
RADDOSE-3D: Time and Space Resolved Modelling
of Dose in Macromolecular Crystallography
Oliver B. Zeldin, Markus Gerstel and Elspeth F. Garman
Journal of Applied Crystallography (2013), Volume 46, Part 4

Supplementary Material

06.06.2013, describing RADDOSE-3D version 1.0.950

Contents

1 Supplemental Figures 2
1.1 Figure S1 – RADDOSE-3D object structure overview 2
1.2 Figure S2 – RADDOSE-3D processing user input 3
1.3 Figure S3 – Supporting multiple Crystal classes 4
1.4 Figure S4 – Supporting multiple Beam classes 5
1.5 Figure S5 – Observing the Experiment 6
1.6 Figure S6 – RADDOSE-3D generating output 7
1.7 Figure S7 – Voxel resolution as a function of beam FWHM . . . 8

2 RADDOSE-3D command reference 9
2.1 General syntax considerations . 9
2.2 Crystal block . 9

2.2.1 TYPE . 9
2.2.2 DIMENSION . 10
2.2.3 PIXELSPERMICRON . 10
2.2.4 ANGLEP . 10
2.2.5 ANGLEL . 10
2.2.6 ABSCOEFCALC . 11
2.2.7 UNITCELL . 11
2.2.8 NUMMONOMERS . 11
2.2.9 NUMRESIDUES . 12
2.2.10 NUMRNA . 12
2.2.11 NUMDNA . 12
2.2.12 PROTEINHEAVYATOMS 12
2.2.13 SOLVENTHEAVYCONC . 13
2.2.14 SOLVENTFRACTION . 13

2.3 Beam block . 13
2.3.1 TYPE . 13
2.3.2 FLUX . 13
2.3.3 FWHM . 13
2.3.4 ENERGY . 14
2.3.5 COLLIMATION . 14

2.4 Wedge block . 14
2.4.1 EXPOSURETIME . 14
2.4.2 ANGULARRESOLUTION 14
2.4.3 STARTOFFSET . 14
2.4.4 TRANSLATEPERDEGREE 14
2.4.5 ROTAXBEAMOFFSET . 15

1

1 Supplemental Figures

1.1 Figure S1 – RADDOSE-3D object structure overview

se.raddo.raddose3D

<<interface>>
Input

+ sendData(Initializer) : void

<<interface>>
Initializer

+ setBeam(Beam) : void
+ setCrystal(Crystal) : void
+ exposeWedge(Wedge) : void

Experiment

<<interface>>
Output

+ publishBeam(Beam) : void
+ publishCrystal(Crystal) : void
+ publishWedge(Wedge) : void
+ close() : void

RD3D

-F NANOSECONDSPERSECOND: long

-F commandLineParams: String[]
- outputs: Vector<Output>
- prefix: String

-C RD3D(String[])
+ main(String[]) : void
- runExperiment() : void
- parseHighPriorityParameters() : void
- parseCommandLineParameters() : void
- setDefaultObservers() : void
- printCommandlineHelp() : void
- parseOutputDestinations(String[]) : Writer

-inputs 1..*

-exp

1

-observers 0..*

Figure S1: Unified Modeling Language (UML) class diagram of the
RADDOSE-3D object structure. The main function of RD3D is invoked from the
command line. Depending on specified command line parameters, RD3D creates
an Input class (Fig. S2), an instance of the Experiment class and a number
of Output classes (Fig. S6) upon launch. The Output classes are registered
with the Experiment class so they can observe the experiment progression
(Fig. S5). Once all these classes are set up, RD3D triggers the Input class
to parse the input file and create the relevant Crystal (Fig. S3), Beam (Fig.
S4) and Wedge objects, and then to pass these objects to the Experiment
instance via the Initializer interface.

