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The present document provides mathematical and data analysis details that supplement the main text. The specific
pieces of information to which explicit reference is made in the main text are the following

� The Wide-Angle X-ray Scattering (WAXS) patterns measured on the same sample as in Figure 2 of the main
text are shown in Figure SI-1 on page 2;

� The increased in Q that would result from a phase separation is calculated in Section IA, particularly in Eqs.
SI-9 and SI-10;

� The general mathematical expression for the specific interface areas in terms of a line integral in the (Y, Z) plane
is Eq. SI-51;

� The determination of the Gaussian random field wave vector distribution compatible with the SAXS pattern of
the empty RF gel is explained in Section IIA;

� The calculation of the SAXS intensity of the plurigaussian model is explained in section II B, together with the
least-square fit procedure;

� The values of the raw parameters b, β and lZ of the plurigaussian model obtained by least-square fit are shown
in Fig. SI-4 on page 13.
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FIG. SI-1. The Wide-Angle X-ray Scattering (WAXS) patterns measured on the RF gel imbibed with critical nitroben-
zene/hexane solution show that the pore-filling phases remain liquid above -15 °C. The three highlighted temperatures are the
same as on Figure 2 of the main text, namely, T = 20, 5 and -14 °C.

I. MATHEMATICAL DETAILS

A. General expression for the SAXS intensity of three-phase systems

The Small-Angle X-ray Scattering (SAXS) signal results from the spatial variability (at a nanometer-scale) of
the electron density ρ(x) of the investigated system. The latter variability is described quantitatively through the
correlation function C(r), defined as

C(r) = ⟨(ρ(x+ r)− ⟨ρ⟩)(ρ(x)− ⟨ρ⟩)⟩ (SI-1)

where ⟨.⟩ stands for the average value, calculated over all possible x. We have assumed here that the sample is
statistically isotropic, so that C(r) depends only on the modulus r = |r|.
The SAXS intensity, expressed as a function of q, is the 3D Fourier transform of C(r), which can be put under the

form

I(q) =

∫ ∞

0

sin(qr)

qr
C(r)4πr2 dr (SI-2)

Practically, the intensity that is measured experimentally I∗(q) is proportional to I(q)

I∗(q) = K I(q) (SI-3)

where K is a constant that depends on the intensity of the beam, the scattering cross-section, the volume of the
system that is irradiated, etc.
We shall assume that the system can be approximated as being made up of three phases, each having a uniform

electron density. In the case we are considering, these phases are the solid (density ρS) and the two pore-filling phases:
one is the nitrobenzene-rich phase A (with density ρA) and the other is the hexane-rich phase B (with density ρB).
With this approximation, the electron density spatial correlation function can be written as [1]

C(r) = (ρS − ρA)(ρS − ρB)
[
PSS(r)− ϕ2

S

]
+ (ρA − ρS)(ρA − ρB)

[
PAA(r)− ϕ2

A

]
+ (ρB − ρS)(ρB − ρA)

[
PBB(r)− ϕ2

B

]
(SI-4)

where the functions PSS(r), PAA(r) and PBB(r) are the two-point probability functions of phases S, A, and B [2].
These functions are equal to the probability that two points randomly chosen in the system at distance r from each
other both belong to phase S, A or B, respectively.
An important quantity for SAXS data analysis is the total scattered intensity Q (the so-called Porod’s invariant

[3]) which is defined as

Q =

∫ ∞

0

I(q)4πq2 dq (SI-5)



3

TABLE SI-1. Physical characteristics of the molecules in their pure state. The characteristics of the solid phase of the RF gel
were determined assuming an overall stoichiometry C8H7.33O2.66, and the solid density ρm measured by helium pycnometry on
the desiccated gel.

ρm M Ne vm ρ

(g/mL) (g/mol) (e−) (mL/mol) (e−/Å3)

Nitrobenzene 1.199 123 64 102.59 0.38

Hexane 0.65 86 50 131.34 0.23

RF solid 1.5 146 76.67 97.33 0.47

ρm: mass density, M : molar mass, Ne: number of electrons in the molecule, vm: molar volume, ρ: electron density.

