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Refraction correction
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Figure 1: Refraction corrections of intensity profile of first order BRs for the fingerprint-patterned
nanostructured sample at different incident angles. Black curves are before corrections and the
colored ones are after corrections based on Eq. 1 (main text). This figure demonstrates that Eq.
1(main text) adequately corrects the refraction of the scattered beams with αct = 0.09◦ since the
central peaks in the bottom four curves are now centered at qz = 0 .

Additional Corrections

Besides refraction correction, we describe a variety of corrections to the data (intensity and q-scale)
which were considered and found to be negligible for typical experimental conditions for a Grazing-
incidence Transmission Small-Angle X-ray Scattering (GTSAXS) experiment. These considerations
could become relevant if a GTSAXS experiment is pushed to the edge of its applicability, in which
case they would be crucial for quantitative data analysis.

Absorption Correction

First, we consider the asymmetry in absorption above and below the direct (refracted) beam, arising
from the slightly different path-lengths of the scattered radiation through the absorbing substrate.
The geometry is shown in the figure below.

The beam is incident onto the sample at angle αi, and has a projected size along the sample
surface of w. We define the x-axis to be along the beam propagation. A representative scattering
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Figure 2: Geometry for GTSAXS. The pathlength through the substrate of the scattering below
the direct beam is slightly longer than the scattering above the direct beam.

event is shown: the direct beam continues to the detector plane and defines qz = 0. Scattering
occurs both above and below the direct beam. For a scattering angle αs (within the plane shown
in Figure 2) this produces scattered intensity on the detector at qz = +qs and qz = −qs. However
the path of the scattered radiation through the substrate is not identical for these two reflections.
In particular, the ‘positive qz’ scattering travels a distance d+ through the substrate, while the
‘negative qz’ scattering travels a longer distance d−:

d+ =
x

cos(αi − αs)
(1)

d− =
x

cos(αi + αs)
(2)

For a scattering intensity Is, the measured scattering is attenuated by the substrate’s ab-
soprtion coefficient, ξ. The measured ratio of scattering intensities would be:

I+
I−

=
Ise
−ξd+

Ise−ξd−
(3)

= exp
[
−ξ x

cos(αi − αs)
+ ξ

x

cos(αi + αs)

]
(4)

= exp
[
−ξxcos(αi + αs)− cos(αi − αs)

cos(αi − αs) cos(αi + αs)

]
(5)

= exp
[
+ξx

sin(αi) sin(αs)
cos(αi − αs) cos(αi + αs)

]
(6)

(7)
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An experimental scattering peak arises from the contributions of all rays in the incident
beam. RAssuming a spatially uniform beam, all incident rays from the edge of the sample (x = 0)
to the full beam projection (x = w) must be integrated with the appropriate absorption factor.
This yields:

I+/− =

w∫
x=0

I+
I−

dx

w∫
x=0

dx
(8)

=
1
w

w∫
0

exp
[
+ξx

sin(αi) sin(αs)
cos(αi − αs) cos(αi + αs)

]
dx (9)

=
1
w

exp
[
+ξx sin(αi) sin(αs)

cos(αi−αs) cos(αi+αs)

]
+ξ sin(αi) sin(αs)

cos(αi−αs) cos(αi+αs)

w
x=0

(10)

=
cos(αi − αs) cos(αi + αs)

ξw sin(αi) sin(αs)

(
exp

[
+ξw

sin(αi) sin(αs)
cos(αi − αs) cos(αi + αs)

]
− 1
)

(11)

In the limit of a well-focused beam impinging on the edge (w → 0) the absorption asymmetry
disappears. Similarly, for substrates of negligible absorption (ξ → 0), this effect vanishes:

lim
ξw→0

I+/− ≈
cos(αi − αs) cos(αi + αs)

ξw sin(αi) sin(αs)

(
1 +

1
1!

