Journal of Applied Crystallography

ISSN 0021-8898

Supplementary Material for
 Optimum velocity of a phase space transformer for cold neutron backscattering spectroscopy

Marcus Hennig, ${ }^{\text {a }}$ Bernhard Frick ${ }^{\text {a }}$ and Tilo Seydel ${ }^{\text {a* }}$

Institut Max von Laue - Paul Langevin, Grenoble, France. Correspondence e-mail: seydel@ill.eu
Here we provide supplementary material for the implementation of the numerical methods quoted in the paper.

0000 International Union of Crystallography Printed in Singapore - all rights reserved

For a physical solution we have to require that the matrix has no complex entries, which is fulfilled if

$$
\begin{equation*}
Q^{2} \leq 4 k^{2} \Leftrightarrow Q \leq 2 k \Leftrightarrow \lambda \leq 2 d \tag{6}
\end{equation*}
$$

which coincides with Bragg's law. Finally we construct a solution in the three-dimensional space by projecting the wavevector onto the inclined plane that is perpendicular to the $X Y$-plane. To this end, we introduce an isomorphism, consisting of a polar transformation and the identity function:

$$
\mathbf{k} \rightarrow\binom{\varphi}{\mathbf{k}_{2}}=\left(\begin{array}{c}
\arg \left(k_{x}, k_{y}\right) \tag{7}\\
\sqrt{k_{x}^{2}+k_{y}^{2}} \\
k_{z}
\end{array}\right)
$$

and its corresponding inverse

$$
\binom{\varphi}{\mathbf{k}_{2}} \rightarrow \mathbf{k}=\left(\begin{array}{c}
k_{x y} \cos \varphi \tag{8}\\
k_{x y} \sin \varphi \\
k_{z}
\end{array}\right)
$$

We transform the three-dimensional wavevector \mathbf{k} using the coordinate transformations 7, obtaining both the twodimensional wavevector \mathbf{k}_{2} and the angle φ. For the given \mathbf{k}_{2} we calculate the corresponding \mathbf{Q}_{2} using equation 5. Transforming φ and \mathbf{Q}_{2} back to the three-dimensional space by using equation 8 results after some algebraic manipulations in

$$
\mathbf{Q}=-\frac{Q^{2}}{2 k^{2}}\left\{\mathbf{k}+\frac{1}{Q} \sqrt{\frac{4 k^{2}-Q^{2}}{k_{x}^{2}+k_{y}^{2}}}\left(\begin{array}{c}
k_{x} k_{z} \tag{9}\\
k_{y} k_{z} \\
-k_{x}^{2}-k_{y}^{2}
\end{array}\right)\right\}
$$

With this, we have one arbitrary solution \mathbf{Q}_{0} to equation 1. The continuous set of all possible solutions is then generated by means of a rotation as described by equation 2 . Among all possible \mathbf{Q} we chose the one which is in the scattering plane orthogonal to the crystallite surface, which is precisely \mathbf{Q}_{0} due to its construction. Finally, we obtain:

$$
\mathbf{Q}(\mathbf{k})=-\frac{Q^{2}}{2 k^{2}}\left\{1+c\left(\begin{array}{ccc}
k_{z} & 0 & 0 \tag{10}\\
0 & k_{z} & 0 \\
-k_{x} & -k_{y} & 0
\end{array}\right)\right\} \mathbf{k}
$$

research papers

with

$$
\begin{equation*}
c=\sqrt{\left(\frac{4 k^{2}}{Q^{2}}-1\right) /\left(k_{x}^{2}+k_{y}^{2}\right)} . \tag{11}
\end{equation*}
$$

2. Monte Carlo Algorithm

We employ a Monte Carlo simulation in order to estimate the distribution of wavevectors after the neutrons passed the PST. For this purpose, we generate first a set of random neutrons described by a wavevector \mathbf{k}, a position \mathbf{r} and a weight p. The random wavevectors \mathbf{k} are drawn from an appropriate distribution function such that they have the required divergence and polychromaticity. The weight p of all neutrons is initially set to unity and the total of all weights corresponds the the flux of the neutrons. After performing a raytracing by shifting the position \mathbf{r} of the neutrons such that they hit the crystal surface, their
wavevectors are transformed by

$$
\begin{align*}
\mathbf{r}^{\prime} & =\mathbf{r} \\
\mathbf{k}^{\prime} & =\mathbf{k}^{\prime}+\mathbf{Q}\left(\mathbf{k}^{\prime}-\mathbf{K}\right) \\
p^{\prime} & =R \cdot p \tag{12}
\end{align*}
$$

where \mathbf{K} corresponds to the velocity of the crystal as defined in the paper and R is the Sears reflectivity (Sears, 1997a; Sears, 1997b) taking the mosaic structure of the crystal into account. The momentum transfer vector \mathbf{Q} is calculated using equation 10 .

References

Sears, V. (1997a). Acta Crystallographica Section A, 53, 35-45.
Sears, V. (1997b). Acta Crystallographica Section A, 53, 46-54.

