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Note S1. Bragg-rod calculation details  

In this section, we report selected details of the Bragg-rod calculation that did not appear in the main 

text, including the consideration of further simulation features not used in the current study but which could 

be used later to take advantage of the full power of CALCIPOW (Plançon, 2002), if desired. In order to 

make its use easier, an interactive program (“wrapper”) was written in LabVIEW (National Instruments, 

Austin TX, USA) which generates the input files, calls CALCIPOW, and reads the resulting output. The 

details to be filled out for each atom in the input file are its occupancy, atomic number, position, and a table 

of the scattering factor versus sin /  . In addition, there is a section which describes layer stacking because 

CALCIPOW can handle everything from fully turbostratic layers to fully three-dimensional crystals, with 

intermediate cases described in terms of random and defined stacking faults (Lanson et al., 2002a). In our 

case, we only needed the fully-turbostratic description, but the wrapper includes the possibility of the 

aforementioned types of layer ordering. Similarly, the program can handle the specific case of preferred 

orientation normal to the scattering vector, so it requires the orientation distribution function as a function of 

angle from the normal. The program also needs the CSD size and the log-normal distribution parameters for 

the number of layers per particle, in order to predict the 00l reflections. All of these clerical functions are 

handled by the wrapper. 

In addition, the program requires a table of the T(U) function of Drits and Tchoubar (1990). This 

function is a scaled Fourier transform of the overlap function of the particle in the transverse dimension. This 

overlap function represents the fraction of the layer area that is overlapped by a copy of the layer shifted by a 

given distance. In the case of anisometric particles, T(U) is the orientation average of the Fourier transform 

of the overlap function with the shift taken in differing directions. To simulate the effect of a distribution of 

particle size, we considered that the shape of the Bragg rod for a layer of any transverse size is constant, with 

only the scale factor in q changing. Thus, if the particle is big enough transversely, so that the radius of the 

Bragg rod is small compared with that of the Ewald sphere, doubling the CSD size in the layer plane will 

halve the width of the peak in I(q) without changing its shape. This effect may be simulated in CALCIPOW 
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by replacing T(U) with T(2U), for instance. Thus, if one has a distribution of particle sizes, then T(U) may 

be replaced by an integral over the distribution ( )T(U )d p    where ( )p   is the probability density 

function for particles of size 0CSD , with 0CSD  being the nominal size specified for CALCIPOW. With a 

log-normal distribution for ( )p  , we used Gauss-Hermite quadrature to perform the integration and get the 

effective T(U). If the CSD is circular, that is all we have to do because T(U) for a circle is known 

analytically. However, for other shapes, one needs to perform other operations to get T(U), which will be 

summarized only briefly because only circular domains were used in the present investigation. For a general 

polygonal domain, we can raster the polygon and perform the integral as a sum over line segments, then use 

Equation 2.20 of Drits and Tchoubar (1990) to calculate the contribution from each line segment. The 

lengths of these line segments will depend on the direction over which one integrates, hence on the 

orientation of the scattering vector with respect to the domain. Since we want a powder average, we simply 

average the T(U) function over a number of angles, typically three. 

CALCIPOW allows sites to have fractional occupation, which makes it easy to treat vacancies in an 

approximate way. However, as mentioned in the main text, if one tries to use the chalcophanite model with 

ordered vacancies, one winds up with superlattice reflections that are as sharp as the other reflections, 

whereas the DE model yields only broad bumps due to the short-range nature of the vacancy ordering. Thus, 

we used the simple unit cell for which parameters are given in Tables 4 and 5.  

In order to model strain, we used a q-dependent CSD size. The list of reflections is sorted by |q|, and a 

set of CALCIPOW input files is made, one for each value of |q|. These files differ only in the list of 

reflections to be calculated and the CSD. CALCIPOW is then run for each of these files and the resulting 

intensities added together. 

It is probably too complex to implement a stable efficient algorithm for the Bragg-rod fitting that 

includes all crystallographic, non-uniform, and anisotropic parameters in turbostratic nanocrystals. 

Therefore, parameter values were optimized by exploring parameter space manually by trial-and-error by 

varying systematically a set of parameter values. Structural constraints were enforced by varying 

progressively as a function of pH the amounts of vacancies and interlayer species for the three -MnO2 

samples, so as to describe these nanomaterials using a unifying framework with only a minimum number of 

parameters. 

 

Note S2. Debye Equation calculation details 

S.2.1. Structural specification 

The initial structure is based on a triangular lattice of MnO6 octahedra (the layer), which is truncated to 

the boundary of the CSD, in our case a circle of a given size. Then, modifications are introduced as follows: 
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1. Layer vacancies. A given fraction of Mn atoms are left out at random. However, it is assumed for crystal 

chemical reasons that no two vacancies may be nearest neighbors. Therefore, sets of vacancies are tossed 

until a structure meeting this condition is found.  

