal Br and tetrahydrofuran (THF) ligands. \sch

Complex (I) crystallizes as discrete molecules without unusual intermolecular contacts (Fig. 1); the smallest distance between non-H atoms is 3.597 (4) Å between atoms C7 and C15i [symmetry code: (i) x − 1, y, z]. The molecule lies on a crystallographic inversion centre located at the centre of the Mg2—Mg2ii—O2—O2ii rhomboid [symmetry code: (ii) 1 − x, 1 − y, 2 − z].

The two independent Mg atoms exhibit six- (Mg2) or five- (Mg1) coordination. The six-coordinated Mg atoms have a distorted octahedral coordination sphere built up from two terminal THF ligands in mutually cis positions, and two µ2– and two µ3-bridging methoxo ligands in mutually trans and cis positions, respectively. The angles of the coordination octahedron lie between 78.97 (7) and 101.74 (7)° or 170.12 (7) and 175.87 (8)°. The five-coordinated Mg atoms exhibit a trigonal-bipyramidal coordination sphere. The apical positions (Lap) are occupied by a µ3-OMe lignad (O2) and a terminal THF (O6) ligand; the O2—Mg1—O6 angle is 170.24 (7)°. The equatorial coordination sites (Leq) are occupied by a Br ligand and two µ2-OMe ligands. The angles between the equatorial ligands range from 114.67 (8) to 125.37 (6)° (sum of angles 359.83°). The Leq—Mg1—Lap angles lie between 82.98 (7) and 98.37 (5)°. The Mg-µ-OMe distances are in the order Mg1/2-µ3-OMe [2.093 (2)–2.117 (2) Å] > Mg2-µ2-OMe [1.999 (2) and 2.015 (2) Å] > Mg1-µ2-OMe [1.950 (2) and 1.968 (2) Å], so that bonds to the µ3-bridging methoxy ligands are longer than to the µ2-bound ligands. Furthermore, the five-coordinate Mg atoms bind the µ2 ligands more tightly than the six-coordinate Mg atoms. On the other hand, the Mg—O bonds to µ3-OMe and to THF ligands do not exhibit statistically significant (3σ criterion) length dependence on coordination number (5 versus 6).

As shown in Fig. 2, the tetranuclear complex (I) can be (formally) viewed as being built up from two octahedra and two trigonal bipyramids that are edge-shared. Thus, a tetranuclear cluster is formed with a core of two face-linked open cuboidal building blocks having the composition [Mg42-OMe)43-OMe)2]2+. Due to the crystallographically imposed inversion symmetry, the four Mg atoms define an exact plane. An analogous structural motif has also been found in other Mg clusters having [Mg42-X)43-X)2]2+ cores with Cl bridges (X = Cl) (Toney & Stucky, 1971; Casellato & Ossola, 1994) or with bridging deprotonated ether-alcohol ligands such as 2-hydroxymethyltetrahydrofuran, 2,3-dihydro-2,2-dimethyl-7-hydroxybenzofuran (Sobota et al., 1996; Sobota Utko Sztajnowska et al., 2000; Sobota Utko Ejfler & Jerzykiewicz, 2000), and 1-methoxypropan-2-ol (Albaric et al., 1997). All these structures exhibit crystallographically imposed inversion symmetry.

Experimental top

Dissolution of [MgMeBr(diglyme)] (prepared by addition of diglyme to a concentrated solution of MgMeBr in diethyl ether) in THF-d8 resulted in a clear solution. Due to slow decomposition of this solution at 233 K, crystals of (I) appeared within several weeks.

Refinement top

All H-atom positions were refined using a riding model starting from calculated positions. The D atoms of the THF molecules were refined as H atoms. The formula weight and related parameters have been re-calculated using values appropriate for D. The atom C10 is disordered and was refined with a split occupancy of 0.31/0.69. Query − 0.34 (2):0.66 (2) in CIF tables.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Only one of the two disordered positions of C10 is displayed.
[Figure 2] Fig. 2. A drawing of the edge-sharing octahedra and trigonal bipyramids in the structure of (I).