2

1.2 Figure S2 – RADDOSE-3D processing user input

se.raddo.raddose3D

<<interface>>
Input

+ sendData(Initializer) : void

<<interface>>
Initializer

+ setBeam(Beam) : void
+ setCrystal(Crystal) : void
+ exposeWedge(Wedge) : void

InputParserFile

InputParserString

InputParserConsole

InputParser

-F tokens: CommonTokenStream

+C InputParser(CharStream)
+ setBeamFactory(BeamFactory) : void
+ setCrystalFactory(CrystalFactory) : void
+ sendData(Initializer) : void

-bf 1

BeamFactory

+C BeamFactory()
+ createBeam(String, Map<Object, Object> : Beam

-cf 1

CrystalFactory

+C CrystalFactory()
+ createCrystal(String, Map<Object, Object> : Crystal

Figure S2: UML class diagram. User input is processed by implementations
of the Input interface. RADDOSE-3D contains four such implementations, all
belonging to the group around InputParser. In these classes, user input is
processed using a parser generated by ANTLR, which understands the syntax
detailed in Section 2. The four classes differ in the accepted source of the user in-
put: while InputParser itself only accepts a high-level ANTLR token stream,
the class InputParserFile reads from a file, InputParserConsole reads
from STDIN and InputParserString accepts any String object. Inter-
nally, the desired property of crystals and beams are collected in Java Map
data structures, and the creation of the actual Crystal and Beam classes is
delegated to CrystalFactory and BeamFactory via a flexible, non-specific
interface detailed in Figs. S3 and S4. The objects thus produced are handed to
the Initializer implementation which contains the main program logic.

3

1.3 Figure S3 – Supporting multiple Crystal classes

se.raddo.raddose3D

CrystalFactory

+C CrystalFactory()
+ createCrystal(String, Map<Object, Object> : Crystal

<<abstract>>
Crystal

+C Crystal(Map<Object, Object>
+ findDepth(double[], double, Wedge) : double
+ getCrystCoord(int, int, int) : double
+ isCrystalAt(int, int, int) : boolean
+ addDose(int, int, int, double) : void
+ addElastic(int, int, int, double) : void
+ addFluence(int, int, int, double) : void
+ crystalInfo() : String
+ getCrystSizeVoxels() : int[]
+ getCrystSizeUM() : double[]
+ getDose(int, int, int) : double
+ getElastic(int, int, int) : double
+ getFluence(int, int, int) : double
+ getCrystalPixPerUM() : double
+ setupDepthFinding(double, Wedge) : void
+F getCoefCalc() : CoefCalc
+F getDDM() : DDM
+ addObserver(ExposeObserver) : void
+ expose(Beam, Wedge) : void
- fluenceToDose(double, double) : double
+ getExposureSummary(Double) : ExposureSummary

CrystalCuboid CrystalSpherical

Figure S3: UML class diagram. The abstract class Crystal defines a number
of common functions that all actual subclasses have to contain. RADDOSE-3D
contains two subclasses, CrystalSpherical and CrystalCuboid. The
choice of which of these two subclasses is actually used during a run of
RADDOSE-3D is decided in the class CrystalFactory, which receives the pa-
rameters from the parser. Subclass implementations are interchangeable: new
Crystal subclasses can be added easily, and will work with the RADDOSE-3D
framework and all Beam implementations as long as the new Crystal subclass
contains all the functions that a Crystal class requires.

4

1.4 Figure S4 – Supporting multiple Beam classes

se.raddo.raddose3D

BeamFactory

+C BeamFactory()
+ createBeam(String, Map<Object, Object> : Beam

<<interface>>
Beam

+F BEAM COLL H : String

+F BEAM COLL V : String

+F BEAM ENERGY : String

+F BEAM EXTFILE : String

+F BEAM FLUX : String

+F BEAM FWHM X : String

+F BEAM FWHM Y : String

+F BEAM PIXSIZE X : String

+F BEAM PIXSIZE Y : String

+F ELEMENTARYCHARGE : Double
+F KEVTOJOULES : Double

+ beamIntensity(double, double, double) : double
+ getDescription() : String
+ getPhotonEnergy() : double
+ getPhotonsPerSec() : double

BeamTophat BeamGaussian

Figure S4: UML class diagram. The interface Beam defines a number of com-
mon functions that all actual implementations have to contain. RADDOSE-3D
contains two implementations, BeamTopHat and BeamGaussian. The choice
of which of these two classes is actually used during a run of RADDOSE-3D
is decided in the class BeamFactory, which receives the parameters from the
parser. Implementations are interchangeable: new Beam classes can be added
easily, and will work with the RADDOSE-3D framework and all Crystal sub-
classes, as long as the new Beam class correctly implements all functions that
are required for a Beam.

