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The present document provides mathematical and data analysis details that supplement the main text. The specific
pieces of information to which explicit reference is made in the main text are the following

e The Wide-Angle X-ray Scattering (WAXS) patterns measured on the same sample as in Figure 2 of the main
text are shown in Figure SI-1 on page 2;

e The increased in @ that would result from a phase separation is calculated in Section I A, particularly in Egs.
SI-9 and SI-10;

The general mathematical expression for the specific interface areas in terms of a line integral in the (Y, Z) plane
is Eq. SI-51;

The determination of the Gaussian random field wave vector distribution compatible with the SAXS pattern of
the empty RF gel is explained in Section IT A;

The calculation of the SAXS intensity of the plurigaussian model is explained in section I1 B, together with the
least-square fit procedure;

e The values of the raw parameters b, 5 and [z of the plurigaussian model obtained by least-square fit are shown
in Fig. SI-4 on page 13.
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FIG. SI-1. The Wide-Angle X-ray Scattering (WAXS) patterns measured on the RF gel imbibed with critical nitroben-
zene/hexane solution show that the pore-filling phases remain liquid above -15 °C. The three highlighted temperatures are the
same as on Figure 2 of the main text, namely, T = 20, 5 and -14 °C.

I. MATHEMATICAL DETAILS
A. General expression for the SAXS intensity of three-phase systems

The Small-Angle X-ray Scattering (SAXS) signal results from the spatial variability (at a nanometer-scale) of
the electron density p(z) of the investigated system. The latter variability is described quantitatively through the
correlation function C(r), defined as

C(r) = ((p(x+1) = (p)(p(x) — (p))) (SI-1)

where (.) stands for the average value, calculated over all possible x. We have assumed here that the sample is
statistically isotropic, so that C(r) depends only on the modulus r = |r|.

The SAXS intensity, expressed as a function of ¢, is the 3D Fourier transform of C(r), which can be put under the
form

I(q) = /000 Sinq(igT)C(rMm"z dr (SI-2)

Practically, the intensity that is measured experimentally I*(q) is proportional to I(q)
I"(q) = K 1(q) (S1-3)

where K is a constant that depends on the intensity of the beam, the scattering cross-section, the volume of the
system that is irradiated, etc.

We shall assume that the system can be approximated as being made up of three phases, each having a uniform
electron density. In the case we are considering, these phases are the solid (density pg) and the two pore-filling phases:
one is the nitrobenzene-rich phase A (with density p4) and the other is the hexane-rich phase B (with density pg).
With this approximation, the electron density spatial correlation function can be written as [1]

C(r) = (ps = pa)(ps = pB) [Pss(r) = &3] + (pa = ps)(pa — pB) [Paa(r) — ¢%4]
+ (o — ps)(pp — pa) [Ppp(r) — ¢%] (SI-4)
where the functions Pgg(r), Paa(r) and Pgp(r) are the two-point probability functions of phases S, A, and B [2].
These functions are equal to the probability that two points randomly chosen in the system at distance r from each
other both belong to phase S, A or B, respectively.

An important quantity for SAXS data analysis is the total scattered intensity @ (the so-called Porod’s invariant
[3]) which is defined as

Q= /0 " H(g)4ne? dg (SE-5)



TABLE SI-1. Physical characteristics of the molecules in their pure state. The characteristics of the solid phase of the RF gel
were determined assuming an overall stoichiometry CsH7.3302.66, and the solid density p,, measured by helium pycnometry on
the desiccated gel.

Pm M Ne U, P
(g/mL) (g/mol) (e7) (mL/mol) (e”/A%)
Nitrobenzene 1.199 123 64 102.59 0.38
Hexane 0.65 86 50 131.34 0.23
RF solid 1.5 146 76.67 97.33 0.47

pm: mass density, M: molar mass, N.: number of electrons in the molecule, v,,: molar volume, p: electron density.

The value taken by @ for a three-phase system is obtained by calculating the inverse Fourier transform of , yielding

C) =g [ Tt aira? dg (s16)

and evaluating this integral for » — 0. This leads to

(2%3 = (ps — pa)(ps — pB) [¢s — 0%] + (pa — ps)(pa — pB) [¢a — &74]
+ (pB — ps)(pB — pa) [65 — O3] (SL-7)

where we have used Eq. SI-4 and we have taken into account that the two-point function Pxx(r) of any phase X
satisfies

Pxx(r —0) = ¢x (SI-8)

where ¢ x is the volume fraction of the phase.

