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According to Hermann’s theorem, the subgroup H of the space group G is general (allgemein) if H is 

neither k subgroup (klassengleiche subgroup) nor t subgroup (translationengleiche subgroup) 

(Wondratschek, 2004; Wondratschek & Jeitschko, 1976; Wang & Kuo, 1990). In other words, H has 

lost both translational operations and crystal class operations. Hermann’s theorem mentions that for each 

subgroup H of the space group G there is a intermediate space group M which is the maximal t subgroup 

of G and also the minimal k supergroup of H (Hermann, 1929). Based on analyzing the group-subgroup 

relations, we got the intermediate space group 2/C m , and the maximal subgroup chain from 3Fm m  to 

12 /P n  can be determined as following: 
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The contents in the square brackets represent the type (klassengleiche or translationengleiche) and the 

order of each subgroup H in its supergroup G. Then the Hermann-Mauguin symbol of H which is in the 

same coordinate system with G are shown. The contents in the round brackets denote the conventional 

short Hermann-Mauguin symbol. 

The corresponding left coset decomposition of the supergroup 3Fm m  with respect to the 

intermediate space group and the coset relation of the intermediate group 2/C m  and its subgroup in the 

equation (s1) are expressed as: 
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1m2/ { t(0,1/2,1/2) } 2 /C m= I P n                                                                                                            (s3) 

where I is the identity operation while  represents the addition of two symmetry operations. c3 [111]  

and c3 [111]  (the subscript “c” denotes the pseudo-cubic cell) denote the +2π/3 and -2π/3 rotations both 

around the c[111]  direction. c2[001]  denotes the twofold axis along c[001]  direction. mt(0,1/2,1/2)  is a 

translation operation in the monoclinic cell with space group 2/C m . It transforms to ct(-1/4,1/4,1/2)  

which is a translation operation with respect to the basic vectors of pseudo-cubic cell. The equation (s2) 

describes the t subgroup relation which means that the translation operations are preserved and the point 

symmetry is lost. Meanwhile, equation (s3) represents k subgroup relation in which the translation 

operations are lost. Relying on the analysis above, the left coset decomposition of the space group 

3Fm m  with respect to its subgroup 
12 /P n  is shown as following: 
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Here we consider the domain with space group 
12 /P n  as a reference. Thus, three types of domains are 

classified: one is orientation domains (twin domains) if variants transform into each other via the point 

group symmetry operations which don’t belong to the space group of their common derived phase 

(
12 /P n  in this case), such as +

1c3 [111] 2 /P n ; the second one is translation domains (antiphase domains) 

which result from the loss of translational operations of the parent phase that don’t belong to the space 

group of the derived phase, such as 
1ct(-1/4,1/4,1/2) 2 /P n ; the third kind of domains can be described as 

translation twins which transform into each other by combining the point group symmetry operations 

and the translation operations, such as +

1c c3 [111] t(-1/4,1/4,1/2) 2 /P n . According to the experiment 

results, only the situation of orientation domains is considered. Then the orientation domains part in the 

equation (s4) is retained as following: 
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The twelve cosets in the equation (s5) correspond to twelve orientation domain variants for the 

monoclinic phase.  

Table S1 lists the orientation domain variants type Di (here Di denote monoclinic phase with space 

group 
12 /P n , i ranges from 1 to 12) and the corresponding symmetry operations in left coset for these 

twelve variants. D1 is considered as a reference domain variant. The geometric relation between domains 
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and parent pseudo-cubic phase can be deduced mathematically from Table S1. The basic vectors ai, bi, 

and ci of the monoclinic variant Di can be related to those of ac, bc, and cc of the pseudo-cubic crystal 

cell by 

c c ci i ia b c a b c iM                                                                                                              (s6) 

where Mi is the transformation matrix of the variant Di. Table S2 lists all the matrices. These results 

facilitate our understanding of crystallographic relationships among different domain variants. 

