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The effect of various parameter settings for data evaluation using the two dimensional
indirect Fourier transformation should be demonstrated using the example of a cuboid

introduced in section 4 of the contribution.

1. Variation of the number of azimuthal splines
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Figure 1: Cuts through the p(r,x) functions at x=0° (solid) and x=90° (dotted). The
number of azimuthal splines is set to n4=50 (blue), n4=25 (red), and n4=10 (green). The

orange lines are the theoretical curves.
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Figure 2: Cuts through the p(r,x) functions at r=2 nm. The number of azimuthal
splines is set to n4a=50 (blue), n4=25 (red), and n4=10 (green). The orange line is the

theoretical curve.

Once a sufficient high number of azimuthal splines is found the result no longer
depends on the ecact value of the parameter. If the value is too low, not all features

can be approximated well.



2. Variation of the number of radial splines
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Figure 3: Cuts through the p(r,x) functions at x=0° (solid) and x=90° (dotted). The
number of radial splines is set to nz=10 (blue), nz=5 (red), and nz=15 with 7 of them up

to =2 nm (green). The orange lines are the theoretical curves.
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Figure 4: Cuts through the p(r,x) functions at r=2 nm. The number of radial splines is
set to nr=10 (blue), nz=5 (red), and nz=15 with 7 of them up to r=2 nm (green). The

orange line is the theoretical curve.

Like in the case of azimuthal splines the result is stable as soon as a sufficient number
of radial splines is selected. Increasing the number of splines in the low r-regime does

not influence the function in this case.



3. Variation of azimuthal Lagrange multiplier
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Figure 5: Cuts through the p(r,x) functions at x=0° (solid) and x=90° (dotted). The
azimuthal Lagrange multiplier is set to As=-1 (blue), As=-9 (red), and As=+8 (green).

The orange lines are the theoretical curves.
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Figure 6: Cuts through the p(r,x) functions at r=2nm. The azimuthal Lagrange
multiplier is set to Aa=-1 (blue), A+=-9 (red), and A+=+8 (green). The orange line is the

theoretical curve.

An azimuthal Lagrange multiplier that is too high results in a centrosymmatric real
space curve, where the information of orientation is lost. Cuts through are nearly
identical regardless of the angle y . If the Langrage multiplier is, however, too small

than there are strong oscillations in azimuthal direction.



4. Variation of radial Lagrange multiplier
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Figure 7: Cuts through the p(r,x) functions at x=0° (solid) and x=90° (dotted). The
radial Lagrange multiplier is set to Az=-2 (blue), Ar=-10 (red), and Az=+6 (green). The

orange lines are the theoretical curves.
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Figure 8: Cuts through the p(r,x) functions at r=2 nm. The radial Lagrange multiplier
is set to Ar=-2 (blue), Ar=-10 (red), and Ar=+6 (green).. The orange line is the

theoretical curve.

Radial Lagrange multipliers that are too high result in flat real space functions. If the
radial Lagrange multiplier is too small then the cuts at a given angle show

oscillations, which are strongest at small distances.