Equation SI-7 shows that the total scattered intensity depends only on the volution fractions and the electron
densities of all phases. In particular, @) is a constant during a morphological transition that keeps the composition
and the volumes of all phases unchanged. This is also true of @* = K@, which is measurable experimentally. We
shall come back to this is section II.

The electron densities of the various molecules present are derived in Tab. SI-1. In the case of the solid phase of the
RF gel, it was assumed to have the stoichiometry CsHr 330266 [4]. Its mass density was assumed 1.5 g/mL, which is
the value commonly measured by helium pycnometry on the xerogel, obtained after desiccating the gel.

If we assume as in the main text that the overall composition of the pore-filling liquid is 50 vol. % hexane and
50 vol. % nitrobenzene, the electron density of pore-filling liquid would be p ~ 0.3 e~ /A?’. This value is simply the
average of py and ppg, as given in Tab. SI-1. Using that value, the total scattered intensity is calculated from Eq.
SI-7 with pa = pp = p, yielding

Qhomogegeous — (pS _ ﬁ)2¢5(1 _ ¢S) ~ 00054 (SI-Q)
(2m)
where ¢g = 0.24 is the volume fraction of the solid.

By contrast, if the pore-filling liquid would demix into two pure phases with electron densities py and pg, and
volume fractions ¢4 = ¢p = (1 — ¢g)/2, the total scattered intensity would take the value

Qphase separated
———— ~(.0095 SI-10
= (SI-10)

according to Eq. SI-7. This corresponds to a 75 % increase, compared to a homogeneous pore-filling solution. A
phase separation of the pore-filling liquid is therefore easily measurable in our experimental systems.[5]



B. Electron densities of the pore-filling phases

We shall refer to the pore filling phases as A and B, and they contain Nitrobenzene (N) and Hexane (H) in various
proportions. The purpose of the present section is to propose a parametrization of the composition of phases A and
B that is compatible with the known global composition of the pore-filling liquids. That parametrization is then used
to estimate the electron densities p4 and pp of the two phases.

We shall build on a previous modeling of SAXS analysis of phases with changing compositions [6], and we assume
that the any exchange of matter between the two phases preserve the total volume. Accordingly, it is useful to describe

the composition of the phases through the volume fractions xﬁ,, a:f,, x}f}, xfl of molecules N and H in phases A and

B.
The volume fractions satisfy

A B A B
Ty +Ty =N Ty t+rg =TH

TN+ TH=pA TN +TH =B (SI-11)

where we have used the notation xy and x g for the volume fraction of N and H (g + xx = 1), and ¢4 and ¢p for
the volume fraction of phases A and B relative to the pore volume. In other words

oa=¢a/(¢pa+¢B) and ¢p=ép/(¢a+ ¢B) (SI-12)

where ¢4 and ¢p are the volume fractions of phases A and B.
With these notations, the electron densities of the two phases are written as

_ PNIN + P oy = PNTY + pHTY;

SI-13
YA ¥B ( )

These equations are used to calculate the SAXS intensity.

Note that the composition of the two phases is completely described through the four volume fractions used in
SI-11. However, only three of the four equations in SI-11 are independent. Once xy, g, w4 and @p are specified,
an additional parameter is needed to describe the composition of the two phases. We define parameter € as follows:

xf\,[:{thpAqLexNgoB for e>0 (SI-14)
TNpA+€Exnpa for €<0
This definition is motivated by the fact that e = 0 corresponds to xf\‘, = INpa, i.e., to both phases having the same
composition. The value ¢ = 1 corresponds to :z:f\‘, = xy, i.e. phase A is pure N. By contrast, for ¢ = —1 one has
o8 =0, i.e., phase A is pure H.