[
+ξw

sin(αi) sin(αs)
cos(αi − αs) cos(αi + αs)

]
+ ...− 1

)
(12)

≈ 1 (13)

As an example of the magnitude of this effect, we consider realistic conditions for a GTSAXS
experiment. For an incident angle of αi = 0.20◦ and a beam size of 100µm, the projection is
w = (100µm)/ sin(αi) = 28.65 mm. For a silicon substrate, the attenuation length at 13.5 keV is
λatt ≈ 324µm, or ξ = 0.003086µm−1, and ξw = 88.4.) Assuming scattering at αs = 0.05◦, we
expect:

I+/− =
cos(0.15◦) cos(0.25◦)

88.4 sin(0.20◦) sin(0.05◦)

(
exp

[
88.4

sin(0.20◦) sin(0.05◦)
cos(0.15◦) cos(0.25◦)

]
− 1
)

(14)

≈ 1.00027 (15)

This small correction can be neglected in most cases. A more extreme case is αi = 1.50◦

and αs = 0.2◦, which gives I+/− ≈ 1.008, or a 1% asymmetry.

Ewald Curvature Correction

The curvature of the Ewald sphere introduces an intensity correction to GTSAXS data, arising from
the slightly asymmetric intersection of the tilted Ewald sphere with the reciprocal-space lattice-
peaks. In general, the scattering above the direct beam will be more intense that the scattering
below the direct beam, since the Ewald sphere is slightly closer to the (qy, qz) plane when qz > 0.

q2x + (qy − k cosαi)2 + (qz − k sinαi)2 − k2 = 0 (16)
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Figure 3: Ewald sphere in GTSAXS. The reflection angle tilts the Ewald sphere (purple) with
respect to the sample’s coordinate system. The sample’s reciprocal-space scattering is represented
by the blue lobes along the qz axis (for illustrative purposes, it is assumed the scattering is concen-
trated into the (qx, qz) plane). The right graphs compare the experimentally-measured intensity
for two mirror-image peaks. The intersection through the peak below the direct beam (qz < 0) is
further from the peak’s center and thus sees a lower intensity. Note that when approximating the
Ewald sphere as a plane (dashed line), the asymmetry would be ignored.
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Consider now the effect of the curvature of the Ewald sphere on peaks localized to the
(qx, qz) plane. For simplicity, we take the spread of these peaks from the plane as Gaussian:

I(qx, qy, qz) = I(qx, qz)
e−

q2y

2σ2

σ
√

2π
(17)

Note that the function I is centrosymmetric in reciprocal-space (e.g. I(qx, qy,+|qz|) = I(qx, qy,−|qz|)).
Consider now a pair of peaks, which on the detector plane are the same |qz| distance from the origin.
To a first approximation, the intensity of the ‘positive’ peak (above the direct beam), I+ ≡ I(+qz),
is identical to the associated ‘negative’ peak (below the direct beam), I− ≡ I(−qz). If the Ewald
sphere is a perfectly flat plane, this equality (I+ = I−) holds; in the limit of small angles and/or
small wavelength, this is a good approximation. However the curvature of the Ewald sphere does
introduce a subtle correction, since for the ‘positive’ scattering peak the Ewald sphere intersects
the scattering slightly closer to the (qx, qz) plane; whereas for the ‘negative’ peak, the intersection
is slightly further from the (qx, qz) plane. More exactly:

I+ = I(qx,+|qz|)
e−

q2y,+

2σ2

σ
√

2π
(18)

I− = I(qx,−|qz|)
e−

q2y,−
2σ2

σ
√

2π
(19)

(20)

Consider the form of qy,+ and qy,− which results from the curvature of the Ewald sphere:

|qy − k cosαi| = +
√
k2 − q2x − (qz − k sinαi)

2 (21)

qy − k cosαi = −
√
k2 − q2x − (qz − k sinαi)

2 (22)

q2y =
(
k cosαi −

√
k2 − q2x − (qz − k sinαi)

2

)2

(23)

Note that in eliminating the absolute value, we have selected the negative branch of the square-root
since near the origin (qy − k cosαi) < 0. We now differentiate between the +|qz| and −|qz| peaks:

q2y,+ =
(
k cosαi −

√
k2 − q2x − (+|qz| − k sinαi)

2

)2

(24)

= k2 cos2 αi − 2k cosαi
√
k2 − q2x − (+|qz| − k sinαi)

2 + k2 − q2x − (+|qz| − k sinαi)
2 (25)

= k2 cos2 αi − 2k cosαi
√
k2 − q2x − (|qz| − k sinαi)

2 + k2 − q2x − q2z + 2k sinαi|qz| − k2 sin2 αi

(26)

q2y,− = k2 cos2 αi − 2k cosαi
√
k2 − q2x − (−|qz| − k sinαi)

2 + k2 − q2x − (−|qz| − k sinαi)
2 (27)

= k2 cos2 αi − 2k cosαi
√
k2 − q2x − (|qz|+ k sinαi)

2 + k2 − q2x − q2z − 2k sinαi|qz| − k2 sin2 αi

(28)
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And note the difference of these quantities:

q2y,− − q2y,+ = −2k cosαi
√
k2 − q2x (qz + k sinαi)

2 − 2k sinαiqz (29)

−
(
−2k cosαi

√
k2 − q2x − (qz − k sinαi)

2 + 2k sinαiqz

)
(30)

= 2k cosαi

(√
k2 − q2x − (qz − k sinαi)

2 −
√
k2 − q2x (qz + k sinαi)

2

)
− 4k sinαiqz

(31)

Inserting the above equations into the intensity ratio:

I+
I−

=
e−

q2y,+

2σ2

e−
q2y,−
2σ2

(32)

= exp
[
+

1
2σ2

(
q2y,− − q2y,+

)]
(33)

= exp
[
k cosαi
σ2

(√
k2 − q2x − (qz − k sinαi)

2 −
√
k2 − q2x (qz + k sinαi)

2

)
− 2k sinαi

σ2
qz

]
(34)

When the grazing angle is zero (αi = 0), symmetry is restored and I+/I− = 1. Similarly,
in the limit of a broad distribution in qy (which corresponds to low correlation in the y direction,
either due to low beam coherence or poor sample ordering along that direction), the ratio tends
to unity. In principle the intensity correction can be arbitrarily large, if the beam coherence and
sample ordering are both extremely high. In practice, the instrumental resolution (which defines
the width of the Ewald shell in reciprocal space) becomes a factor that limits σ to being a non-zero
quantity.

Figure 4: Estimates of the magnitude of the intensity correction due to Ewald curvature. Left:
intensity ratio for qx = 0.0008 Å−1 and qz = 0.006 Å−1. Right: Trend with qz for qx = 0.006 Å−1

and σ = 0.0005 Å−1.

The figure estimates the magnitude of this effect for experimentally-realistic conditions.
The resolution-limited σ for a typical experiment is of order 0.0005 Å−1. In extreme cases it
appears possible that an Ewald correction on the order of a few percent may be present. In cases
where this correction is non-negligible, a non-linear correction to the measured intensities would be
required.
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In-plane Scattering Correction

Actual scattering peaks occur with both a vertical tilt with respect to the sample horizon (αf ) and
an in-plane scattering angle (θf ). We consider here whether the refraction correction is different
for in-plane scattering peaks (qx 6= 0), as compared to the correction for the direct beam (qx = 0).
The correction is found to be negligible.

Figure 5: Geometry of scattering within a thin-film in GTSAXS.

In GTSAXS, the direct beam is refracted at both the air-film interface, and the film-
substrate interface. Scattering events occurs within the film, and the scattered rays in general form
an in-plane angle θf with respect to the direct beam. The scattered ray (like the direct beam)
is refracted at the film-substrate interface. The in-plane rotation of the scattered ray means that
the projected incident angle of the refracted beam is different from the direct beam. Thus the
refraction effect seen at the detector plane changes with θf .

Figure 6: Geometry of scattering towards the detector plane in a GTSAXS experiment.

In the coordinate system of the detector, the scattered ray travels slightly further than the
direct beam, and thus strikes the detector at a lower z-position. The magnitude of the effect is:

δz = D

(
1

cos θf
− 1
)

tanαf (35)

Where D is the sample-detector distance. In a typical experiment, qx = 0.01 Å−1 and
θf ≈ 0.08◦. So δz < 1µm, which is considerably smaller than typical detector pixel resolution.
This correction to the refraction effect is thus entirely negligible.
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