5

1.5 Figure S5 – Observing the Experiment

se.raddo.raddose3D

Experiment

- currentBeam: Beam

+C Experiment()
+ process(Input) : void
+ addObserver(Output) : void
notifyObserver(Wedge) : void
notifyObserver(Crystal) : void
notifyObserver(Beam) : void
+ setCrystal(Crystal) : void
+ setBeam(Beam) : void
+ exposeWedge(Wedge) : void
+ close() : void
finalize() : void

<<abstract>>
Crystal

+C Crystal(Map<Object, Object>
+ findDepth(double[], double, Wedge) : double
+ getCrystCoord(int, int, int) : double
+ isCrystalAt(int, int, int) : boolean
+ addDose(int, int, int, double) : void
+ addElastic(int, int, int, double) : void
+ addFluence(int, int, int, double) : void
+ crystalInfo() : String
+ getCrystSizeVoxels() : int[]
+ getCrystSizeUM() : double[]
+ getDose(int, int, int) : double
+ getElastic(int, int, int) : double
+ getFluence(int, int, int) : double
+ getCrystalPixPerUM() : double
+ setupDepthFinding(double, Wedge) : void
+F getCoefCalc() : CoefCalc
+F getDDM() : DDM
+ addObserver(ExposeObserver) : void
+ expose(Beam, Wedge) : void
- fluenceToDose(double, double) : double
+ getExposureSummary(Double) : ExposureSummary

-currentCrystal

0..1

<<interface>>
Output

+ publishBeam(Beam) : void
+ publishCrystal(Crystal) : void
+ publishWedge(Wedge) : void
+ close() : void

-observers 0..*

<<interface>>
ExposeObserver

+ register(Crystal) : void
+ exposureStart() : void
+ exposureObservation(. . .) : void
+ imageComplete(int, double) : void
+ summaryObservation(int, int, int, double) : void
+ exposureComplete() : void

-exposeObservers 0..*

Figure S5: UML class diagram. Classes that implement the Output interface can subscribe
to an Experiment by calling its addObserver() method. The Experiment class will inform
all subscribed objects when a new Crystal or Beam is passed to it, as well as after each
Wedge exposure. The final call the observing classes receive is the close() method, which
commands the Output class to flush its buffers and close any open file handlers or equiva-
lents. When a more detailed look into the exposure process is required, an implementation
of the ExposeObserver class can subscribe to a Crystal class. The Crystal will inform
any subscribed ExposeObserver of each individual voxel exposure as well as after each
image and at the end of the exposure wedge. The registration of the ExposeObserver class
to the Crystal would usually be initiated in the publishCrystal() method of an Output
class. This Output class would then keep a reference to the ExposeObserver object and
inspect it after a Wedge exposure (publishWedge()) or during the call to its close() method.
These object interactions follow the Observer pattern described by Gamma et al. (1994).

[Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
Reusable Object-Oriented Software. Reading, MA, USA. Addison Wesley.]

6

1.6 Figure S6 – RADDOSE-3D generating output

se.raddo.raddose3D

se.raddo.raddose3D.server

<<interface>>
Output

+ publishBeam(Beam) : void
+ publishCrystal(Crystal) : void
+ publishWedge(Wedge) : void
+ close() : void

OutputSummaryText

-w 1

OutputSummaryCSV

-w 1

OutputFinalDoseStateCSV

-w 1

<<interface>>
Writer

+ write(String) : void
+ write(StringBuffer) : void
+ close() : void

WriterMultiple

-F children: Iterable<Writer>

+C WriterMultiple(Iterable<Writer>)

WriterFile

-F outFile: BufferedWriter
-F outFileName: String

+C WriterFile(String)