The variable € can be thought of as a measure of the phase separation, which is complete for either ¢ = +1 or
€ = —1. However, these two values are not necessarily realizable, depending of the relative values of p4,p and xg/N-
To investigate this, let us calculate the other three volume fractions through the use of Eq. SI-11. This leads to

A rgps —€xnpp for €>0
Ty =
Tgea —€xnpa for e€<0

B zypp —e€xnypp for €>0
TN =
rNpp —€xnypa for €< 0

>
;vg: zgep +exypp for €e>0 (SL-15)
rgept+exnypa for e<O0

The upper and lower bounds on € are obtained by imposing

0< xﬁég < min {xN/H , gaA/B} (SI-16)

which leads to the following condition on e

€inf < € < €sup (SI-17)



with

€inf = Max {]_, *SDB i } and €sup = min {+1, +SOA il } (81—18)
¥YB TN

Given the global composition of the pore-filling phases (through zx and xg), and their volume fractions (through
va and ¢p), any value of € can be chosen in the bounds defined by Eq. SI-17. Introducing this value in Eqgs. SI-14
and SI-15, the composition of each phase is calculated. Knowing the compositions, the electron densities are finally
calculated through Eq. SI-13.

C. Plurigaussian morphological models
1. Gaussian random fields

The central concept in plurigaussian models is that of Gaussian random field. A Gaussian random field Y (x) can
be obtained as a sum of random waves, as follows

N
Y(x)= \/gz cos(qp - X+ ¢n) (SI-19)

with N — co. In this equation g, and ¢, are random vectors and phases. The phases are uniformly distributed over
in [0, 27), and the wavevectors are distributed according to a three-dimensional function fy (q) normalized as

/ fy(q)dg=1 (SI1-20)

where the integral is over the entire q space. The case considered in the main text is that of an isotropic GRF, for
which fy(q) is a radial function. We shall consider here the general case.

The field Y (x) is entirely characterized by the corresponding wave-vector distribution function. Knowing the latter
is equivalent to knowing the field-field correlation function gy (r), defined as

gy (r) = Y (x)Y(x + 1)) (SI-21)

where the brackets stand for the average value calculated over all q’s and ¢’s. The GRF being stationary, the average
can also be calculated over x.

The value of Y (x) for any x is Gaussian distributed, with mean 0. Moreover, the the factor \/2/N in Eq. (SI-19)
ensures that the variance of Y (z) is 1. The joint distribution of the values taken by Y (x) at two positions x; and X
at distance r from each other is a bivariate Gaussian distribution with mean 0, variance 1, and correlation coefficient
gy (r).

Using standard trigonometric manipulations, the following relation between gy (r) and fy (q) is obtained from Eq.
SI-19

gy (r) = / fr(@)cos(q-r) dg (S1-22)

in the limit where N — oo. In the particular case of isotropic GRF's, the distribution of q does only depend on the
modulus ¢ = |q|. In this case the relation is simply

gv(r) = /O T i@ Sinqiqr) dmqPdg (S1-23)

For further purposes, it is useful to analyze the small-distance behavior of gy (). This is done in the general
anisotropic case by developing cos(q - r) in a Taylor series. This leads to following quadratic expression

gy (r) ~1—r"Ly%r (SI-24)

where L;z is the following second order tensor

Ly = % / fr(a) a®aqdg. (S1-25)
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FIG. SI-2. Partitioning of the (Y, Z) plane corresponding to the plurigaussian model used in the main text, with three phases
A (red), B (green), and S (gray), and the definition of the parameters a, b and .

where ® is the dyadic product. In the case where the GRF is isotropic, the asymptotic expression for gy (r) reduces
to

2
gy (r) = 1-— (T) (SI-26)
ly
with
1 1 [ 9 9
Z =% fr(Q)q® 4mq>dq (SI-27)
Yy 0

This result can also be obtained by developing sin(qr)/(qr) ~ 1 — (¢r)?/6 in Eq. SI-23.

2. Volume fractions and two-point correlation functions of Plurigaussian models

The plurigaussian model used in the main text is based on two independent Gaussian random fields, Y (x) and
Z(x), each of which is defined by a specific wave-vector distribution fy (k) and fz(k). The values taken by the two
GRF's at any given point of space can be represented as a (Y, Z) plane. A given phase, say phase n, is modeled as a
region D,, of the latter plane, as illustrated in Fig. 3 of the main text and in Fig. SI-2.