The value taken by Q for a three-phase system is obtained by calculating the inverse Fourier transform of , yielding

C(r) =
1

(2π)3

∫ ∞

0

sin(qr)

qr
I(q)4πq2 dq (SI-6)

and evaluating this integral for r → 0. This leads to

Q

(2π)3
= (ρS − ρA)(ρS − ρB)

[
ϕS − ϕ2

S

]
+ (ρA − ρS)(ρA − ρB)

[
ϕA − ϕ2

A

]
+ (ρB − ρS)(ρB − ρA)

[
ϕB − ϕ2

B

]
(SI-7)

where we have used Eq. SI-4 and we have taken into account that the two-point function PXX(r) of any phase X
satisfies

PXX(r → 0) = ϕX (SI-8)

where ϕX is the volume fraction of the phase.

Equation SI-7 shows that the total scattered intensity depends only on the volution fractions and the electron
densities of all phases. In particular, Q is a constant during a morphological transition that keeps the composition
and the volumes of all phases unchanged. This is also true of Q∗ = KQ, which is measurable experimentally. We
shall come back to this is section II.

The electron densities of the various molecules present are derived in Tab. SI-1. In the case of the solid phase of the
RF gel, it was assumed to have the stoichiometry C8H7.33O2.66 [4]. Its mass density was assumed 1.5 g/mL, which is
the value commonly measured by helium pycnometry on the xerogel, obtained after desiccating the gel.

If we assume as in the main text that the overall composition of the pore-filling liquid is 50 vol. % hexane and
50 vol. % nitrobenzene, the electron density of pore-filling liquid would be ρ̄ ≃ 0.3 e−/Å3. This value is simply the
average of ρN and ρH , as given in Tab. SI-1. Using that value, the total scattered intensity is calculated from Eq.
SI-7 with ρA = ρB = ρ̄, yielding

Qhomogeneous

(2π)3
= (ρS − ρ̄)2ϕS(1− ϕS) ≃ 0.0054 (SI-9)

where ϕS = 0.24 is the volume fraction of the solid.

By contrast, if the pore-filling liquid would demix into two pure phases with electron densities ρN and ρH , and
volume fractions ϕA = ϕB = (1− ϕS)/2, the total scattered intensity would take the value

Qphase separated

(2π)3
≃ 0.0095 (SI-10)

according to Eq. SI-7. This corresponds to a 75 % increase, compared to a homogeneous pore-filling solution. A
phase separation of the pore-filling liquid is therefore easily measurable in our experimental systems.[5]
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B. Electron densities of the pore-filling phases

We shall refer to the pore filling phases as A and B, and they contain Nitrobenzene (N) and Hexane (H) in various
proportions. The purpose of the present section is to propose a parametrization of the composition of phases A and
B that is compatible with the known global composition of the pore-filling liquids. That parametrization is then used
to estimate the electron densities ρA and ρB of the two phases.
We shall build on a previous modeling of SAXS analysis of phases with changing compositions [6], and we assume

that the any exchange of matter between the two phases preserve the total volume. Accordingly, it is useful to describe
the composition of the phases through the volume fractions xA

N , xB
N , xA

H , xB
H of molecules N and H in phases A and

B.
The volume fractions satisfy

xA
N + xB

N = xN xA
H + xB

H = xH

xA
N + xA

H = φA xB
N + xB

H = φB (SI-11)

where we have used the notation xN and xH for the volume fraction of N and H (xH + xN = 1), and φA and φB for
the volume fraction of phases A and B relative to the pore volume. In other words

φA = ϕA/(ϕA + ϕB) and φB = ϕB/(ϕA + ϕB) (SI-12)

where ϕA and ϕB are the volume fractions of phases A and B.
With these notations, the electron densities of the two phases are written as

ρA =
ρNxA

N + ρHxA
H

φA
ρB =

ρNxB
N + ρHxB

H

φB
(SI-13)

These equations are used to calculate the SAXS intensity.
Note that the composition of the two phases is completely described through the four volume fractions used in

SI-11. However, only three of the four equations in SI-11 are independent. Once xN , xH , φA and φB are specified,
an additional parameter is needed to describe the composition of the two phases. We define parameter ϵ as follows:

xA
N =

{
xNφA + ϵ xNφB for ϵ ≥ 0

xNφA + ϵ xNφA for ϵ < 0
(SI-14)