WriterString

WriterConsole

WriterSQL

Figure S6: UML class diagram. Output for the user is created in implemen-
tations of the Output interface. Each implementing class is notified when a
new crystal is set up, a beam is defined and after each wedge exposure. Each of
the three shown implementations produces different output based on the same
simulation. Each Output class references a single Writer class. This Writer
class takes care about the actual I/O processes required for presenting the out-
put to the user. Different Writer classes allow writing to a file, to the console,
or a combination of these (via WriterMultiple). A future writer implemen-
tation could for example write to a specific field in a graphical user interface.
The publically available webservice of RADDOSE-3D uses the class WriterSQL
to write the results directly into an SQL database.

7

1.7 Figure S7 – Voxel resolution as a function of beam
FWHM

Figure S7: Voxel resolution testing for large (up to 15 × 106 voxels
for the 2503µm3 crystal) and smaller crystals, with 20 × 20 and 40 ×
40µm2 FWHM beams (left and right columns). The top row is for a 90◦

rotation, the middle row is for 360◦, and the bottom row is also for 360◦,
but with a full translation. Note that voxel resolution is quoted in voxels
per micron. In all cases, the simulations converge towards their high
voxel resolution values at around 1/10th of the beam FWHM, shown
by the vertical dashed line (0.25 vox/µm for the larger beam, and 0.5
vox/µm for the smaller beam). Horizontal lines have been added at
±5% of the converged values for visual clarity.

8

2 RADDOSE-3D command reference

RADDOSE-3D can take input from one or more files and/or from standard input
(STDIN). Any input will be processed by the InputParser class and the
RADDOSE-3D ANTLR parser. This section describes the syntax of accepted
input. Advanced users of RADDOSE-3D can create their own input method
that need not rely on the InputParser class or the RADDOSE-3D ANTLR
parser. This feature will not be covered in this reference.

The simplest use case of RADDOSE-3D will involve only one file describing
the entire experiment. In some instances it may be desired to split up the input
into a number of files, e.g. one file describing the crystal, one automatically
updated file describing the current beam on the beamline, and one file chosen
from a set of possible wedge strategies. Each file can contain an arbitrary num-
ber (including none) of Crystal, Beam and Wedge block (henceforth called
blocks). However, splitting up blocks across multiple files is not allowed.

The parser will read the input sequentially, and, when multiple sources are
given, one source after the other in the specified order. While the parser may
accept Crystal, Beam and Wedge blocks in any order, the exposure of a wedge
can only take place if both the crystal and the beam have been set either in an
earlier file or before the Wedge block within the same file.

2.1 General syntax considerations

Any keywords specified below are case-insensitive. Upper (CRYSTAL), lower
(crystal) and mixed case (CrYsTaL) are equivalent.

The characters #, ! and the character sequence // denote the start of
a comment. Any text from that position until the end of the current line is
ignored.

Tabular and newline characters are treated as white space. They can there-
fore by freely used to format the file for increased readability.

The order of statements within a Crystal, Beam and Wedge block gener-
ally is not relevant. There are two exceptions to this rule: The leading keyword
(CRYSTAL, BEAM, WEDGE) must be the first keyword of the block. If a key-
word is repeated within the same block, then the latter will always override the
former.

Every block must be self-contained, e.g. the energy set for the previous Beam
is not remembered when setting up the following Beam, and must be repeated.

Numeric values can be given in scientific notation (2.0e2 = 2e+2 = 200), neg-
ative values may not have a space between the sign (’-’) and the value (−1.9e−1
= −.19 = −0.19).

2.2 Crystal block

A Crystal block must begin with the keyword CRYSTAL. At least the TYPE
and DIMENSION must be specified. Depending on the chosen TYPE further
declarations may be required.

2.2.1 TYPE

With the keyword TYPE the underlying crystal implementation is chosen. Cur-
rently two distinct crystal implementations exist:

TYPE CUBOID defines a solid crystal with a cuboid shape.

TYPE SPHERICAL defines a solid crystal with a spherical shape.