The volume fraction of phase n, ¢,, can be viewed as the probability that any given point x of space belongs to
phase n. This can also be calculated as the total probability associated with the domain D,, is the (Y, Z) plane.
Because Y and Z are both Gaussian distributed with average 0 and variance 1, the volume fraction is calculated as

1 2 2
¢n:/ dydz — exp [y tz ]

n

(SI-28)
This integral can be simplified in the particular case where the domain D,, is a half-plane, defined by a single threshold
as

Ds ={(Y,2)|[Y > a} (SI-29)

The solid phase S in the main text is defined in such a way (see Fig. SI-2). In this case, Eq. SI-28 becomes

[e%s} 2
¢s = \/% / exp <—y2) dy (SI-30)

The two-point correlation function P, (r) is defined as the probability that two random points x; and xa belong
to phase m and n, respectively, with xo —x; = r. This probability can be calculated using the fact that values Y (x1)
and Y (x2) obey a Gaussian bivariate distribution with mean 0, variance 1 and correlation function gy (r). The same
applies to Z(x1) and Z(x2) with correlation coefficient gz(r). Accordingly, the two-point correlation function can be
calculated as

Pn(7) z/ dyldzl/ dyadza Gy (ry(Y1,Y2) Gy (r) (21, 22) (SI-31)
(Y1,21)EDm (y2,22)EDn



where G is the bivariate Gaussian distribution with mean 0, variance 1 and correlation g, namely

(SI-32)

1 2 + 22 — 29 T129
Gyl 2) = |-

————— €X
21/1 — ¢2 2(1 —g%)

For calculating the small-angle scattering patterns through Eq. SI-4, the general expression SI-31 has to be particu-
larlizedtom=n=A,tom=n=B,andtom=n= 5.

In the particular case of phase S with domain Dg given by Eq. SI-29, Eq. SI-31 simplifies to the well-known result
[7]

1 gy (1) 1 _ 2
Pss(r) = ¢% + 5— exp( ¢ ) dt

27 Jo V1—¢2 1+t
) 1 asin[gy (r)] _a2
= — — ) df SI-33
o5+ 277/0 SXp (1 +sin(9)> (ST-33)

The second equation simply results from a change of variable ¢ = sin(6), which leads to an expression that is easier
to handle numerically because of the absence of the 1/v/1 — t? singularity.

In the general case where the domains Dx has a shape that does not allow the integral in Eq. SI-31 to be calculated
analytically, it is convenient to develop the bivariate Gaussian distributions as a series of Hermite’s polynomial, as

— 9" 1 af + 23
g(21,22) Z ; (xg)% exp [ 5 } (SI-34)

where the Hermite polynomials are defined as

n 2270 A" a2
Hy(z) = (—1)" /de—n(e /2) (ST-35)

Using this development, the two-point correlation functions Px x(r) can be written as [8]

P
Pxx(r Z gY 7’) Onp(X)? (SL-36)
n=0 p=0
with
1 y2 _|_ZQ
@np(X):/ H,(y)Hp(z)=—exp |— dydz (SI-37)
(v,2)€Dx 2m 2

3. Specific interface areas

The specific surface and interface areas can be calculated from the asymptotic behavior of the two-point correlation
functions for small values of r [9-11]. In particular, the specific surface area of phase n, S, is calculated as

dP,,
S, = —4 (r) (SI-38)
dr r—0
and the specific interface area S,,,, between phases m and n is calculated as
dPn
Spn = 4 (r) (SI-39)
dr r—0

Therefore, to calculate the specific surface area of a plurigaussian model it is necessary to estimate the two-point
correlation function (Eq. SI-31) for vanishingly small distances r. When considering this limit, it is legitimate to
express the correlation function g of the Gaussian random field as

g~1—¢é (S1-40)



where € is proportional to r, in agreement with Eq. SI-26. Under the assumption that e is small, the bivariate
Gaussian distribution in Eq. SI-32 can be approximated as

1 1 1 1
Gg(x1,22) = Ve exp (—8(x1 + x2)2> = exp (—462(x1 - $2)2> + O(€%) (SI-41)

which we have factored as the product of two univariate distributions of (1 4+ 22) and of (x1 — z3).
Using this approximation, the two-point correlation function (Eq. SI-31) can be approximated as

1 1 1
Prn(r) =~ dy1dzg dysdze —exp | —<(y1 + y2)2 — =(z1+ 2'2)2
4 8 8
(y1,21)EDm (y2,22)€D,, u