Dibromotetra-µ2-methoxo-di-µ3-methoxo-hexakis(tetrahydrofuran-d8κO)tetramagnesium top
Crystal data top
[Mg4Br2(CH3O)6(C4D8O)6]F(000) = 920
Mr = 924.18Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8574 reflections
a = 8.4836 (4) Åθ = 2.4–28.3°
b = 18.9094 (9) ŵ = 2.09 mm1
c = 12.8907 (6) ÅT = 173 K
β = 97.457 (1)°Block, colourless
V = 2050.43 (17) Å30.4 × 0.3 × 0.2 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5081 independent reflections
Radiation source: fine-focus sealed tube4061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.476, Tmax = 0.658k = 025
17714 measured reflectionsl = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.3532P]
where P = (Fo2 + 2Fc2)/3
5081 reflections(Δ/σ)max = 0.042
230 parametersΔρmax = 0.92 e Å3
32 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mg4Br2(CH3O)6(C4D8O)6]V = 2050.43 (17) Å3
Mr = 924.18Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.4836 (4) ŵ = 2.09 mm1
b = 18.9094 (9) ÅT = 173 K
c = 12.8907 (6) Å0.4 × 0.3 × 0.2 mm
β = 97.457 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5081 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4061 reflections with I > 2σ(I)
Tmin = 0.476, Tmax = 0.658Rint = 0.035
17714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03732 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.92 e Å3
5081 reflectionsΔρmin = 0.36 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.27721 (3)0.405228 (15)0.68375 (2)0.04558 (10)
Mg20.45363 (8)0.57885 (4)0.95620 (5)0.02374 (15)
Mg10.50196 (8)0.45599 (4)0.81074 (5)0.02684 (16)
O10.5342 (2)0.55901 (8)0.81879 (11)0.0325 (3)
C10.5294 (4)0.60039 (15)0.7317 (2)0.0535 (8)
H1A0.63580.60950.71740.064*
H1B0.47780.64430.74330.064*
H1C0.47130.57640.67320.064*
O20.37570 (16)0.47264 (7)0.93847 (11)0.0244 (3)
C20.2138 (2)0.45762 (12)0.94659 (19)0.0330 (5)
H2A0.17970.41800.90280.040*
H2B0.14980.49810.92450.040*
H2C0.20230.44661.01790.040*
O30.35780 (18)0.59838 (8)1.08700 (12)0.0312 (3)
C30.2205 (4)0.63500 (17)1.0980 (2)0.0549 (8)
H3A0.19960.63211.16930.066*
H3B0.13320.61481.05290.066*
H3C0.23310.68371.07950.066*
O40.2549 (2)0.63660 (9)0.86328 (14)0.0403 (4)
C40.2335 (4)0.71230 (14)0.8525 (2)0.0509 (7)