9

2.2.2 DIMENSION

DIMENSION specifies the size of the crystal. Dimensions are given in microme-
tres (µm). The keyword DIMENSION can take either one or three parameters:

DIMENSION D with a single number (see section 2.1) as parameter is used for
specifying the crystal dimensions for spherical crystals. The parameter sets the
crystal diameter. This syntax cannot be used for cuboid crystals.

DIMENSION X Y Z with three numbers as parameters X, Y and Z is used to
set the dimensions for cuboid crystals (TYPE CUBOID). X defines the length
of the crystal orthogonal to both the beam and the goniometer at L=P=0, (see
below) Y defines the length along the goniometer axis at L=P=0 and Z defines
the length along the beam axis.

If three parameters are given for a spherical crystal (TYPE SPHERICAL)
the value for X sets the diameter of the crystal while the values of Y and Z are
ignored.

2.2.3 PIXELSPERMICRON

PIXELSPERMICRON F specifies the resolution of the voxel grid used to repre-
sent the crystal in voxels/µm. Defaults to 0.5 voxels/µm.

2.2.4 ANGLEP

ANGLEP F sets the angle in the plane of the loop between the crystal Y axis
and the goniometer axis. The angle is to be given in degrees, but without the
degree symbol (◦). The default P (’plane’) angle is 0◦.

The rotation angle to be applied to the crystal in the plane of the loop (right
handed rotation about Z axis applied to all voxels, as shown in figure S8).

1

Definitions of the initial position of the crystal relative to the beam

P. This is the rotation perpendicular to the beam

L. This is the rotation of the crystal in the plane of the beam.

10o

Crystal set at 10o from the horizontal. P=10o

Beam going into the page.

10o

Crystal set at 10o from the horizontal. L=10o

Beam going up the page.

Figure S8: Schematic of ANGLEP. Figure courtesy of John Bremridge.

2.2.5 ANGLEL

ANGLEL F sets the loop angle between the plane of the crystal loop and the
goniometer axis. The angle is to be given in degrees, but without the degree
symbol (◦). The default L (’loop’) angle is 0◦.

The rotation angle to be applied to the angle of the crystal in the loop (right
handed rotation about X axis applied to all voxels, as shown in figure S9).

10

1

Definitions of the initial position of the crystal relative to the beam

P. This is the rotation perpendicular to the beam

L. This is the rotation of the crystal in the plane of the beam.

10o

Crystal set at 10o from the horizontal. P=10o

Beam going into the page.

10o

Crystal set at 10o from the horizontal. L=10o

Beam going up the page.

Figure S9: Schematic of ANGLEL. Figure courtesy of John Bremridge.

2.2.6 ABSCOEFCALC

This keyword specifies whether the program should use average absorption and
attenuation coefficients, or whether it should calculate them from input crystal
parameters.

ABSCOEFCALC AVERAGE
ABSCOEFCALC DUMMY

These two commands are equivalent. Each will cause RADDOSE-3D to as-
sume an absorption coefficient of 0.237 mm−1 and an attenuation coefficient
of 0.281 mm−1. These values are representative of an average crystal at an
incident X-ray beam energy of 12.4 keV (1Å). Please see Section 3 in the main
paper for more details. Crystal composition keywords will have no effect.

ABSCOEFCALC RD
ABSCOEFCALC RDV2
ABSCOEFCALC RDV3

These three commands are equivalent. RADDOSE-3D will call a previous
version of RADDOSE to estimate absorption and attenuation coefficients.

The composition of the crystal has to be described using the keywords
UNITCELL, NUMMONOMERS, NUMRESIDUES, NUMRNA, NUMDNA, PROTEINHEAVYATOMS,
SOLVENTHEAVYCONC and SOLVENTFRACTION. The use of these keywords is
described in the sections 2.2.7–2.2.14 below.

2.2.7 UNITCELL

This keyword only has an effect when the absorption and attenuation coeffi-
cients are estimated using a legacy version of RADDOSE (see section 2.2.6).