1 1 , 1 ,
(- (- 142
2mey ey b ( 42, (w1 = 52) ) exp ( 4¢2 (21 = 22) ) (S1-42)

where we have used the obvious notations gy ~ 1 — €3 and gz ~ 1 — €%.
We now proceed to rewrite Eq. SI-42 in a slightly different way, to show that the interface area can be calculated
from an integral on the boundary of the domains D,,. For that purpose, let us do the following change of variable

Oy =t1—y2 and O, =2z — 2 (SI-43)
which leads to
1 2 2
P (1) =~ / dy1dzl/ d6,ds, in(y1 — 0y, 21 — 0,) = exp <_ yit Zl)
(y1,21)EDm R2 2T 2
Vomgw P\ 7o exp |~y — ST-44
Voroy ( 202 8 Varoy P\ 202 8 (S-44)

where i, (y, z) is the indicator function of D,, in (y, z) plane, defined as

. 1 i
)= LW EDn (S1-45)
0 otherwise
In Eq. SI-44 we have written oy,z = \/iﬁy/z to put the last two exponentials in a form closer to the canonical
Gaussian. When oy, become vanishingly small the latter two functions converge to Dirac distributions of 4, and 4.

In that limit, one has simply

1 2 2
P (1) o~ —/ dydzy exp (_91 + Z1> ir(y1,21) (SI-46)
2m (y1,21)EDm 2
where
¥ = dé,dd, @ ) 1) 1 65 5 SI-47
Zn(yl,zl) = /11%2 ydoz ln(y1 — 0y, 21 — z)m exp —R — 20_% ( -47)

is a blurred version of i, (y1,21) in which the transition between 1 and 0 spreads over a region of thickness oy .

We shall now consider specifically the case where m # n. In this case, it has to be noted that the only values of
i¥(y1, 21) relevant for Eq. SI-46 are those outside of D,,. In that region, iy (y1,21) is different from 0 only in thin
layer of thickness oy, close to the boundary of D,,. When the layer becomes infinitely thin, 7}, only depends on the
distance £ to the boundary through

1 oo
. = exp(—22/2) dz SI-48
“(€) /5 p(—22/2) (S1.48)

2mo Jejo
with

o? = oini 4+ oin% (SI-49)



where ny,; are the Y/Z components of the normal vector to the boundary of D,,. The integral of i;, per unit length
of the boundary is therefore o/v/27. Equation SI-46 takes therefore the final form

2, .2\ [2 2
T Y-+ z n n
Pon(r) = 3372 /3D exp (— 5 ) 12y + l2Z dl 4+ O(r?) (SI-50)

where 0D,,, is the common boundary of D,, and D,,. When deriving Eq. SI-50, we have taken into account that

0717 = V2Lt

ly,z*
The specific interface area between phases m and n is then obtained as

2 y2 + 22 /ng/ nzz
Smn = m _— exp <_ B > l2 + 12 dl (81-51)

The specific surface area of any phase n is obtained by summing the contribution of all phases it may be in contact
with, i.e.

Sn=">_ Soun (SI-52)

m¥#n

This is equivalent to replacing the integral in Eq. SI-51 by an integral over

_ U ODyn (SI-53)
m#n

i.e. over the total boundary of D,,.
With the parameters defined in Fig. SI-2, one finds that the specific area of the A|B interface is

R = T

where erf(x) is the error function defined as

erf(z) = —/ e dt (SI-55)
0

The area of the A|S interface is

Sps = ‘fe_lay/z {1 —erf (M) } (SL-56)

and the area of the B|S

Sps = ‘fe;f {1 +erf (M)} (SI-57)

The total specific surface area of phase S is calculated as Sag + Spg. This leads to
23/2 _ 2 1
Sg = ——exp (a) — (SI-58)

which is the classical expression for a simple clipped Gaussian field [7].
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II. DATA ANALYSIS
A. Reconstruction of the solid phase

We describe in the present section how the solid phase of the gel is reconstructed from the small-angle scattering
data, using the clipped Gaussian field model. This procedure is used notably to produce the inset of Fig. 1 of the
main text.

The volume fraction of the solid phase of the gel is related to the threshold a through the general relation given
by Eq. SI-30. With the particular value ¢g = 0.24, known from the composition of the gel, this leads to a = 0.703.
Given the threshold a, the reconstruction of the gel morphology requires to determine the distribution of wave vectors
fy (k), or equivalently the field correlation function gy (r).