H4A0.32440.73370.82620.061*
H4B0.22130.73350.91950.061*
C50.0853 (4)0.72281 (16)0.7763 (2)0.0552 (7)
H5A0.00900.72300.81150.066*
H5B0.08990.76650.73740.066*
C60.0886 (5)0.65939 (18)0.7062 (3)0.0716 (10)
H6A0.16150.66620.65500.086*
H6B0.01640.64870.67030.086*
C70.1462 (4)0.60231 (16)0.7836 (3)0.0645 (10)
H7A0.05780.58170.81370.077*
H7B0.19980.56520.74980.077*
O50.57503 (19)0.68104 (8)0.97351 (12)0.0324 (3)
C80.7007 (3)0.70616 (13)0.9175 (2)0.0405 (6)
H8A0.65900.73830.86190.049*
H8B0.75250.66690.88710.049*
C90.8164 (3)0.74417 (14)0.9984 (2)0.0461 (6)
H9A0.91440.71751.01340.055*0.343 (18)
H9B0.84110.79080.97360.055*0.343 (18)
H9C0.88790.71131.03850.055*0.657 (18)
H9D0.87800.77930.96630.055*0.657 (18)
C10A0.7326 (14)0.7496 (10)1.0951 (12)0.061 (4)0.343 (18)
H10A0.78390.71961.15040.074*0.343 (18)
H10B0.73450.79801.12030.074*0.343 (18)
C110.5707 (4)0.72675 (15)1.0635 (2)0.0513 (7)
H11A0.50220.76711.04510.062*0.343 (18)
H11B0.53070.70121.11990.062*0.343 (18)
H11C0.58270.69901.12730.062*0.657 (18)
H11D0.46980.75151.05820.062*0.657 (18)
C10B0.7035 (7)0.7782 (4)1.0652 (5)0.0423 (14)0.657 (18)
H10C0.75500.78561.13600.051*0.657 (18)
H10D0.66550.82331.03610.051*0.657 (18)
O60.6659 (2)0.44822 (10)0.69411 (12)0.0414 (4)
C120.6437 (4)0.41772 (17)0.5911 (2)0.0548 (8)
H12A0.55150.43820.54940.066*
H12B0.62860.36700.59500.066*
C130.7937 (4)0.4345 (2)0.5436 (2)0.0631 (9)
H13A0.86790.39520.55240.076*
H13B0.76950.44510.46960.076*
C140.8604 (3)0.49822 (18)0.6035 (2)0.0529 (7)
H14A0.97450.50180.60330.064*
H14B0.81020.54140.57530.064*
C150.8201 (3)0.48328 (18)0.7103 (2)0.0507 (7)
H15A0.89950.45280.74840.061*
H15B0.81400.52680.74940.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04077 (15)0.05488 (17)0.03910 (15)0.00895 (11)0.00236 (10)0.01575 (11)
Mg20.0241 (3)0.0245 (3)0.0232 (3)0.0010 (3)0.0055 (3)0.0003 (3)
Mg10.0293 (4)0.0285 (4)0.0233 (3)0.0043 (3)0.0056 (3)0.0035 (3)
O10.0415 (9)0.0308 (8)0.0261 (7)0.0059 (7)0.0078 (6)0.0027 (6)
C10.079 (2)0.0448 (15)0.0410 (14)0.0151 (14)0.0244 (14)0.0071 (12)
O20.0191 (6)0.0272 (7)0.0272 (7)0.0023 (5)0.0042 (5)0.0004 (6)
C20.0221 (10)0.0366 (12)0.0411 (12)0.0022 (8)0.0068 (9)0.0032 (10)