2. Vacant sites may be capped with MnIL atoms. It is forbidden for a vacancy to be capped both above and 

below, because short-distance MnIL-MnIL pairs are excluded from an inspection of the PDF correlations. 

Each MnIL atom is provided with three water molecules in the interlayer (represented by oxygens) in 

addition to the three layer oxygens (OL) to which it is attached.  

3. Interlayer and mid-layer Na and water molecules are added at random sites, making sure that they do not 

get too close to each other. Minimum distances allowed for atom pairs are Na-(O, water), 2Å, Mn-(O, 

water), 1.5Å, Na-Mn, 2Å. 

4. If it is desired to keep MnIL from coming too close to each other (see below), then structures are generated 

according to the above steps until no such unwanted pairs occur. 

5. The layer is "bent" to simulate the bending seen in TEM studies. The layer is bent around a spherical or 

cylindrical mandrel such that the neutral plane is the layer plane z = 0. This bending is parameterized by 

the reciprocal bending radii in x and y directions (supplementary information, note S2). 

Because vacancies and all other atoms, except for MnL and OL, occur at random sites, the diffraction 

from each instance of the structure with given specifications has significant fluctuations. Therefore, we 

averaged over 100-1000 such structures. This averaging also gives us the opportunity to add polydispersity 

of layer (CSD) size by generating structures of different sizes for which the intensities are averaged. The 

positional and "thermal" parameters of the atoms were taken from the Bragg-rod fits. 

We did not attempt to model multilayered particles because such modeling would require the explicit 

generation of atomic positions and interatomic distances for all layers, which would have increased the 

calculation time and memory requirements by a large factor for a relatively small gain in understanding (the 

00l reflections). 

 

S.2.2. Calculation 

As Cervellino et al. (2010) and others have found, it is impractical to compute the sinc function for each 

pair of atoms in the double sum over atom pairs and all q-values. Instead, we assembled the distances into a 

set of histograms, one for each pair of atom types. Here, because atoms of a given element such as Mn, but 

in different sites (MnL, MnIL), may have different Debye-Waller factors, we counted such atoms as different 

and assigned them their own histograms. Thus, there is a histogram for MnL-O distances, and one for MnIL-O 

distances. We took the bin size to be 0.01-0.02 Å. In partial compensation for the discreteness of the 

histogram bins, we assigned each distance partial membership in the two bins adjacent to it. For example, if 

there were histogram bins centered at 2.80 Å and 2.81 Å and there was a pair of atoms 2.804 Å apart, we 

assigned this pair 0.6 membership in the 2.80 Å bin and 0.4 in the 2.81 Å bin. Compared with doing the 
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exact summation, this procedure is like applying a broadening function with a width that varies depending on 

how close a distance is to a bin center, but is never more than the bin width. The mean distance in the 

histogram thus preserves the mean distance in the exact distribution. 

We took advantage of the regular tabulation of distances and q-values by using trigonometric recursion 

relations to compute all values of sin( ) /qr qr  once, with minimal evaluation of trig functions. Thus, when 

computing the diffraction from multiple structures, we only needed calculate these factors once. We then 

used these factors to compute all values of sinc( )i jf f qr . The scattering factors if  for neutral atoms and 

water molecules (approximated as oxygens) were computed from the Waasmaier and Kirfel (1995) forms as 

mentioned for the Bragg-rod method. No anomalous dispersion corrections to the coherent atomic scattering 

factors were introduced. 

The description given in the main text is for a model we refer to as "correlated" occupancy, in which 

each site is either occupied or empty for a given realization of the model, and in which rules about vacancies 

not neighboring other vacancies and atoms not coming too close to other atoms are obeyed.  Another version 

of the model is what we refer to as "binary" occupancy, in which sites are populated at random, with no 

regard to crystal-chemical rules.  This type of model comes closer to what the Bragg-rod model simulates 

than does "correlated" occupancy.  We also considered "fractional" occupancy, in which we simulate a given 

probability for each occupied site, with said probability uncorrelated with the occupation of any other site, 

and perform an analytical average over these occupancies. This can be considered a DE version of the way 

fractional occupancy is treated in the Bragg-rod case. In this case, we can extend the DE (4) by assuming that 

each atom i is present with probability ip , or absent, and that its presence or absence does not affect the 

position or occupancy of any other site. In that case, we consider the scattering factor if  to be a random 

variable which has either its usual value, with probability ip  or vanishes with probability 1 ip , so that the 

Debye equation is modified to: 
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where ijp  is the probability that both atoms i and j are present. If we assume uncorrelated occupancy, then 

ij i jp p p . Note that ii ip p , hence the lack of an exponent on ip  in the first term. A comparison of these 

three modes of modeling for dBi10 and dBi3 is shown in Figure S1. The "binary" and "fractional" models 

yield near-identical results for the two pH samples, the "correlated " model gives slightly different results at 

pH 10, and even more so at pH 3 owing to the abundance of MnIL. 
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Figure S1. hk XRD bands calculated with the strained-layer values given in Table 5 for three possible 
occupancy models: correlated, binary, and fractional. 
 

S.2.3. Strain 

The bending of the layer over a spherical "mandrel" was handled as follows: Let the original Cartesian 

coordinates of an atom be 0 0 0. ,x y z  with the z-axis normal to the layer, and let 0R  be the bend radius. Then, 

we performed the following set of operations to "wrap" the structure around the sphere of radius 0R : 
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The first two lines express the transverse position in polar coordinates. Then, ,bent bentx y  are computed 

as the transverse position of the end of an arc that subtends an angle   as seen from the center of curvature 

and extending in the azimuthal direction of 0 0,x y . The last line gives the position "above" or "below" the 

sphere, in a form which does not run into numerical problems at large 0R . Similar formulas can be 

implemented for cylindrical and ellipsoidal bends. 

For a cylindrical bend around the x-axis, the corresponding equations are 
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It should be noted that these forms do not take into account anything about the mechanical properties of 

the layer. In particular, anticlastic bending is not included in the above cylindrical-bend formulas, and neither 

bend prescription accounts for Poisson-like coupling of in-plane and out-of-plane strain. 

 

S.2.4. Fitting 

In principle, if the experimental measurements were performed on monodisperse single-layer particles, 

and the background subtracted, then the calculated diffraction intensity should match experiment up to a 

constant factor. In practice, the contributions from the multi-layered nature of the particles, plus inter-particle 

interference, means that there will always be a background, assumed to be slowly-varying in q, which the 

calculation cannot match. Thus, we fit the data using the polynomial form described for the Bragg-rod 

method (2). 

Best fits were found by searching parameter space. We started with the values derived by hand-

optimizing the match in the Bragg-rod calculation, after which we did more manual searching, one or two 

parameters at a time. The obvious thing to try in order to get a better fit than from manual searching is to use 

a non-derivative minimizer to search parameter space. However, the function being minimized is noisy 

because of the structure randomness. Thus, we used a brute-force approach in which we defined parameter 

ranges and simply tossed up to 1000 sets of parameter values within these ranges. This method produced 

what seems to be a slightly better fit than was obtained in the initial manual searches. By doing such a search 

over just two parameters at a time (e.g. b and strain), we could fit the normalized sum-squared error (NSS) to 

a quadratic function of these parameters, thus pinpointing the true minimum and getting an idea of parameter 

correlations. Because the fractional-occupancy model involves a unique structure for each parameter set, it is 

faster to compute than either the binary- or correlated-occupancy models and does not introduce statistical 

noise into the evaluation of the goodness of fit. Therefore, we found it useful to perform the parameter search 

in the fractional-occupancy model, then redo it in a smaller region of parameter space for the other types of 

occupancy. 

 

Table S1 
Atom parameters from the PDF analysis.  

U values for dBi3, dBi6 and dBi10 were averaged, and 
crystallographic coordinates kept identical at all pHs. OIL are 
structural water molecules coordinated to MnIL. Their occupancies 
are three times the MnIL occupancy. The MnL and MnIL cation 
occupancies were linked according to layer-interlayer charge 
balance, and the Na/K occupancy fixed from chemical analysis 
(values given in Table 1 for dBi). 
 x y z U11,22 (Å

2) U33 (Å
2) Occ. 

KBi8 – XRD      
MnL 0 0 0   0.88 
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OL 2/3 1/3 0.070   2.0 
MnIL 0 0 0.150   0.08 
OIL 1/3 2/3 1/4   0.24 
K 0.24 0.76 1/4   0.23 
H2O 0.225 0.113 1/4   0.36 

KBi8 – PDF model 1     
MnL 0† 0† 0† 0.003‡1 0.012 0.92 
OL 2/3† 1/3† 0.068 0.006 0.029 2.0† 
MnIL 0† 0† 0.150 0.003‡1 0.003‡1 0.03 
OIL 1/3† 2/3† 1/4 0.060‡2 0.060‡2 0.09 
K 0.292§ 0.708§ 1/4 0.060‡2 0.060‡2 0.23† 
H2O 0.274§ 0.137§ 1/4 0.060‡2 0.060‡2 0.36† 

KBi8 – PDF model 2     
MnL 0† 0† 0† 0.003‡1 0.012 0.92 
OL 2/3† 1/3† 0.068 0.006 0.029 2.0† 
MnIL 0† 0† 0.154 0.003‡1 0.003‡1 0.03 
OIL 1/3† 2/3† 1/4 0.050‡2 0.050‡2 0.09 
K 0.24† 0.76† 1/4 0.050‡2 0.050‡2 0.23† 
H2O 0.225† 0.113† 1/4 0.050‡2 0.050‡2 0.36† 

NaBi – XRD      
MnL 0 0 0   1.0 
OL 0.389 0.627 0.140   2.0 
NaIL 0.628 0.476 0.481   0.31 
H2O 0.291 0.180 0.496   0.40 

NaBi – Model 1      
MnL 0† 0† 0† 0.002 0.016 1.0† 
OL 0.376 0.605 0.134 0.005 0.167 2.0† 
NaIL 0.697 0.568 0.510 0.023‡ 0.023‡ 0.31† 
H2O 0.158 0.199 0.516 0.023‡ 0.023‡ 0.40† 

NaBi – Model 2      
MnL 0† 0† 0† 0.002 0.016 1.0† 
OL 0.390 0.626 0.130 0.007 0.104 2.0† 
NaIL 0.628† 0.476† 0.481† 0.013‡ 0.013‡ 0.31† 
H2O 0.291† 0.180† 0.496† 0.013‡ 0.013‡ 0.40† 

dBi       
MnL 0.715 0.576 -0.008 0.0012‡1 0.0021‡2  
OL 0.525 0.623 0.139 0.0014 0.033 1.0† 
OL 0.250 0.196 0.135 0.0014 0.033 1.0† 
OL 2/3† 1/3† 0.125 0.0014 0.033 1.0† 
MnIL -0.007 0.017 0.290 0.0012‡1 0.0021‡2  
OIL 0.179 0.931 0.443 0.0018‡3 0.0018‡3  
Na 0.950† 0.650† 0.5 0.0018‡3 0.0018‡3  
Na 0.324 0.963 0.5 0.0018‡3 0.0018‡3  
H2O 0.575† 0.260† 0.5 0.0018‡3 0.0018‡3 1.0† 
H2O 0.425† 0.545† 0.5 0.0018‡3 0.0018‡3 1.0† 
† Fixed. ‡ Kept equal. § Covaried from space group symmetry.  
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Table S2 
Parameters from three equivalent best-fits of the AcidBir PDF in space group C12/m1.  

c was fixed to 7.32 Å, qdamp to 0.045 Å-1, qbroad to 0.069 Å-1, MnL Occ. to 0.94, K Occ. to 
0.26, and H2O Occ. to 0.77 as in Zhu et al. (2012). K and H2O were allowed to deviate 
from their mid-layer position to increase the flexibility of the model-fit.  

  
Parameters 
from Zhu et 
al. (2012) 

Model 1 

( 3)a b ‡ 

Model 2 

( 3)a b ‡ 

Model 3 

( 3)a b § 

a (Å)  4.942 4.919 4.923 4.922 
b (Å)  2.829 2.845 - - 
a/b  1.747 1.729 1.732† 1.732† 
 (°)  96.02 96.24 96.13 95.75 
Scale  1.27 1.36 1.37 1.27 
2  3.45 3.28 3.27 3.37 
Diameter (Å)  - 78.7 71.8 94.8 
MnL U11 0.011 0.002 0.003 0.001 
x=0, y=0, z=0 U22 0.0029 0.003 0.003 0.005 
 U33 0.27 0.163 0.167 0.194 
OL x 0.349 0.349 0.349 0.347 
y=0 z 0.131 0.135 0.134 0.134 
 U11 0.005 0.005 0.003 0.004 
 U22 0.007 0.008 0.009 0.004 
 U33 0.11 0.037 0.035 0.033 
K x 0.112 0.141 0.103 0.840 
y=0 z 0.556 0.506 0.565 0.594 
 Uiso 0.009 0.079 0.037 0.012 
H2O x 0.521 0.450 0.497 0.209 
y=0 z 0.553 0.533 0.547 0.529 
 Uiso 0.019 0.218 0.010 0.003 
Rw (%)  20.8 21.0 21.2 20.8 
‡ K, H2O positions close to Zhu et al. (2012). § K, H2O positions close to KBi8. † Fixed. 