When the gel is imbibed with pure nitrobenzene, the electron density correlation function C(r) is simply proportional
to the autocovariance function of the solid phase of the gel, i.e. to

xs(r) = Pss(r) — ¢% (SI-59)

This results from Eq. SI-4 by setting po = pp = pny. Therefore, the SAXS intensity measured on the gel imbibed
with pure nitrobenzene, I(q), is proportional to the Fourier transform of xg(r).

The general relation between the field correlation function gy (r) and the two-point function of the solid phase
Pss(r) was given in Eq. SI-33. It can be written in terms of xg(r) as

1 o) 1 —a?
= — —_— _— I—
xs(r) o7 J, — exp (1 n t) dt (SI-60)

The procedure we used to determine fy (k) from I(q) is similar to the one proposed by Quintanilla [12]. It is as
follows.

1. Starting from the experimental SAXS pattern I (¢) of the gel imbibed with pure nitrobenzene, the autocovariance
function of the solid phase is calculated through an inverse Fourier transform as

ws) = [ Fgyang? dg (SL61)

In practice, the SAXS intensity is measured only over a finite range: of ¢; < g < g2. The data I (¢) have therefore
to be extrapolated to calculate the integral. The large-q extrapolation is done by assuming Porod scattering of
the type I(q) ~ A/q* for ¢ > q2 [3] and the low-¢ extrapolation is done by assuming I(q) ~ Bq for q < ¢;.

This provides X within an unknown multiplicative constant. The latter is obtained by imposing that Ys(r =
0) = ¢s(1 - 9s).

2. Once the threshold a is specified, Eq. SI-60 defines a reversible transformation between gy (1) and xg(r). Using
the calculated value of xg(r), Eq. SI-60 is inverted numerically for each particular r, yielding an estimated field

correlation function gy (r).

3. In general, the estimated field correlation function gy (r) does not satisfy the necessary condition that it has to
be positive-definite [13]. Therefore, we shall look for a positive-definite function that is as close as possible to
gy (r). This is done by minimizing

[l 0) — v 0 e ar (SL.62)

subject to the condition that gy (r) be positive-definite.

Taking advantage of Parseval’s theorem, the latter functional can be conveniently written in Fourier space
o0 ~ 2 9
| 1@~ i) ane? dg (S1-63)
0

where fy (q) and fy (q) are the Fourier transforms of gy (r) and gy (r), defined as in Eq. SI-23.
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FIG. SI-3. Procedure for analyzing the empty solid as a clipped Gaussian random field. The Figure should be read clockwise

(see text): Starting from the experimental SAXS pattern (I(g), red dots) the functions X(r), gy (r) and fy (q) are calculated
successively; fy(q) is then obtained by quadratic optimization, and gy (r), x(r), and I(q) (solid black line) are calculated. The
tilded and non-tilded functions are indistinguishable on the scale of the figure, which points to the accuracy of the model.

The problem therefore consists is determining the positive fy(g) that minimize the quantity defined by Eq.

SI-63 subject to the constraint

/OOO fy(@)drg* dg=1

The latter condition ensures that gy (0) = 1, i.e., that the variance of Y is equal to 1.

(S1-64)

Expressing all the integrals with trapezoidal approximations, the minimization of Eq. SI-63 subject to fy(q) >0
and to Eq. SI-64 is a classical case of quadratic programming. It was solved numerically using the Matlab
®optimization toolbox.

. The field correlation function gy (r) that best matches the experimental SAXS pattern of the solid is then
obtained through an inverse Fourier transform of fy(q). Once gy (r) is known, the auto-covariance xg(r) is
calculated by inverting Eq. SI-60, and I(q) is calculated as the Fourier transform of xs(r). This enables one to

check the accuracy of the reconstruction by comparing directly I(q) with I(q).

The entire procedure is illustrated in Fig. SI-3. The functions x(r), gy (r) and fr (¢) are indistinguishable from
x(r), gy (r) and fy(q) on the scale of the figure. This results from the fact that fy(q) is already positive almost
everywhere so that the effect of the quadratic optimization is minimal. This points to the excellent accuracy of the

model in the case of RF gels.