O30.0307 (8)0.0328 (8)0.0319 (8)0.0048 (6)0.0110 (6)0.0005 (6)
C30.0526 (17)0.0576 (18)0.0602 (18)0.0153 (14)0.0290 (14)0.0126 (14)
O40.0401 (9)0.0331 (9)0.0440 (10)0.0033 (7)0.0086 (7)0.0037 (7)
C40.0568 (17)0.0350 (13)0.0583 (17)0.0077 (12)0.0022 (13)0.0038 (12)
C50.0555 (17)0.0496 (16)0.0604 (18)0.0108 (13)0.0066 (14)0.0186 (14)
C60.081 (2)0.060 (2)0.065 (2)0.0195 (18)0.0274 (18)0.0013 (16)
C70.0593 (19)0.0451 (16)0.078 (2)0.0022 (14)0.0342 (17)0.0012 (15)
O50.0356 (8)0.0275 (8)0.0353 (8)0.0071 (6)0.0089 (7)0.0057 (6)
C80.0464 (14)0.0346 (12)0.0433 (13)0.0120 (10)0.0164 (11)0.0010 (10)
C90.0368 (13)0.0406 (14)0.0605 (17)0.0067 (11)0.0050 (12)0.0034 (12)
C10A0.056 (6)0.048 (8)0.078 (8)0.008 (5)0.002 (5)0.031 (6)
C110.0591 (17)0.0445 (15)0.0544 (16)0.0167 (13)0.0234 (13)0.0242 (13)
C10B0.042 (3)0.035 (3)0.049 (3)0.004 (2)0.003 (2)0.014 (2)
O60.0408 (9)0.0602 (11)0.0256 (8)0.0126 (8)0.0134 (7)0.0101 (8)
C120.0652 (19)0.0684 (19)0.0337 (13)0.0140 (15)0.0177 (13)0.0218 (13)
C130.0607 (19)0.093 (2)0.0401 (15)0.0044 (18)0.0237 (14)0.0193 (16)
C140.0448 (15)0.078 (2)0.0395 (14)0.0075 (14)0.0170 (12)0.0030 (14)
C150.0384 (14)0.077 (2)0.0382 (14)0.0142 (13)0.0114 (11)0.0082 (13)
Geometric parameters (Å, º) top
Br1—Mg12.5350 (7)C6—H6A0.9700
Mg2—O31.9989 (16)C6—H6B0.9700
Mg2—O12.0149 (16)C7—H7A0.9700
Mg2—O2i2.0923 (15)C7—H7B0.9700
Mg2—O22.1174 (15)O5—C81.444 (3)
Mg2—O52.1874 (16)O5—C111.451 (3)
Mg2—O42.2236 (17)C8—C91.517 (4)
Mg2—Mg13.0464 (10)C8—H8A0.9700
Mg2—Mg1i3.0508 (10)C8—H8B0.9700
Mg2—Mg2i3.2489 (13)C9—C10B1.512 (6)
Mg1—O3i1.9502 (17)C9—C10A1.516 (12)
Mg1—O11.9681 (17)C9—H9A0.9700
Mg1—O22.1012 (15)C9—H9B0.9700
Mg1—O62.1818 (17)C9—H9C0.9700
Mg1—Mg2i3.0508 (10)C9—H9D0.9700
O1—C11.365 (3)C10A—C111.447 (10)
C1—H1A0.9600C10A—H10A0.9700
C1—H1B0.9600C10A—H10B0.9700
C1—H1C0.9600C11—C10B1.487 (6)
O2—C21.420 (2)C11—H11A0.9700
O2—Mg2i2.0923 (15)C11—H11B0.9700
C2—H2A0.9600C11—H11C0.9700
C2—H2B0.9600C11—H11D0.9700
C2—H2C0.9600C10B—H10C0.9700
O3—C31.378 (3)C10B—H10D0.9700
O3—Mg1i1.9502 (17)O6—C121.437 (3)
C3—H3A0.9600O6—C151.457 (3)
C3—H3B0.9600C12—C131.516 (4)
C3—H3C0.9600C12—H12A0.9700
O4—C71.442 (3)C12—H12B0.9700