UNITCELL A B C
UNITCELL A B C α β γ

Dimensions and angles of the unit cell a, b, c, α, β, γ
The first three numbers specify the unit cell size in Angstroms. The second

three numbers optionally specify the unit cell angles alpha, beta and gamma.
The (optional) angles are to be given in degrees, but without the degree

symbol (◦). If no angles are specified RADDOSE-3D assumes default angles of
90◦.

2.2.8 NUMMONOMERS

This keyword only has an effect when the absorption and attenuation coeffi-
cients are estimated using a legacy version of RADDOSE (see section 2.2.6).

11

NUMMONOMERS I specifies the number of monomers in the unit cell. Only
integer numbers I should be used. This number should not be confused with
the number of monomers in the asymmetric unit.

2.2.9 NUMRESIDUES

This keyword only has an effect when the absorption and attenuation coeffi-
cients are estimated using a legacy version of RADDOSE (see section 2.2.6).

NUMRESIDUES I specifies the number of amino acid residues per monomer.
Only integer numbers I should be used. Using this keyword the number and
types of atoms are calculated according to the formula

amino acid = 5C + 1.35N + 1.5O + 8H

Sulfur atoms, e.g. from CYS and MET residues, should be added explicitly
with the PROTEINHEAVYATOMS keyword.

The default value for I is 0.

2.2.10 NUMRNA

This keyword only has an effect when the absorption and attenuation coeffi-
cients are estimated using a legacy version of RADDOSE (see section 2.2.6).

NUMRNA I specifies the number of RNA nucleotides per monomer. Only integer
numbers I should be used. Using this keyword the number and types of atoms
are calculated assuming an average nucleotide content defined as

mean nucleotide = 11.25H + 9.5C + 3.75N + 7O + 1P

If a more accurate estimate is required, individual atoms may be entered ex-
plicitly with the PROTEINHEAVYATOMS keyword.

The default value for I is 0.

2.2.11 NUMDNA

This keyword only has an effect when the absorption and attenuation coeffi-
cients are estimated using a legacy version of RADDOSE (see section 2.2.6).

NUMDNA I
specifies the number of DNA deoxynucleotides per monomer. Only integer

numbers I should be used. Using this keyword the number and types of atoms
are calculated assuming an average deoxynucleotide content defined as

mean nucleotide = 11.75H + 9.75C + 4N + 6O + 1P

If a more accurate estimate is required, individual atoms may be entered ex-
plicitly with the PROTEINHEAVYATOMS keyword.

The default value for I is 0.

2.2.12 PROTEINHEAVYATOMS

This keyword only has an effect when the absorption and attenuation coeffi-
cients are estimated using a legacy version of RADDOSE (see section 2.2.6).

PROTEINHEAVYATOMS El I (El I (El I ..)) defines a list of atoms
to add to the protein part of the absorption. Each species is defined by a two

12

character string El for the elemental symbol, and an integer number I of atoms
of that species per monomer.

The command PROTEINHEAVYATOMS S 10 Se 2 would add 10 sulfur
and 2 selenium atoms per monomer.

2.2.13 SOLVENTHEAVYCONC

This keyword only has an effect when the absorption and attenuation coeffi-
cients are estimated using a legacy version of RADDOSE (see section 2.2.6).

SOLVENTHEAVYCONC El I (El I (El I ..)) defines the concentration
of elements (not including water) in the solvent in millimoles per litre. Oxygen
and lighter elements should not be specified.

The command SOLVENTHEAVYCONC Na 1000 Cl 1000 specifies 1M sodium
chloride in the solvent.

2.2.14 SOLVENTFRACTION

This keyword only has an effect when the absorption and attenuation coeffi-
cients are estimated using a legacy version of RADDOSE (see section 2.2.6).

SOLVENTFRACTION F
The fraction of the unit cell that is occupied by solvent. If not given explic-

itly, this value is estimated from NUMRESIDUES, NUMRNA and NUMDNA using
1.35 g/ml for protein, and 2.0 g/ml for RNA and DNA.

2.3 Beam block

A Beam block must begin with the keyword BEAM. At least the TYPE must be
specified. Depending on the chosen TYPE, further declarations may be required.