This definition is motivated by the fact that ϵ = 0 corresponds to xA
N = xNφA, i.e., to both phases having the same

composition. The value ϵ = 1 corresponds to xA
N = xN , i.e. phase A is pure N. By contrast, for ϵ = −1 one has

xA
N = 0, i.e., phase A is pure H.
The variable ϵ can be thought of as a measure of the phase separation, which is complete for either ϵ = +1 or

ϵ = −1. However, these two values are not necessarily realizable, depending of the relative values of φA/B and xH/N .
To investigate this, let us calculate the other three volume fractions through the use of Eq. SI-11. This leads to

xA
H =

{
xHφA − ϵ xNφB for ϵ ≥ 0

xHφA − ϵ xNφA for ϵ < 0

xB
N =

{
xNφB − ϵ xNφB for ϵ ≥ 0

xNφB − ϵ xNφA for ϵ < 0

xB
H =

{
xHφB + ϵ xNφB for ϵ ≥ 0

xHφB + ϵ xNφA for ϵ < 0
(SI-15)

The upper and lower bounds on ϵ are obtained by imposing

0 ≤ x
A/B
N/H ≤ min

{
xN/H , φA/B

}
(SI-16)

which leads to the following condition on ϵ

ϵinf ≤ ϵ ≤ ϵsup (SI-17)
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with

ϵinf = max

{
−1,−φB xH

φA xN

}
and ϵsup = min

{
+1,+

φA xH

φB xN

}
(SI-18)

Given the global composition of the pore-filling phases (through xN and xH), and their volume fractions (through
φA and φB), any value of ϵ can be chosen in the bounds defined by Eq. SI-17. Introducing this value in Eqs. SI-14
and SI-15, the composition of each phase is calculated. Knowing the compositions, the electron densities are finally
calculated through Eq. SI-13.

C. Plurigaussian morphological models

1. Gaussian random fields

The central concept in plurigaussian models is that of Gaussian random field. A Gaussian random field Y (x) can
be obtained as a sum of random waves, as follows

Y (x) =

√
2

N

N∑
n=1

cos(qn · x+ ϕn) (SI-19)

with N → ∞. In this equation qn and ϕn are random vectors and phases. The phases are uniformly distributed over
in [0, 2π), and the wavevectors are distributed according to a three-dimensional function fY (q) normalized as∫

fY (q) dq = 1 (SI-20)

where the integral is over the entire q space. The case considered in the main text is that of an isotropic GRF, for
which fY (q) is a radial function. We shall consider here the general case.
The field Y (x) is entirely characterized by the corresponding wave-vector distribution function. Knowing the latter

is equivalent to knowing the field-field correlation function gY (r), defined as

gY (r) = ⟨Y (x)Y (x+ r)⟩ (SI-21)

where the brackets stand for the average value calculated over all q’s and ϕ’s. The GRF being stationary, the average
can also be calculated over x.
The value of Y (x) for any x is Gaussian distributed, with mean 0. Moreover, the the factor

√
2/N in Eq. (SI-19)

ensures that the variance of Y (x) is 1. The joint distribution of the values taken by Y (x) at two positions x1 and x2

at distance r from each other is a bivariate Gaussian distribution with mean 0, variance 1, and correlation coefficient
gY (r).
Using standard trigonometric manipulations, the following relation between gY (r) and fY (q) is obtained from Eq.

SI-19

gY (r) =

∫
fY (q) cos (q · r) dq (SI-22)

in the limit where N → ∞. In the particular case of isotropic GRFs, the distribution of q does only depend on the
modulus q = |q|. In this case the relation is simply

gY (r) =

∫ ∞

0

fY (q)
sin (qr)

qr
4πq2dq (SI-23)

For further purposes, it is useful to analyze the small-distance behavior of gY (r). This is done in the general
anisotropic case by developing cos(q · r) in a Taylor series. This leads to following quadratic expression

gY (r) ≃ 1− rTL−2
Y r (SI-24)

where L−2
Y is the following second order tensor

L−2
Y =

1

2

∫
fY (q) q⊗ q dq . (SI-25)
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FIG. SI-2. Partitioning of the (Y, Z) plane corresponding to the plurigaussian model used in the main text, with three phases
A (red), B (green), and S (gray), and the definition of the parameters a, b and β.

where ⊗ is the dyadic product. In the case where the GRF is isotropic, the asymptotic expression for gY (r) reduces
to

gY (r) ≃ 1−
(

r

lY

)2

(SI-26)

with

1

l2Y
=

1

6

∫ ∞

0

fY (q)q
2 4πq2dq (SI-27)

This result can also be obtained by developing sin(qr)/(qr) ≃ 1− (qr)2/6 in Eq. SI-23.

2. Volume fractions and two-point correlation functions of Plurigaussian models

The plurigaussian model used in the main text is based on two independent Gaussian random fields, Y (x) and
Z(x), each of which is defined by a specific wave-vector distribution fY (k) and fZ(k). The values taken by the two
GRFs at any given point of space can be represented as a (Y, Z) plane. A given phase, say phase n, is modeled as a
region Dn of the latter plane, as illustrated in Fig. 3 of the main text and in Fig. SI-2.
The volume fraction of phase n, ϕn, can be viewed as the probability that any given point x of space belongs to

phase n. This can also be calculated as the total probability associated with the domain Dn is the (Y, Z) plane.
Because Y and Z are both Gaussian distributed with average 0 and variance 1, the volume fraction is calculated as

ϕn =

∫
Dn

dydz
1

2π
exp

[
−y2 + z2

2

]
(SI-28)

This integral can be simplified in the particular case where the domain Dn is a half-plane, defined by a single threshold
as

DS = {(Y, Z)|Y ≥ a} (SI-29)

The solid phase S in the main text is defined in such a way (see Fig. SI-2). In this case, Eq. SI-28 becomes

ϕS =
1√
2π

∫ ∞

a

exp

(
−y2

2

)
dy (SI-30)

The two-point correlation function Pmn(r) is defined as the probability that two random points x1 and x2 belong
to phase m and n, respectively, with x2 −x1 = r. This probability can be calculated using the fact that values Y (x1)
and Y (x2) obey a Gaussian bivariate distribution with mean 0, variance 1 and correlation function gY (r). The same
applies to Z(x1) and Z(x2) with correlation coefficient gZ(r). Accordingly, the two-point correlation function can be
calculated as

Pmn(r) =

∫
(y1,z1)∈Dm

dy1dz1

∫
(y2,z2)∈Dn

dy2dz2 GgY (r)(y1, y2)GgZ(r)(z1, z2) (SI-31)
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where Gg is the bivariate Gaussian distribution with mean 0, variance 1 and correlation g, namely

Gg(x1, x2) =
1

2π
√
1− g2

exp

[
−x2

1 + x2
2 − 2g x1x2

2(1− g2)

]
(SI-32)

For calculating the small-angle scattering patterns through Eq. SI-4, the general expression SI-31 has to be particu-
larlized to m = n = A, to m = n = B, and to m = n = S.
In the particular case of phase S with domain DS given by Eq. SI-29, Eq. SI-31 simplifies to the well-known result

[7]

PSS(r) = ϕ2
S +

1

2π

∫ gY (r)

0

1√
1− t2

exp

(
−a2

1 + t

)
dt

= ϕ2
S +

1

2π

∫ asin[gY (r)]

0

exp

(
−a2

1 + sin(θ)

)
dθ (SI-33)

The second equation simply results from a change of variable t = sin(θ), which leads to an expression that is easier

to handle numerically because of the absence of the 1/
√
1− t2 singularity.

In the general case where the domains DX has a shape that does not allow the integral in Eq. SI-31 to be calculated
analytically, it is convenient to develop the bivariate Gaussian distributions as a series of Hermite’s polynomial, as

Gg(x1, x2) =

∞∑
n=0

gn

n!
Hn(x1)Hn(x2)

1

2π
exp

[
−x2

1 + x2
2

2

]
(SI-34)

where the Hermite polynomials are defined as

Hn(x) = (−1)nex
2/2 dn

dxn

(
e−x2/2

)
(SI-35)

Using this development, the two-point correlation functions PXX(r) can be written as [8]

PXX(r) =
∞∑

n=0

∞∑
p=0

gY (r)
n

n!

gZ(r)
p

p!
Θnp(X)2 (SI-36)

with

Θnp(X) =

∫
(y,z)∈DX

Hn(y)Hp(z)
1

2π
exp

[
−y2 + z2

2

]
dydz (SI-37)

3. Specific interface areas

The specific surface and interface areas can be calculated from the asymptotic behavior of the two-point correlation
functions for small values of r [9–11]. In particular, the specific surface area of phase n, Sn is calculated as

Sn = −4
dPnn(r)

dr

∣∣∣∣
r→0

(SI-38)

and the specific interface area Smn between phases m and n is calculated as

Smn = 4
dPmn(r)

dr

∣∣∣∣
r→0

(SI-39)

Therefore, to calculate the specific surface area of a plurigaussian model it is necessary to estimate the two-point
correlation function (Eq. SI-31) for vanishingly small distances r. When considering this limit, it is legitimate to
express the correlation function g of the Gaussian random field as

g ≃ 1− ϵ2 (SI-40)
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where ϵ is proportional to r, in agreement with Eq. SI-26. Under the assumption that ϵ is small, the bivariate
Gaussian distribution in Eq. SI-32 can be approximated as

Gg(x1, x2) =
1√
4π

exp

(
−1

8
(x1 + x2)

2

)
1√
2πϵ2

exp

(
− 1

4ϵ2
(x1 − x2)

2

)
+O(ϵ2) (SI-41)

which we have factored as the product of two univariate distributions of (x1 + x2) and of (x1 − x2).
Using this approximation, the two-point correlation function (Eq. SI-31) can be approximated as

Pmn(r) ≃
∫
(y1,z1)∈Dm

dy1dz1

∫
(y2,z2)∈Dn

dy2dz2
1

4π
exp

(
−1

8
(y1 + y2)

2 − 1

8
(z1 + z2)

2

)
1

2πϵY ϵZ
exp

(
− 1

4ϵ2Y
(y1 − y2)

2

)
exp

(
− 1

4ϵ2Z
(z1 − z2)

2

)
(SI-42)

where we have used the obvious notations gY ≃ 1− ϵ2Y and gZ ≃ 1− ϵ2Z .
We now proceed to rewrite Eq. SI-42 in a slightly different way, to show that the interface area can be calculated

from an integral on the boundary of the domains Dm. For that purpose, let us do the following change of variable

δy = y1 − y2 and δz = z1 − z2 (SI-43)

which leads to

Pmn(r) ≃
∫
(y1,z1)∈Dm

dy1dz1

∫
R2

dδydδz in(y1 − δy, z1 − δz)
1

2π
exp

(
−y21 + z21

2

)
1√

2πσY

exp

(
−

δ2y
2σ2

Y

−
δ2y − 4y1δy

8

)
1√
2πσZ

exp

(
− δ2z
2σ2

Z

− δ2z − 4z1δz
8

)
(SI-44)

where in(y, z) is the indicator function of Dn in (y, z) plane, defined as

in(y, z) =

{
1 if (y, z) ∈ Dn

0 otherwise
(SI-45)

In Eq. SI-44 we have written σY/Z =
√
2ϵY/Z to put the last two exponentials in a form closer to the canonical

Gaussian. When σY/Z become vanishingly small the latter two functions converge to Dirac distributions of δy and δz.
In that limit, one has simply

Pmn(r) ≃
1

2π

∫
(y1,z1)∈Dm

dy1dz1 exp

(
−y21 + z21

2

)
i∗n(y1, z1) (SI-46)

where

i∗n(y1, z1) =

∫
R2

dδydδz in(y1 − δy, z1 − δz)
1

2πσY σZ
exp

(
−

δ2y
2σ2

Y

− δ2z
2σ2

Z

)
(SI-47)

is a blurred version of in(y1, z1) in which the transition between 1 and 0 spreads over a region of thickness σY/Z .
We shall now consider specifically the case where m ̸= n. In this case, it has to be noted that the only values of

i∗j (y1, z1) relevant for Eq. SI-46 are those outside of Dn. In that region, i∗n(y1, z1) is different from 0 only in thin
layer of thickness σY/Z close to the boundary of Dn. When the layer becomes infinitely thin, i∗n only depends on the
distance ξ to the boundary through

i∗n(ξ) =
1√
2πσ

∫ ∞

ξ/σ

exp(−x2/2) dx (SI-48)

with

σ2 = σ2
Y n

2
Y + σ2

Zn
2
Z (SI-49)
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where nY/Z are the Y/Z components of the normal vector to the boundary of Dn. The integral of i∗n per unit length

of the boundary is therefore σ/
√
2π. Equation SI-46 takes therefore the final form

Pmn(r) =
r

2π3/2

∫
∂Dmn

exp

(
−y2 + z2

2

)√
n2
Y

l2Y
+

n2
Z

l2Z
dl +O(r2) (SI-50)

where ∂Dmn is the common boundary of Dm and Dn. When deriving Eq. SI-50, we have taken into account that
σZ/Z =

√
2 r
lY/Z

.

The specific interface area between phases m and n is then obtained as

Smn =
2

π3/2

∫
∂Dmn

exp

(
−y2 + z2

2

)√
n2
Y

l2Y
+

n2
Z

l2Z
dl (SI-51)

The specific surface area of any phase n is obtained by summing the contribution of all phases it may be in contact
with, i.e.

Sn =
∑
m ̸=n

Smn (SI-52)

This is equivalent to replacing the integral in Eq. SI-51 by an integral over

∂Dn =
∪

m ̸=n

∂Dmn (SI-53)

i.e. over the total boundary of Dn.
With the parameters defined in Fig. SI-2, one finds that the specific area of the A|B interface is

SAB =

√
2

π

√(
cos(β)

lY

)2

+

(
sin(β)

lZ

)2

e−b2/2

{
1− erf

(
b cos(β)− a√

2 sin(β)

)}
(SI-54)

where erf(x) is the error function defined as

erf(x) =
2√
π

∫ x

0

e−t2dt (SI-55)

The area of the A|S interface is

SAS =

√
2

π

e−a2/2

lY

{
1− erf

(
b− a cos(β)√

2 sin(β)

)}
(SI-56)

and the area of the B|S

SBS =

√
2

π

e−a2/2

lY

{
1 + erf

(
b− a cos(β)√

2 sin(β)

)}
(SI-57)

The total specific surface area of phase S is calculated as SAS + SBS . This leads to

SS =
23/2

π
exp

(
−a2

2

)
1

lY
(SI-58)

which is the classical expression for a simple clipped Gaussian field [7].
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II. DATA ANALYSIS

A. Reconstruction of the solid phase

We describe in the present section how the solid phase of the gel is reconstructed from the small-angle scattering
data, using the clipped Gaussian field model. This procedure is used notably to produce the inset of Fig. 1 of the
main text.
The volume fraction of the solid phase of the gel is related to the threshold a through the general relation given

by Eq. SI-30. With the particular value ϕS = 0.24, known from the composition of the gel, this leads to a = 0.703.
Given the threshold a, the reconstruction of the gel morphology requires to determine the distribution of wave vectors
fY (k), or equivalently the field correlation function gY (r).
When the gel is imbibed with pure nitrobenzene, the electron density correlation function C(r) is simply proportional

to the autocovariance function of the solid phase of the gel, i.e. to

χS(r) = PSS(r)− ϕ2
S (SI-59)

This results from Eq. SI-4 by setting ρA = ρB = ρN . Therefore, the SAXS intensity measured on the gel imbibed
with pure nitrobenzene, Ĩ(q), is proportional to the Fourier transform of χS(r).
The general relation between the field correlation function gY (r) and the two-point function of the solid phase

PSS(r) was given in Eq. SI-33. It can be written in terms of χS(r) as

χS(r) =
1

2π

∫ gY (r)

0

1√
1− t2

exp

(
−a2

1 + t

)
dt (SI-60)

The procedure we used to determine fY (k) from Ĩ(q) is similar to the one proposed by Quintanilla [12]. It is as
follows.

1. Starting from the experimental SAXS pattern Ĩ(q) of the gel imbibed with pure nitrobenzene, the autocovariance
function of the solid phase is calculated through an inverse Fourier transform as

χ̃S(r) =

∫ ∞

0

sin(qr)

qr
Ĩ(q)4πq2 dq (SI-61)

In practice, the SAXS intensity is measured only over a finite range: of q1 ≤ q ≤ q2. The data Ĩ(q) have therefore
to be extrapolated to calculate the integral. The large-q extrapolation is done by assuming Porod scattering of
the type Ĩ(q) ≃ A/q4 for q ≥ q2 [3] and the low-q extrapolation is done by assuming Ĩ(q) ≃ Bq for q ≤ q1.

This provides χ̃S within an unknown multiplicative constant. The latter is obtained by imposing that χ̃S(r =
0) = ϕS(1− ϕS).

2. Once the threshold a is specified, Eq. SI-60 defines a reversible transformation between gY (r) and χS(r). Using
the calculated value of χ̃S(r), Eq. SI-60 is inverted numerically for each particular r, yielding an estimated field
correlation function g̃Y (r).

3. In general, the estimated field correlation function g̃Y (r) does not satisfy the necessary condition that it has to
be positive-definite [13]. Therefore, we shall look for a positive-definite function that is as close as possible to
g̃Y (r). This is done by minimizing ∫ ∞

0

|g̃Y (r)− gY (r)|2 4πr2 dr (SI-62)

subject to the condition that gY (r) be positive-definite.

Taking advantage of Parseval’s theorem, the latter functional can be conveniently written in Fourier space∫ ∞

0

∣∣∣f̃Y (q)− fY (q)
∣∣∣2 4πq2 dq (SI-63)

where f̃Y (q) and fY (q) are the Fourier transforms of g̃Y (r) and gY (r), defined as in Eq. SI-23.
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FIG. SI-3. Procedure for analyzing the empty solid as a clipped Gaussian random field. The Figure should be read clockwise
(see text): Starting from the experimental SAXS pattern (Ĩ(q), red dots) the functions χ̃(r), g̃Y (r) and f̃Y (q) are calculated
successively; fY (q) is then obtained by quadratic optimization, and gY (r), χ(r), and I(q) (solid black line) are calculated. The
tilded and non-tilded functions are indistinguishable on the scale of the figure, which points to the accuracy of the model.

The problem therefore consists is determining the positive fY (q) that minimize the quantity defined by Eq.
SI-63 subject to the constraint ∫ ∞

0

fY (q)4πq
2 dq = 1 (SI-64)

The latter condition ensures that gY (0) = 1, i.e., that the variance of Y is equal to 1.

Expressing all the integrals with trapezoidal approximations, the minimization of Eq. SI-63 subject to fY (q) ≥ 0
and to Eq. SI-64 is a classical case of quadratic programming. It was solved numerically using the Matlab
®optimization toolbox.

4. The field correlation function gY (r) that best matches the experimental SAXS pattern of the solid is then
obtained through an inverse Fourier transform of fY (q). Once gY (r) is known, the auto-covariance χS(r) is
calculated by inverting Eq. SI-60, and I(q) is calculated as the Fourier transform of χS(r). This enables one to

check the accuracy of the reconstruction by comparing directly I(q) with Ĩ(q).

The entire procedure is illustrated in Fig. SI-3. The functions χ̃(r), g̃Y (r) and f̃Y (q) are indistinguishable from

χ(r), gY (r) and fY (q) on the scale of the figure. This results from the fact that f̃Y (q) is already positive almost
everywhere so that the effect of the quadratic optimization is minimal. This points to the excellent accuracy of the
model in the case of RF gels.

B. Reconstruction of the pore-filling phases

The SAXS intensity is the Fourier transform of the electron density correlation function C(r) given by Eq. SI-4,
which can be written as

I∗(q) = K
[
(ρS − ρA)(ρS − ρB)IS(q) + (ρA − ρS)(ρA − ρB)IA(q)

+ (ρB − ρS)(ρB − ρA)IB(q)
]

(SI-65)

where we have used the notation

IX(q) =

∫ ∞

0

sin(qr)

qr

[
PXX(r)− ϕ2

X

]
4πr2 dr (SI-66)
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for IS(q), IA(q) and IB(q).
The reconstruction of the pore-filling phases is done by least-square fit of the SAXS data with Eq. SI-65. We here

list all the parameters of the model and how they are determined.

1. The constant K accounts for actual volume of the sample that is irradiated by x-rays, for the scattering cross-
section of the molecules, etc. It is therefore expected to depend minimally on the temperature, we assume it is
a constant all over the investigated temperature range. It is estimated once and for all as

K =
Q∗

Qphase separated
(SI-67)

where Q∗ is the experimental total scattered intensity (which is constant, see Fig. ??) and Qphase separated has
been introduced in Eq. SI-10.

2. All characteristics of the solid phase ρS , the threshold a, and IS(q) are known at this stage. The electron density
ρS is given in Tab. SI-1, and IS(q) has been calculated in Sec. II A. Both are assumed to be temperature-
independent.

3. The parameters that enter IA(q) and IB(q) are those of the plurigaussian model, i.e. parameter b and β defined
in Fig. SI-2, as well as the wave-vector distribution of the Gaussian random field Z. The latter is modeled as

gZ(r) = exp

[
−
(

r

lZ

)2
]

(SI-68)

which has a single parameter lZ .

4. The composition of the pore-filling phases A and B, and hence their electron densities ρA and ρB , are entirely
determined by a single parameter ϵ that quantifies the extent of the phase separation, as shown in Sec. I B. The
two phases A and B have identical composition if ϵ = 0, and phase A (B) is enriched in nitrobenzene for positive
(negative) values of ϵ. During the exploratory phase of the research ϵ was used as an adjustable parameter, and
the least-square fit systematically lead to the largest possible value of ϵ, i.e. ϵ = ϵsup (see Eq. SI-18). In other
words, the nitrobenzene content of phase A is always the largest possible, i.e.

if φA < xN then

{
ρA = ρN
ρB = [ρHxH + ρN (xN − φA)] /φB

(SI-69)

and

if φA ≥ xN then

{
ρA = [ρNxN + ρH(φA − xN )] /φA

ρB = ρH
(SI-70)

In these equations, xN and xH are the known global volume fractions of nitrobenzene and hexane in the pores
(xH = xN = 0.5), and φA/B = ϕA/B/(ϕA + ϕB) are calculated simply from parameters b and β. Therefore, the
composition of the pore-filling phases does not introduce any independent parameter.

The least-square fit of I∗(q) was done with b, β and lZ as only adjustable parameters. The successive steps in the
calculation of I∗(q) are the following,

1. For any value of the parameters, the volume fractions ϕA/B are determined by numerically calculating the
integral in Eq. SI-28.

2. This enables in turn to estimate the electron densities ρA/B through Eqs. SI-69 and SI-70.

3. The two-point correlation functions PAA(r) and PBB(r) are calculated as a series of powers of gY (r) and gZ(r)
via Eq. SI-36, with 20 terms. The series converges for small values of gY/Z , i.e. for large values of r. By
contrast, gY/Z(r) is close to 1 for short distances r. For short distances, the two-point correlation functions are
approximated as

PXX(r) ≃ ϕX − SX

4
r (SI-71)

where the specific surface areas are calculated via Eqs. SI-54, SI-56 and SI-57.
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FIG. SI-4. Values of the plurigaussian parameters b, β and lZ obtained by least-square fitting of the SAXS data. These are
the values from which Fig. 6 of the main text was obtained.

4. Finally, the functions IA(q) and IB(q) are calculated numerically via Eq. SI-66, and introduced in Eq. SI-65 to
yield I∗(q).

In practice, the least-square minimization was done by starting at the lowest temperature T = −14 °C, and by using
the values of b, β and lZ towards which the minimization has converged at temperature T as the starting point for
the minimization at temperature T + 1. The minimization was programmed in Matlab, using a Levenberg-Marquart
algorithm. The values of parameters b, β and lZ obtained in this way are plotted in Fig. SI-4.
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