B. Reconstruction of the pore-filling phases

The SAXS intensity is the Fourier transform of the electron density correlation function C(r) given by Eq. SI-4,

which can be written as

I(9) = K [(ps = pa)lps = ps)Ls(a) + (04 = ps)(pa = ps)La(0)

where we have used the notation

o= [

[PXX (r) — qﬁ(] drr? dr

+ (pB — ps)(pB — pa)IB(q)

(SI-65)

(SL-66)
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for Is(q), I4(q) and Ip(q).
The reconstruction of the pore-filling phases is done by least-square fit of the SAXS data with Eq. SI-65. We here
list all the parameters of the model and how they are determined.

1. The constant K accounts for actual volume of the sample that is irradiated by x-rays, for the scattering cross-
section of the molecules, etc. It is therefore expected to depend minimally on the temperature, we assume it is
a constant all over the investigated temperature range. It is estimated once and for all as

Q*

K =
Qphase separated

(SI-67)

where Q* is the experimental total scattered intensity (which is constant, see Fig. ??) and Qphase separated has
been introduced in Eq. SI-10.

2. All characteristics of the solid phase pg, the threshold a, and Is(gq) are known at this stage. The electron density
ps is given in Tab. SI-1, and Is(q) has been calculated in Sec. ITA. Both are assumed to be temperature-
independent.

3. The parameters that enter I4(q) and Ig(q) are those of the plurigaussian model, i.e. parameter b and 3 defined
in Fig. SI-2, as well as the wave-vector distribution of the Gaussian random field Z. The latter is modeled as

62(r) = exp [— (lz)] (SL68)

4. The composition of the pore-filling phases A and B, and hence their electron densities p4 and pp, are entirely
determined by a single parameter € that quantifies the extent of the phase separation, as shown in Sec. IB. The
two phases A and B have identical composition if € = 0, and phase A (B) is enriched in nitrobenzene for positive
(negative) values of e. During the exploratory phase of the research ¢ was used as an adjustable parameter, and
the least-square fit systematically lead to the largest possible value of €, i.e. € = €gp (see Eq. SI-18). In other
words, the nitrobenzene content of phase A is always the largest possible, i.e.

which has a single parameter .

if @a<azy then PATPN (81-69)
pB = [para + pn(xN — va)] /¢B
and
if pa>axy then pa=lpnen + pr(pa —an)l/ea (SI-70)
- PB = PH

In these equations, xy and xy are the known global volume fractions of nitrobenzene and hexane in the pores
(g =2n =0.5), and pa/p = ¢a/p/(Ppa + ¢B) are calculated simply from parameters b and 3. Therefore, the
composition of the pore-filling phases does not introduce any independent parameter.

The least-square fit of I*(q) was done with b, 8 and Iz as only adjustable parameters. The successive steps in the
calculation of I*(q) are the following,

1. For any value of the parameters, the volume fractions ¢4,p are determined by numerically calculating the
integral in Eq. SI-28.

2. This enables in turn to estimate the electron densities p4,p through Eqs. SI-69 and SI-70.

3. The two-point correlation functions Pa4(r) and Pgg(r) are calculated as a series of powers of gy (r) and gz (r)
via Eq. SI-36, with 20 terms. The series converges for small values of gy,z, i.e. for large values of r. By
contrast, gy/Z(r) is close to 1 for short distances r. For short distances, the two-point correlation functions are
approximated as

Pxx(r) ~ ¢x — %7’ (SI-71)

where the specific surface areas are calculated via Eqs. SI-54, SI-56 and SI-57.
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FIG. SI-4. Values of the plurigaussian parameters b, 8 and Iz obtained by least-square fitting of the SAXS data. These are
the values from which Fig. 6 of the main text was obtained.

4. Finally, the functions I4(q) and I5(q) are calculated numerically via Eq. SI-66, and introduced in Eq. SI-65 to
yield I*(q).

In practice, the least-square minimization was done by starting at the lowest temperature T' = —14 °C, and by using
the values of b, 8 and [z towards which the minimization has converged at temperature 1" as the starting point for
the minimization at temperature 7'+ 1. The minimization was programmed in Matlab, using a Levenberg-Marquart
algorithm. The values of parameters b, 8 and [z obtained in this way are plotted in Fig. SI-4.
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