O4—C41.447 (3)C13—C141.502 (5)
C4—C51.505 (4)C13—H13A0.9700
C4—H4A0.9700C13—H13B0.9700
C4—H4B0.9700C14—C151.488 (4)
C5—C61.503 (5)C14—H14A0.9700
C5—H5A0.9700C14—H14B0.9700
C5—H5B0.9700C15—H15A0.9700
C6—C71.508 (4)C15—H15B0.9700
O3—Mg2—O1175.86 (8)C6—C5—H5B111.4
O3—Mg2—O2i82.04 (6)C4—C5—H5B111.4
O1—Mg2—O2i101.47 (7)H5A—C5—H5B109.2
O3—Mg2—O296.37 (6)C5—C6—C7101.7 (3)
O1—Mg2—O282.26 (6)C5—C6—H6A111.4
O2i—Mg2—O278.98 (6)C7—C6—H6A111.4
O3—Mg2—O589.33 (7)C5—C6—H6B111.4
O1—Mg2—O592.59 (6)C7—C6—H6B111.4
O2i—Mg2—O593.89 (6)H6A—C6—H6B109.3
O2—Mg2—O5170.12 (7)O4—C7—C6105.8 (2)
O3—Mg2—O490.05 (7)O4—C7—H7A110.6
O1—Mg2—O486.43 (7)C6—C7—H7A110.6
O2i—Mg2—O4172.08 (7)O4—C7—H7B110.6
O2—Mg2—O4101.74 (6)C6—C7—H7B110.6
O5—Mg2—O486.28 (7)H7A—C7—H7B108.7
O3—Mg2—Mg1139.64 (5)C8—O5—C11107.53 (17)
O1—Mg2—Mg139.54 (5)C8—O5—Mg2127.45 (13)
O2i—Mg2—Mg184.69 (4)C11—O5—Mg2123.18 (14)
O2—Mg2—Mg143.56 (4)O5—C8—C9105.4 (2)
O5—Mg2—Mg1129.59 (5)O5—C8—H8A110.7
O4—Mg2—Mg1101.31 (5)C9—C8—H8A110.7
O3—Mg2—Mg1i38.84 (5)O5—C8—H8B110.7
O1—Mg2—Mg1i144.38 (6)C9—C8—H8B110.7
O2i—Mg2—Mg1i43.44 (4)H8A—C8—H8B108.8
O2—Mg2—Mg1i84.17 (4)C10B—C9—C8101.1 (3)
O5—Mg2—Mg1i95.39 (5)C10A—C9—C8105.5 (4)
O4—Mg2—Mg1i128.66 (6)C10B—C9—H9A134.2
Mg1—Mg2—Mg1i115.60 (3)C10A—C9—H9A110.6
O3—Mg2—Mg2i89.03 (5)C8—C9—H9A110.6
O1—Mg2—Mg2i92.31 (5)C10B—C9—H9B88.9
O2i—Mg2—Mg2i39.77 (4)C10A—C9—H9B110.6
O2—Mg2—Mg2i39.21 (4)C8—C9—H9B110.6
O5—Mg2—Mg2i133.30 (6)H9A—C9—H9B108.8
O4—Mg2—Mg2i140.39 (6)C10B—C9—H9C111.6
Mg1—Mg2—Mg2i57.87 (2)C10A—C9—H9C86.2
Mg1i—Mg2—Mg2i57.74 (2)C8—C9—H9C111.6
O3i—Mg1—O1114.70 (8)H9B—C9—H9C127.7
O3i—Mg1—O282.97 (6)C10B—C9—H9D111.6
O1—Mg1—O283.79 (6)C10A—C9—H9D129.7
O3i—Mg1—O692.45 (7)C8—C9—H9D111.6
O1—Mg1—O690.36 (7)H9A—C9—H9D86.9
O2—Mg1—O6170.24 (7)H9C—C9—H9D109.4
O3i—Mg1—Br1125.35 (6)C11—C10A—C9106.1 (7)
O1—Mg1—Br1119.77 (6)C11—C10A—H10A110.5
O2—Mg1—Br198.37 (5)C9—C10A—H10A110.5
O6—Mg1—Br191.31 (5)C11—C10A—H10B110.5
O3i—Mg1—Mg296.03 (5)C9—C10A—H10B110.5
O1—Mg1—Mg240.68 (5)H10A—C10A—H10B108.7
O2—Mg1—Mg243.98 (4)C10A—C11—O5106.3 (5)
O6—Mg1—Mg2128.63 (6)O5—C11—C10B107.7 (3)
Br1—Mg1—Mg2122.43 (3)C10A—C11—H11A110.5
O3i—Mg1—Mg2i40.00 (5)O5—C11—H11A110.5
O1—Mg1—Mg2i99.40 (5)C10B—C11—H11A85.3
O2—Mg1—Mg2i43.21 (4)C10A—C11—H11B110.5
O6—Mg1—Mg2i130.97 (6)O5—C11—H11B110.5
Br1—Mg1—Mg2i122.72 (3)C10B—C11—H11B130.8
Mg2—Mg1—Mg2i64.40 (3)H11A—C11—H11B108.7
C1—O1—Mg1122.35 (15)C10A—C11—H11C86.1
C1—O1—Mg2129.74 (16)O5—C11—H11C110.2
Mg1—O1—Mg299.78 (7)C10B—C11—H11C110.2
O1—C1—H1A109.5H11A—C11—H11C128.9
O1—C1—H1B109.5C10A—C11—H11D132.2
H1A—C1—H1B109.5O5—C11—H11D110.2
O1—C1—H1C109.5C10B—C11—H11D110.2
H1A—C1—H1C109.5H11B—C11—H11D84.5
H1B—C1—H1C109.5H11C—C11—H11D108.5
C2—O2—Mg2i116.98 (13)C11—C10B—C9104.4 (3)
C2—O2—Mg1128.63 (13)C11—C10B—H10C110.9
Mg2i—O2—Mg193.36 (6)C9—C10B—H10C110.9
C2—O2—Mg2118.24 (13)C11—C10B—H10D110.9
Mg2i—O2—Mg2101.02 (6)C9—C10B—H10D110.9
Mg1—O2—Mg292.46 (6)H10C—C10B—H10D108.9
O2—C2—H2A109.5C12—O6—C15108.82 (19)
O2—C2—H2B109.5C12—O6—Mg1130.13 (16)
H2A—C2—H2B109.5C15—O6—Mg1120.76 (14)
O2—C2—H2C109.5O6—C12—C13105.8 (2)
H2A—C2—H2C109.5O6—C12—H12A110.6
H2B—C2—H2C109.5C13—C12—H12A110.6
C3—O3—Mg1i130.15 (16)O6—C12—H12B110.6
C3—O3—Mg2128.42 (16)C13—C12—H12B110.6
Mg1i—O3—Mg2101.16 (7)H12A—C12—H12B108.7
O3—C3—H3A109.5C14—C13—C12103.9 (2)
O3—C3—H3B109.5C14—C13—H13A111.0
H3A—C3—H3B109.5C12—C13—H13A111.0
O3—C3—H3C109.5C14—C13—H13B111.0
H3A—C3—H3C109.5C12—C13—H13B111.0
H3B—C3—H3C109.5H13A—C13—H13B109.0
C7—O4—C4108.4 (2)C15—C14—C13101.9 (2)
C7—O4—Mg2122.20 (15)C15—C14—H14A111.4
C4—O4—Mg2127.90 (16)C13—C14—H14A111.4
O4—C4—C5106.1 (2)C15—C14—H14B111.4
O4—C4—H4A110.5C13—C14—H14B111.4
C5—C4—H4A110.5H14A—C14—H14B109.2
O4—C4—H4B110.5O6—C15—C14105.3 (2)
C5—C4—H4B110.5O6—C15—H15A110.7
H4A—C4—H4B108.7C14—C15—H15A110.7
C6—C5—C4102.0 (2)O6—C15—H15B110.7
C6—C5—H5A111.4C14—C15—H15B110.7
C4—C5—H5A111.4H15A—C15—H15B108.8
O3—Mg2—Mg1—O3i64.86 (11)O2i—Mg2—O2—Mg2i0.0
O1—Mg2—Mg1—O3i121.45 (9)O4—Mg2—O2—Mg2i171.96 (7)
O2i—Mg2—Mg1—O3i6.23 (6)Mg1—Mg2—O2—Mg2i93.91 (6)
O2—Mg2—Mg1—O3i73.34 (8)Mg1i—Mg2—O2—Mg2i43.63 (5)
O5—Mg2—Mg1—O3i96.90 (8)O3—Mg2—O2—Mg1174.49 (6)
O4—Mg2—Mg1—O3i168.55 (7)O1—Mg2—O2—Mg19.44 (6)
Mg1i—Mg2—Mg1—O3i25.21 (5)O2i—Mg2—O2—Mg193.91 (6)
Mg2i—Mg2—Mg1—O3i25.21 (5)O4—Mg2—O2—Mg194.14 (7)
O3—Mg2—Mg1—O1173.68 (12)Mg1i—Mg2—O2—Mg1137.54 (4)
O2i—Mg2—Mg1—O1115.22 (9)Mg2i—Mg2—O2—Mg193.91 (7)
O2—Mg2—Mg1—O1165.20 (10)O2i—Mg2—O3—C3179.9 (2)
O5—Mg2—Mg1—O124.56 (10)O2—Mg2—O3—C3102.0 (2)
O4—Mg2—Mg1—O170.00 (9)O5—Mg2—O3—C386.0 (2)
Mg1i—Mg2—Mg1—O1146.66 (9)O4—Mg2—O3—C30.2 (2)
Mg2i—Mg2—Mg1—O1146.66 (9)Mg1—Mg2—O3—C3107.9 (2)
O3—Mg2—Mg1—O28.48 (10)Mg1i—Mg2—O3—C3174.5 (3)
O1—Mg2—Mg1—O2165.20 (10)Mg2i—Mg2—O3—C3140.6 (2)
O2i—Mg2—Mg1—O279.57 (7)O2i—Mg2—O3—Mg1i5.43 (7)
O5—Mg2—Mg1—O2170.24 (9)O2—Mg2—O3—Mg1i72.45 (8)
O4—Mg2—Mg1—O295.21 (8)O5—Mg2—O3—Mg1i99.46 (8)
Mg1i—Mg2—Mg1—O248.14 (6)O4—Mg2—O3—Mg1i174.27 (7)
Mg2i—Mg2—Mg1—O248.14 (6)Mg1—Mg2—O3—Mg1i66.58 (11)
O3—Mg2—Mg1—O6162.87 (10)Mg2i—Mg2—O3—Mg1i33.87 (6)
O1—Mg2—Mg1—O623.44 (10)O3—Mg2—O4—C7117.5 (2)
O2i—Mg2—Mg1—O691.78 (8)O1—Mg2—O4—C760.3 (2)
O2—Mg2—Mg1—O6171.35 (10)O2—Mg2—O4—C721.0 (3)
O5—Mg2—Mg1—O61.11 (10)O5—Mg2—O4—C7153.2 (2)
O4—Mg2—Mg1—O693.44 (9)Mg1—Mg2—O4—C723.5 (2)
Mg1i—Mg2—Mg1—O6123.22 (8)Mg1i—Mg2—O4—C7112.9 (2)
Mg2i—Mg2—Mg1—O6123.22 (8)Mg2i—Mg2—O4—C729.0 (3)
O3—Mg2—Mg1—Br174.28 (9)O3—Mg2—O4—C478.1 (2)
O1—Mg2—Mg1—Br199.40 (8)O1—Mg2—O4—C4104.0 (2)
O2i—Mg2—Mg1—Br1145.37 (5)O2—Mg2—O4—C4174.6 (2)
O2—Mg2—Mg1—Br165.80 (6)O5—Mg2—O4—C411.2 (2)
O5—Mg2—Mg1—Br1123.96 (7)Mg1—Mg2—O4—C4140.9 (2)
O4—Mg2—Mg1—Br129.40 (6)Mg1i—Mg2—O4—C482.7 (2)
Mg1i—Mg2—Mg1—Br1113.94 (4)Mg2i—Mg2—O4—C4166.67 (19)
Mg2i—Mg2—Mg1—Br1113.94 (4)C7—O4—C4—C510.7 (3)
O3—Mg2—Mg1—Mg2i39.65 (8)Mg2—O4—C4—C5176.77 (17)
O1—Mg2—Mg1—Mg2i146.66 (9)O4—C4—C5—C631.6 (3)
O2i—Mg2—Mg1—Mg2i31.44 (4)C4—C5—C6—C739.3 (4)
O2—Mg2—Mg1—Mg2i48.14 (6)C4—O4—C7—C614.7 (4)
O5—Mg2—Mg1—Mg2i122.11 (7)Mg2—O4—C7—C6152.3 (2)
O4—Mg2—Mg1—Mg2i143.34 (6)C5—C6—C7—O433.9 (4)
Mg1i—Mg2—Mg1—Mg2i0.0O3—Mg2—O5—C8167.84 (19)
O3i—Mg1—O1—C1139.7 (2)O1—Mg2—O5—C815.83 (19)
O2—Mg1—O1—C1141.0 (2)O2i—Mg2—O5—C885.86 (19)
O6—Mg1—O1—C146.8 (2)O4—Mg2—O5—C8102.07 (19)
Br1—Mg1—O1—C144.9 (2)Mg1—Mg2—O5—C80.5 (2)
Mg2—Mg1—O1—C1151.3 (2)Mg1i—Mg2—O5—C8129.42 (18)
Mg2i—Mg1—O1—C1178.5 (2)Mg2i—Mg2—O5—C879.8 (2)
O3i—Mg1—O1—Mg269.03 (9)O3—Mg2—O5—C115.2 (2)
O2—Mg1—O1—Mg210.28 (7)O1—Mg2—O5—C11178.4 (2)
O6—Mg1—O1—Mg2161.89 (8)O2i—Mg2—O5—C1176.8 (2)
Br1—Mg1—O1—Mg2106.39 (6)O4—Mg2—O5—C1195.3 (2)
Mg2i—Mg1—O1—Mg230.16 (7)Mg1—Mg2—O5—C11163.08 (18)
O2i—Mg2—O1—C1145.1 (2)Mg1i—Mg2—O5—C1133.2 (2)
O2—Mg2—O1—C1137.9 (2)Mg2i—Mg2—O5—C1182.8 (2)