2.3.1 TYPE

With the keyword TYPE, the underlying beam implementation is chosen. Cur-
rently two distinct beam implementations exist:

TYPE TOPHAT defines a beam with uniform flux.

TYPE GAUSSIAN defines a beam with a 2-dimensional Gaussian flux profile.
The full-width half-maximum must be specified with the FWHM keyword (see
section 2.3.3).

2.3.2 FLUX

FLUX F specifies the total beam flux in photons per second. The flux parameter
F can be specified in scientific notation (e.g. 1.3e12).

2.3.3 FWHM

FWHM X Y
The FWHM of the beam (vertical), (horizontal). Not needed if a Top-Hat

beam is used. This defines the X and Y FWHM of the beam respectively in
the RADDOSE coordinate system.

13

2.3.4 ENERGY

ENERGY F
ENERGY F KEV

specifies the incident photon energy in keV. The optional keyword KEV can
be appended for human readability of the input file.

2.3.5 COLLIMATION

COLLIMATION RECTANGULAR X Y
specifies the horizontal and vertical collimation of the beam. Delimits where

the beam has non-zero intensity. This is defined by the slits. For an uncolli-
mated Gaussian beam, set to ≈ 3× FWHM.

2.4 Wedge block

A Wedge block must begin with the keyword WEDGE.
WEDGE A B
A and B define the start and end angle of the rotation in degrees (◦). At

0◦ the front face of the crystal (X-Y plane) is normal to the beam. Rotation is
right handed about the Y axis, as shown in figure S10).

2

Phi. This is the rotation of the crystal in the same plane as the goniometer.

10o

Crystal set at 10o from the horizontal. Phi=10o

Beam going across the page.

Figure S10: Schematic of angles for WEDGE. Figure courtesy of John Bremridge.

2.4.1 EXPOSURETIME

EXPOSURETIME F
specifies the total exposure time for this wedge in seconds.

2.4.2 ANGULARRESOLUTION

ANGULARRESOLUTION F
specifies the angular step size used for wedge iterations in degrees (◦). De-

faults to 2◦.

2.4.3 STARTOFFSET

STARTOFFSET X Y Z
offset translation in µm applied to the crystal relative to the origin (defined

as the intersection of the beam and the aligned goniometer axis) for the starting
position of the wedge. Defaults to 0 0 0.

2.4.4 TRANSLATEPERDEGREE

TRANSLATEPERDEGREE X Y Z
translation of the goniometer during exposure in µm/◦ for helical scanning,

leading to improvements in dose distribution. Defaults to 0 0 0.

14

2.4.5 ROTAXBEAMOFFSET

ROTAXBEAMOFFSET F
the offset in µm along X (vertical in most set-ups) between the beam axis

and the rotation axis. Used to create ’offset’ scanning for improvements in dose
distribution. Defaults to 0 µm.

15

	Supplemental Figures
	Figure S1 – RADDOSE-3D object structure overview
	Figure S2 – RADDOSE-3D processing user input
	Figure S3 – Supporting multiple Crystal classes
	Figure S4 – Supporting multiple Beam classes
	Figure S5 – Observing the Experiment
	Figure S6 – RADDOSE-3D generating output
	Figure S7 – Voxel resolution as a function of beam FWHM

	RADDOSE-3D command reference
	General syntax considerations
	Crystal block
	TYPE
	DIMENSION
	PIXELSPERMICRON
	ANGLEP
	ANGLEL
	ABSCOEFCALC
	UNITCELL
	NUMMONOMERS
	NUMRESIDUES
	NUMRNA
	NUMDNA
	PROTEINHEAVYATOMS
	SOLVENTHEAVYCONC
	SOLVENTFRACTION

	Beam block
	TYPE
	FLUX
	FWHM
	ENERGY
	COLLIMATION

	Wedge block
	EXPOSURETIME
	ANGULARRESOLUTION
	STARTOFFSET
	TRANSLATEPERDEGREE
	ROTAXBEAMOFFSET