In current case, 11 types of domain boundaries are acquired and boundary between variant D1 and Dj 

are represented by ID1/Dj (j ranges from 2 to 12). The necessary and sufficient conditions of the 

equivalence between domain boundaries ID1/Dm and ID1/Dn (both m and n range from 2 to 12, m n) is 

either (1) there is a symmetry operation h which belongs to the subgroup H (in our case, H=
12 /P n ) that 

can transform domain variant Dm to Dn or (2) for a symmetry operation h in the coset of domain variant 

Dm there is an inverse symmetry operation h-1 in the coset of domain variant Dn. Based on these rules, 

the equivalent relations of domain variants are listed in Table S3. Here, I, 2[110] , [110]m  and 1  are 

operations of 
12 /P n  which transform domains in column one to the domains in another column under 

the corresponding symmetry operation.  

Based on equation (s6) and the transformation matrices in Table S2, the crystallographic orientation 

relationship between the pseudo-cubic parent phase and the monoclinic derived phase could be obtained 

by applying equations (s7) and (s8). 

m m m c c ch k l = h k l iM                                                                                                           (s7) 
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TABLE S1. Orientation domain variants and the operation in corresponding cosets. All the deduction 

are based on the pseudo-cubic lattice. 

variant type coset operations in coset 

D1 1= 2 /H P n  , 2[110], 1, m[110]I  

D2 
+

c3 [111] H  + +3 [111], 2[101], 3 [111], m[101]  

D3 
+

c3 [111] H  + + + +3 [111], 4 [010], 3 [111], 4 [010] 

D4 
+

c3 [111] H  + +3 [111], 4 [010], 3 [111], 4 [010]  

D5 
+

c3 [111] H  + +3 [111], 2[101], 3 [111], m[101]  

D6 c3 [111] H  3 [111], 2[011], 3 [111], m[011]  

D7 c3 [111] H  + +3 [111], 4 [100], 3 [111], 4 [100]  

D8 c3 [111] H  3 [111], 4 [100], 3 [111], 4 [100]  

D9 c3 [111] H  3 [111], 2[011], 3 [111], m[011]  

D10 c2[001] H  2[001], 2[110], m[001], m[110]  

D11 c2[010] H  2[010], 4 [001], m[010], 4 [001]  

D12 c2[100] H  + +2[100], 4 [001], m[100], 4 [001]  
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TABLE S2. Transformation matrices of the orientation domain variants 

type matrix type matrix 

1M  

1/ 2 1/ 2 0

1/ 2 1/ 2 0

0 0 1

 =3 [111]7 1M M  

1/ 2 1/ 2 0

0 0 1

1/ 2 1/ 2 0

 

+=3 [111]2 1M M  

0 0 1

1/ 2 1/ 2 0

1/ 2 1/ 2 0

 =3 [111]8 1M M  

1/ 2 1/ 2 0

0 0 1

1/ 2 1/ 2 0

 

+=3 [111]3 1M M  

0 0 1

1/ 2 1/ 2 0

1/ 2 1/ 2 0

 =3 [111]9 1M M  

1/ 2 1/ 2 0

0 0 1

1/ 2 1/ 2 0

 

+=3 [111]4 1M M  

0 0 1

1/ 2 1/ 2 0

1/ 2 1/ 2 0

 =2[001]10 1M M  

1/ 2 1/ 2 0

1/ 2 1/ 2 0

0 0 1

 

+=3 [111]5 1M M  

0 0 1

1/ 2 1/ 2 0

1/ 2 1/ 2 0

 =2[010]11 1M M  

1/ 2 1/ 2 0

1/ 2 1/ 2 0

0 0 1

 

=3 [111]6 1M M  

1/ 2 1/ 2 0

0 0 1

1/ 2 1/ 2 0

 =2[100]12 1M M  

1/ 2 1/ 2 0

1/ 2 1/ 2 0

0 0 1
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TABLE S3. Transformation relations of domain variants. 

I 2[110]  m[110]  1  

D1 D1 D1 D1 

D2 D6 D6 D6 

D3 D8 D8 D7, D4 

D4 D7 D7 D3, D8 

D5 D9 D9 D9 

D6 D2 D2 D2 

D7 D4 D4 D3, D8 

D8 D3 D3 D4, D7 

D9 D5 D5 D5 

D10 D10 D10 D10 

D11 D12 D12 D12 

D12 D11 D11 D11 
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