O5—Mg2—O1—C150.5 (2)C11—O5—C8—C925.4 (3)
O4—Mg2—O1—C135.6 (2)Mg2—O5—C8—C9139.40 (17)
Mg1—Mg2—O1—C1148.2 (3)O5—C8—C9—C10B36.6 (4)
Mg1i—Mg2—O1—C1153.5 (2)O5—C8—C9—C10A9.9 (9)
Mg2i—Mg2—O1—C1175.9 (2)C10B—C9—C10A—C1174.8 (14)
O2i—Mg2—O1—Mg166.80 (8)C8—C9—C10A—C118.9 (14)
O2—Mg2—O1—Mg110.23 (7)C9—C10A—C11—O524.5 (14)
O5—Mg2—O1—Mg1161.30 (8)C9—C10A—C11—C10B72.5 (14)
O4—Mg2—O1—Mg1112.60 (8)C8—O5—C11—C10A31.8 (10)
Mg1i—Mg2—O1—Mg158.32 (12)Mg2—O5—C11—C10A133.8 (10)
Mg2i—Mg2—O1—Mg127.76 (7)C8—O5—C11—C10B3.4 (5)
O3i—Mg1—O2—C2123.89 (17)Mg2—O5—C11—C10B162.2 (4)
O1—Mg1—O2—C2120.21 (17)C10A—C11—C10B—C971.6 (11)
Br1—Mg1—O2—C20.94 (17)O5—C11—C10B—C919.9 (6)
Mg2—Mg1—O2—C2129.85 (18)C10A—C9—C10B—C1168.7 (10)
Mg2i—Mg1—O2—C2128.95 (18)C8—C9—C10B—C1133.9 (5)
O3i—Mg1—O2—Mg2i5.07 (6)O3i—Mg1—O6—C12119.9 (2)
O1—Mg1—O2—Mg2i110.84 (7)O1—Mg1—O6—C12125.4 (2)
Br1—Mg1—O2—Mg2i129.90 (5)Br1—Mg1—O6—C125.6 (2)
Mg2—Mg1—O2—Mg2i101.20 (6)Mg2—Mg1—O6—C12140.4 (2)
O3i—Mg1—O2—Mg2106.27 (7)Mg2i—Mg1—O6—C12131.8 (2)
O1—Mg1—O2—Mg29.64 (7)O3i—Mg1—O6—C1566.9 (2)
Br1—Mg1—O2—Mg2128.90 (4)O1—Mg1—O6—C1547.8 (2)
Mg2i—Mg1—O2—Mg2101.20 (6)Br1—Mg1—O6—C15167.6 (2)
O3—Mg2—O2—C248.42 (15)Mg2—Mg1—O6—C1532.8 (2)
O1—Mg2—O2—C2127.65 (15)Mg2i—Mg1—O6—C1555.0 (2)
O2i—Mg2—O2—C2129.00 (16)C15—O6—C12—C130.9 (4)
O4—Mg2—O2—C242.95 (15)Mg1—O6—C12—C13174.7 (2)
Mg1—Mg2—O2—C2137.09 (16)O6—C12—C13—C1423.3 (4)
Mg1i—Mg2—O2—C285.37 (14)C12—C13—C14—C1535.9 (3)
Mg2i—Mg2—O2—C2129.00 (16)C12—O6—C15—C1422.2 (3)
O3—Mg2—O2—Mg2i80.58 (7)Mg1—O6—C15—C14152.25 (19)
O1—Mg2—O2—Mg2i103.35 (7)C13—C14—C15—O635.9 (3)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Mg4Br2(CH3O)6(C4D8O)6]
Mr924.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.4836 (4), 18.9094 (9), 12.8907 (6)
β (°) 97.457 (1)
V3)2050.43 (17)
Z2
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.476, 0.658
No. of measured, independent and
observed [I > 2σ(I)] reflections
17714, 5081, 4061
Rint0.035
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.03
No. of reflections5081
No. of parameters230
No. of restraints32
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.36

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds