Download citation
Download citation
link to html
The title compound, C19H14N5+·ClO4-·H2O, contains planar C19H14N5+ cations, perchlorate anions and water mol­ecules. The two closest parallel cations (plane-to-plane distance of 3.41 Å), together with two neighbouring perchlorate anions and two water mol­ecules, form an electrically neutral quasi-dimeric unit. Two acidic H atoms of the cation, both H atoms of the water mol­ecule, the N atoms of the imidazole rings and three of the four O atoms of the perchlorate anion are involved in the hydrogen-bonding network within the dimeric unit. The remaining third acidic H atom of the imidazole rings and the water mol­ecules complete a two-dimensional network of hydrogen bonds, thus forming puckered layers of dimers. The angle between the planes of two neighbouring dimeric units in the same layer is 33.25 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004376/ln1095sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004376/ln1095Isup2.hkl
Contains datablock I

CCDC reference: 147649

Comment top

Complexes of 2,6-bis(benzimidazol-2-yl)pyridine and its derivatives have been studied for more than 30 years because of their unusual coordination properties (Rüttimanm et al., 1992) and unusual magnetic properties (Gütlich, 1981; Boča et al., 1998). However, the structures of the free ligands are reported only occasionally. We are aware of only one such example, the structure of 2-(1-methyl-3-benzimidazolinium-2-yl)-6-(1-methylbenzimidazol- 2-yl)pyridine perchlorate, (II) (Petoud et al., 1997). Here, we present the structure of the title compound, a similar free ligand as its perchlorate monohydrate, (I). \sch

A view of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. A l l C and N atoms of the cation lie on one almost perfect plane. The mean deviation from this plane is 0.052 Å and the greatest deviation is 0.108 (2) Å for C4. In contrast, the corresponding cation in compound (II) is quite bent, with the planes of the benzimidazole units forming angles of about 30.5 and 45.3° with that of the central pyridine ring because of steric interactions between the opposing methyl groups that are in a cis-cis position with respect to the pyridine N atom. The positions of N3 and N5 are trans-trans with respect to N1. A similar conformation was observed in (II). In all metal complexes this position changes to cis-cis.

The aromatic C—C and C—N distances from both the benzimidazole and pyridine rings are within the usual range and this confirms the aromatic character of the pyridine and benzimidazole moieties. The protonation of the atom N5 has no influence on the aromatic character of the benzimidazole moiety.

The structure of (I) contains cations stacked along the a axis. The neighbouring cations from adjacent stacks form a puckered layer in which the angle between the planes of adjacent cations is 33.25 (3)°. Pairs of puckered layers are held together by a system of hydrogen bonds involving the H atoms of the water molecules, the N atoms of the benzimidazole moieties and the O atoms of the perchlorate anions, and by van der Waals interactions. The hydrogen-bonding system (Table 2) thus connects together two stacked cations to form a quasi-dimeric unit with a plane-to-plane distance of 3.41 Å. Additional hydrogen bonds involving the water molecules and H14 of the benzimidazole moieties connect the quasi-dimers end on, to form the extended stacked puckered layers. Adjacent bilayers of dimers are held together by van der Waals interactions. It is very interesting that the interplanar distance between neighbouring cations that do not interconnect via hydrogen bonds is very similar (3.4 Å) to that for the cations that are linked by the hydrogen-bonding system.

The π-stacking found in (II) was not observed for (I); thus, an interaction of the π orbitals of two cations is not facilitated. The proton originating from the perchloric acid is localized on the N5 atom and interacts with the O atom from the water molecule, thus forming interdimer hydrogen bonds. In compound (II), the acid H atoms are involved in hydrogen bonds between the unprotonated benzimidazole unit of one cation and the protonated unit of an adjacent cation, and vice versa, thus forming a quasi-dimeric unit (Petoud et al., 1997). The hydrogen-bonding network in (I) is shown in Fig. 2.

Experimental top

Single crystals of (I) suitable for X-ray analysis were obtained from a mixture of Fe(ClO4)3.10H2O (0.267 g, 0.5 mmol) in ethanol (10 ml) and 2,6-bis(benzimidazol-2-yl)pyridine (0.311 g, 1 mmol) in ethanol (20 ml) after two weeks at room temperature. This was actually an attempt to obtain an iron(III) perchlorate complex of the ligand. Single crystals denature above 353 K due to the loss of water, but they do not melt until 533 K.

Refinement top

The positions of the amine and water H atoms were refined freely, together with their individual isotropic displacement parameters. All other H atoms were included in the refinement at geometrically calculated positions and refined using a riding model, with Uiso constrained to be 1.2Ueq of the parent C atom. The perchlorate anion is disordered about an axis passing through Cl1 and O2. Two sets of positions were defined for the remaining three O atoms of the perchlorate anion and the site occupancy factors of the two sets were refined while constraining their sum to 1.0.

Computing details top

Data collection: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: REDU4 (Stoe & Cie, 1988); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme of (I), showing 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram illustrating the hydrogen-bonding network in (I) and the system of puckered layers.
2-(1,3-Benzimidazol-2-io)-6-(1,3-benzimidazol-2-yl)pyridine perchlorate monohydrate top
Crystal data top
C19H14N5·ClO4·H2ODx = 1.509 Mg m3
Mr = 429.82Melting point: >533 K K
Monoclinic, P21/nMo Kα radiation, λ = 0.71093 Å
a = 9.168 (2) ÅCell parameters from 25 reflections
b = 15.111 (3) Åθ = 3.0–11.6°
c = 13.962 (3) ŵ = 0.25 mm1
β = 101.98 (2)°T = 304 K
V = 1892.1 (7) Å3Needle, colourless
Z = 40.75 × 0.20 × 0.20 mm
F(000) = 888
Data collection top
Enraf-Nonius CAD4
diffractometer
2847 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ω/2θ scansh = 112
Absorption correction: ψ-scan
(North et al., 1968)
k = 180
Tmin = 0.837, Tmax = 0.952l = 1717
4491 measured reflections3 standard reflections every 120 min
3716 independent reflections intensity decay: 9.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Calculated w = 1/[σ2(Fo2) + (0.0728P)2 + 0.5099P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3716 reflectionsΔρmax = 0.26 e Å3
322 parametersΔρmin = 0.36 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (11)
Crystal data top
C19H14N5·ClO4·H2OV = 1892.1 (7) Å3
Mr = 429.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.168 (2) ŵ = 0.25 mm1
b = 15.111 (3) ÅT = 304 K
c = 13.962 (3) Å0.75 × 0.20 × 0.20 mm
β = 101.98 (2)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2847 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.046
Tmin = 0.837, Tmax = 0.9523 standard reflections every 120 min
4491 measured reflections intensity decay: 9.8%
3716 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0417 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
3716 reflectionsΔρmin = 0.36 e Å3
322 parameters
Special details top

Experimental. The size of the collimator was 0.8 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.16383 (6)0.77420 (4)0.93722 (4)0.04998 (18)
N10.20055 (17)0.57133 (11)0.50065 (11)0.0387 (4)
N20.13392 (19)0.47630 (11)0.65879 (12)0.0419 (4)
H40.185 (3)0.4471 (18)0.6280 (19)0.066 (8)*
N50.36428 (18)0.60336 (11)0.28842 (12)0.0416 (4)
H140.351 (3)0.6618 (18)0.2653 (17)0.061 (7)*
N40.36143 (18)0.48703 (11)0.37923 (12)0.0423 (4)
H90.335 (3)0.4511 (17)0.4261 (18)0.061 (7)*
C130.3175 (2)0.57084 (12)0.36520 (13)0.0384 (4)
C60.0892 (2)0.56049 (13)0.64022 (13)0.0391 (4)
N30.00878 (18)0.59072 (11)0.70164 (12)0.0426 (4)
C50.1293 (2)0.61341 (13)0.56145 (14)0.0398 (4)
C10.2349 (2)0.61944 (13)0.42772 (13)0.0383 (4)
C120.0021 (2)0.52080 (13)0.76458 (13)0.0406 (4)
C190.4409 (2)0.53770 (13)0.25045 (14)0.0423 (4)
C20.2000 (2)0.70780 (14)0.41210 (16)0.0477 (5)
H10.22330.73800.35920.057*
C70.0806 (2)0.44821 (13)0.73895 (14)0.0415 (4)
C140.4388 (2)0.46332 (13)0.30806 (14)0.0424 (4)
C110.0677 (2)0.51506 (15)0.84440 (15)0.0492 (5)
H80.12030.56270.86240.059*
C180.5098 (3)0.53745 (16)0.17092 (16)0.0545 (5)
H130.50940.58720.13160.065*
C170.5782 (3)0.46066 (17)0.15312 (18)0.0614 (6)
H120.62630.45820.10070.074*
C100.0560 (3)0.43728 (16)0.89485 (15)0.0557 (6)
H70.10340.43160.94730.067*
C160.5777 (3)0.38597 (16)0.21158 (18)0.0607 (6)
H110.62600.33510.19720.073*
C150.5083 (2)0.38510 (15)0.28975 (17)0.0533 (5)
H100.50780.33500.32830.064*
C30.1295 (3)0.74988 (15)0.47726 (18)0.0551 (6)
H20.10600.80970.46990.066*
C40.0943 (2)0.70257 (14)0.55304 (16)0.0509 (5)
H30.04750.73000.59820.061*
C80.0950 (3)0.36991 (14)0.79155 (16)0.0534 (5)
H50.14910.32230.77490.064*
C90.0251 (3)0.36604 (15)0.86967 (16)0.0577 (6)
H60.03230.31450.90670.069*
O10.1782 (2)0.26268 (12)0.29595 (14)0.0567 (4)
H150.216 (3)0.2594 (19)0.352 (2)0.067 (9)*
H160.121 (4)0.305 (2)0.289 (2)0.085 (10)*
O20.2635 (2)0.71005 (14)0.98700 (16)0.0825 (6)
O30.1728 (8)0.7800 (4)0.8351 (4)0.0757 (15)0.553 (9)
O70.0188 (6)0.7619 (6)0.9455 (7)0.120 (4)0.553 (9)
O50.2153 (8)0.8640 (3)0.9740 (3)0.109 (2)0.553 (9)
O80.0288 (8)0.7249 (4)0.9028 (5)0.0725 (18)0.447 (9)
O60.1348 (7)0.8294 (4)1.0109 (4)0.096 (3)0.447 (9)
O40.2131 (10)0.8116 (6)0.8650 (7)0.092 (2)0.447 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0475 (3)0.0548 (3)0.0512 (3)0.0017 (2)0.0183 (2)0.0021 (2)
N10.0373 (8)0.0401 (8)0.0416 (8)0.0012 (6)0.0147 (7)0.0024 (7)
N20.0471 (9)0.0398 (9)0.0447 (9)0.0016 (7)0.0232 (7)0.0001 (7)
N50.0479 (9)0.0372 (9)0.0438 (9)0.0042 (7)0.0193 (7)0.0008 (7)
N40.0448 (9)0.0391 (9)0.0467 (9)0.0014 (7)0.0179 (7)0.0047 (7)
C130.0373 (10)0.0389 (10)0.0413 (9)0.0051 (8)0.0132 (8)0.0020 (8)
C60.0393 (10)0.0395 (10)0.0414 (10)0.0006 (7)0.0151 (8)0.0007 (8)
N30.0445 (9)0.0414 (9)0.0469 (9)0.0010 (7)0.0214 (7)0.0010 (7)
C50.0347 (9)0.0433 (10)0.0439 (10)0.0001 (7)0.0137 (8)0.0030 (8)
C10.0341 (9)0.0412 (10)0.0416 (10)0.0017 (7)0.0125 (8)0.0025 (8)
C120.0416 (10)0.0428 (10)0.0396 (9)0.0055 (8)0.0136 (8)0.0023 (8)
C190.0426 (10)0.0414 (10)0.0459 (10)0.0075 (8)0.0160 (8)0.0046 (8)
C20.0473 (11)0.0468 (11)0.0541 (11)0.0048 (9)0.0226 (9)0.0126 (9)
C70.0436 (10)0.0430 (10)0.0407 (10)0.0062 (8)0.0155 (8)0.0011 (8)
C140.0389 (10)0.0427 (10)0.0477 (10)0.0059 (8)0.0137 (8)0.0039 (8)
C110.0518 (12)0.0545 (12)0.0470 (11)0.0063 (9)0.0237 (9)0.0079 (9)
C180.0619 (13)0.0558 (13)0.0533 (12)0.0101 (10)0.0291 (10)0.0049 (10)
C170.0623 (14)0.0688 (16)0.0617 (14)0.0084 (11)0.0325 (11)0.0189 (12)
C100.0667 (14)0.0619 (14)0.0449 (11)0.0192 (11)0.0261 (10)0.0039 (10)
C160.0540 (13)0.0569 (14)0.0745 (15)0.0021 (10)0.0211 (11)0.0209 (12)
C150.0537 (13)0.0437 (12)0.0642 (13)0.0007 (9)0.0165 (11)0.0035 (10)
C30.0586 (13)0.0423 (11)0.0717 (14)0.0130 (10)0.0301 (11)0.0131 (10)
C40.0510 (12)0.0479 (11)0.0615 (12)0.0099 (9)0.0297 (10)0.0068 (10)
C80.0681 (14)0.0414 (11)0.0562 (12)0.0010 (10)0.0252 (11)0.0035 (9)
C90.0754 (16)0.0480 (12)0.0540 (12)0.0125 (11)0.0237 (11)0.0059 (10)
O10.0615 (10)0.0526 (10)0.0566 (11)0.0142 (8)0.0139 (8)0.0129 (8)
O20.0607 (11)0.0836 (14)0.0992 (14)0.0086 (9)0.0074 (10)0.0200 (11)
O30.092 (4)0.081 (4)0.058 (2)0.001 (3)0.027 (2)0.001 (2)
O70.048 (2)0.176 (8)0.150 (7)0.031 (4)0.054 (4)0.100 (6)
O50.186 (6)0.064 (3)0.093 (3)0.014 (3)0.070 (3)0.025 (2)
O80.050 (3)0.079 (3)0.084 (4)0.021 (2)0.003 (2)0.001 (3)
O60.136 (5)0.072 (3)0.092 (4)0.019 (3)0.052 (3)0.039 (3)
O40.125 (6)0.083 (5)0.084 (5)0.033 (4)0.057 (4)0.018 (4)
Geometric parameters (Å, º) top
Cl1—O41.316 (6)C19—C141.385 (3)
Cl1—O71.371 (5)C19—C181.387 (3)
Cl1—O61.392 (4)C2—C31.376 (3)
Cl1—O21.412 (2)C2—H10.9300
Cl1—O81.439 (6)C7—C81.384 (3)
Cl1—O31.448 (5)C14—C151.392 (3)
Cl1—O51.492 (5)C11—C101.363 (3)
N1—C51.335 (2)C11—H80.9300
N1—C11.341 (2)C18—C171.366 (3)
N2—C61.345 (3)C18—H130.9300
N2—C71.378 (2)C17—C161.393 (4)
N2—H40.83 (3)C17—H120.9300
N5—C131.329 (2)C10—C91.394 (3)
N5—C191.383 (3)C10—H70.9300
N5—H140.94 (3)C16—C151.373 (3)
N4—C131.331 (3)C16—H110.9300
N4—C141.382 (2)C15—H100.9300
N4—H90.92 (3)C3—C41.370 (3)
C13—C11.466 (3)C3—H20.9300
C6—N31.323 (2)C4—H30.9300
C6—C51.467 (3)C8—C91.376 (3)
N3—C121.384 (2)C8—H50.9300
C5—C41.384 (3)C9—H60.9300
C1—C21.380 (3)O1—H150.79 (3)
C12—C111.398 (3)O1—H160.82 (4)
C12—C71.399 (3)
O4—Cl1—O7128.1 (5)N3—C12—C7110.10 (16)
O4—Cl1—O6117.2 (4)C11—C12—C7120.01 (19)
O7—Cl1—O671.4 (5)N5—C19—C14106.85 (16)
O4—Cl1—O2112.5 (4)N5—C19—C18131.4 (2)
O7—Cl1—O2113.9 (3)C14—C19—C18121.78 (19)
O6—Cl1—O2104.6 (3)C3—C2—C1117.91 (18)
O4—Cl1—O8112.0 (5)C3—C2—H1121.0
O7—Cl1—O834.5 (3)C1—C2—H1121.0
O6—Cl1—O8105.9 (3)N2—C7—C8133.11 (19)
O2—Cl1—O8103.5 (3)N2—C7—C12104.73 (17)
O4—Cl1—O328.4 (3)C8—C7—C12122.14 (18)
O7—Cl1—O3110.2 (4)N4—C14—C19106.17 (17)
O6—Cl1—O3138.6 (4)N4—C14—C15132.46 (19)
O2—Cl1—O3111.3 (3)C19—C14—C15121.36 (19)
O8—Cl1—O385.6 (3)C10—C11—C12117.7 (2)
O4—Cl1—O574.8 (4)C10—C11—H8121.1
O7—Cl1—O5109.7 (4)C12—C11—H8121.1
O6—Cl1—O545.3 (2)C17—C18—C19116.8 (2)
O2—Cl1—O5109.2 (2)C17—C18—H13121.6
O8—Cl1—O5140.7 (3)C19—C18—H13121.6
O3—Cl1—O5101.8 (3)C18—C17—C16121.6 (2)
C5—N1—C1116.59 (16)C18—C17—H12119.2
C6—N2—C7107.61 (16)C16—C17—H12119.2
C6—N2—H4126.0 (19)C11—C10—C9121.61 (19)
C7—N2—H4126.4 (19)C11—C10—H7119.2
C13—N5—C19108.59 (17)C9—C10—H7119.2
C13—N5—H14125.9 (14)C15—C16—C17122.1 (2)
C19—N5—H14125.5 (15)C15—C16—H11118.9
C13—N4—C14109.00 (16)C17—C16—H11118.9
C13—N4—H9123.5 (16)C16—C15—C14116.3 (2)
C14—N4—H9127.3 (16)C16—C15—H10121.8
N5—C13—N4109.38 (16)C14—C15—H10121.8
N5—C13—C1126.04 (17)C4—C3—C2119.2 (2)
N4—C13—C1124.55 (16)C4—C3—H2120.4
N3—C6—N2112.97 (16)C2—C3—H2120.4
N3—C6—C5123.91 (18)C3—C4—C5119.07 (19)
N2—C6—C5123.10 (16)C3—C4—H3120.5
C6—N3—C12104.59 (16)C5—C4—H3120.5
N1—C5—C4123.05 (17)C9—C8—C7116.6 (2)
N1—C5—C6116.68 (17)C9—C8—H5121.7
C4—C5—C6120.27 (17)C7—C8—H5121.7
N1—C1—C2124.15 (17)C8—C9—C10121.8 (2)
N1—C1—C13114.35 (16)C8—C9—H6119.1
C2—C1—C13121.49 (17)C10—C9—H6119.1
N3—C12—C11129.89 (19)H15—O1—H16108 (3)
C19—N5—C13—N40.5 (2)N3—C12—C7—N20.2 (2)
C19—N5—C13—C1178.46 (17)C11—C12—C7—N2180.00 (18)
C14—N4—C13—N50.7 (2)N3—C12—C7—C8178.38 (19)
C14—N4—C13—C1178.72 (17)C11—C12—C7—C81.4 (3)
C7—N2—C6—N30.5 (2)C13—N4—C14—C190.6 (2)
C7—N2—C6—C5178.02 (17)C13—N4—C14—C15179.5 (2)
N2—C6—N3—C120.3 (2)N5—C19—C14—N40.3 (2)
C5—C6—N3—C12178.17 (18)C18—C19—C14—N4179.81 (19)
C1—N1—C5—C41.5 (3)N5—C19—C14—C15179.32 (19)
C1—N1—C5—C6178.90 (16)C18—C19—C14—C151.2 (3)
N3—C6—C5—N1174.67 (18)N3—C12—C11—C10179.7 (2)
N2—C6—C5—N17.0 (3)C7—C12—C11—C100.0 (3)
N3—C6—C5—C45.7 (3)N5—C19—C18—C17179.4 (2)
N2—C6—C5—C4172.6 (2)C14—C19—C18—C171.3 (3)
C5—N1—C1—C20.7 (3)C19—C18—C17—C160.5 (4)
C5—N1—C1—C13178.00 (16)C12—C11—C10—C91.3 (3)
N5—C13—C1—N1179.97 (17)C18—C17—C16—C150.3 (4)
N4—C13—C1—N12.4 (3)C17—C16—C15—C140.4 (3)
N5—C13—C1—C21.3 (3)N4—C14—C15—C16179.0 (2)
N4—C13—C1—C2176.35 (19)C19—C14—C15—C160.4 (3)
C6—N3—C12—C11179.7 (2)C1—C2—C3—C41.3 (3)
C6—N3—C12—C70.0 (2)C2—C3—C4—C50.6 (4)
C13—N5—C19—C140.1 (2)N1—C5—C4—C32.2 (3)
C13—N5—C19—C18179.3 (2)C6—C5—C4—C3178.2 (2)
N1—C1—C2—C32.1 (3)N2—C7—C8—C9179.5 (2)
C13—C1—C2—C3176.5 (2)C12—C7—C8—C91.4 (3)
C6—N2—C7—C8178.0 (2)C7—C8—C9—C100.0 (4)
C6—N2—C7—C120.4 (2)C11—C10—C9—C81.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O5i0.82 (3)2.23 (3)3.048 (6)170 (2)
N2—H4···O4i0.82 (3)2.22 (3)2.910 (7)138 (2)
N2—H4···O3i0.82 (3)2.84 (3)3.448 (7)132 (2)
N4—H9···O6i0.92 (3)2.03 (3)2.830 (2)144 (2)
N4—H9···O5i0.92 (3)2.04 (3)2.959 (5)176 (2)
N5—H14···O1ii0.94 (4)1.74 (4)2.672 (3)171 (3)
O1—H15···O2i0.76 (4)2.37 (4)3.071 (3)154 (3)
O1—H15···O6i0.76 (4)2.38 (4)3.052 (7)148 (3)
O1—H15···O5i0.76 (4)2.88 (3)3.510 (6)142 (3)
O1—H16···N3iii0.80 (4)2.02 (4)2.806 (2)169 (3)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H14N5·ClO4·H2O
Mr429.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)304
a, b, c (Å)9.168 (2), 15.111 (3), 13.962 (3)
β (°) 101.98 (2)
V3)1892.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.75 × 0.20 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.837, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
4491, 3716, 2847
Rint0.046
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.02
No. of reflections3716
No. of parameters322
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.36

Computer programs: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1993), CAD-4 Diffractometer Control Software, REDU4 (Stoe & Cie, 1988), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
N1—C51.335 (2)N4—C131.331 (3)
N1—C11.341 (2)N4—C141.382 (2)
N2—C61.345 (3)C13—C11.466 (3)
N2—C71.378 (2)C6—N31.323 (2)
N5—C131.329 (2)C6—C51.467 (3)
N5—C191.383 (3)N3—C121.384 (2)
C5—N1—C1116.59 (16)C13—N4—C14109.00 (16)
C6—N2—C7107.61 (16)C6—N3—C12104.59 (16)
C13—N5—C19108.59 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O5i0.82 (3)2.23 (3)3.048 (6)170 (2)
N2—H4···O4i0.82 (3)2.22 (3)2.910 (7)138 (2)
N4—H9···O6i0.92 (3)2.03 (3)2.830 (2)144 (2)
N4—H9···O5i0.92 (3)2.04 (3)2.959 (5)176 (2)
N5—H14···O1ii0.94 (4)1.74 (4)2.672 (3)171 (3)
O1—H15···O2i0.76 (4)2.37 (4)3.071 (3)154 (3)
O1—H15···O6i0.76 (4)2.38 (4)3.052 (7)148 (3)
O1—H16···N3iii0.80 (4)2.02 (4)2.806 (2)169 (3)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds