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1. Bragg reflection on a mosaic crystal
To mathematically describe the Bragg reflection of neutrons
on a mosaic crystal, we consider a polychromatic and diver-
gent neutron beam, denoted by a single random wavevectork
impinging on a mosaic crystal with lattice spacingd. As first
step, we assume an isotropically reflecting powder. Hence, an
impinging neutron will find a crystallite in the powder with an
orientation such that the condition for Bragg reflection is ful-
filled. By assigning a probability for reflection according to the
Sears equation (Sears, 1997a; Sears, 1997b) we can then read-
ily reduce the powder to a mosaic crystal. For each neutron with
wave vectork the reciprocal lattice vectorQ of the crystallite is
determined by the set of equations:

k f = k + Q

||k f || = ||k|| and ||Q|| =
2π

d
. (1)

Givenk andd, and beQ0 a solution of the equations 1, the con-
tinuous set of all possible solutions is obtained by rotating Q0

about the incident wave vectork with an angleϕ ∈ [0, 2π],

Q(ϕ) = exp

(

ϕ
k

||k||
∧

)

Q0 (2)

where exp
(

ϕ k
||k||∧

)

acts as a rotational operator and∧ denotes

the vector cross product.
It remains to find an arbitrary solutionQ0. It is possible to solve
equation 1 in two dimensions and construct from this result the
three-dimensional solution to equation 1. In the followingall
vectors are considered to be elements of the two-dimensional
space. We expand‖k + Q‖2 = ‖k f‖

2, and by introducing the
angleθ betweenQ andk we obtain

k · Q = Q k cos(θ) = −
Q2

2
. (3)

This relation enables us to generateQ by both scaling and rotat-
ing k about the point of origin by an angleθ:

Q =
Q
k

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

k. (4)

Using equation 3 to expressθ in terms ofQ andk yields

Q = −
Q2

2k2





1 −
√

4 k2

Q2 − 1

+
√

4 k2

Q2 − 1 1



 k. (5)

For a physical solution we have to require that the matrix has
no complex entries, which is fulfilled if

Q2 ≤ 4k2 ⇔ Q ≤ 2k ⇔ λ ≤ 2d (6)

which coincides with Bragg’s law. Finally we construct a solu-
tion in the three-dimensional space by projecting the wavevec-
tor onto the inclined plane that is perpendicular to theXY -plane.
To this end, we introduce an isomorphism, consisting of a polar
transformation and the identity function:

k →

(

ϕ

k2

)

=







arg(kx, ky)
√

k2
x + k2

y

kz






(7)

and its corresponding inverse

(

ϕ

k2

)

→ k =





kxy cosϕ
kxy sinϕ

kz



 (8)

We transform the three-dimensional wavevectork using
the coordinate transformations 7, obtaining both the two-
dimensional wavevectork2 and the angleϕ. For the givenk2 we
calculate the correspondingQ2 using equation 5. Transforming
ϕ andQ2 back to the three-dimensional space by using equa-
tion 8 results after some algebraic manipulations in

Q = −
Q2

2k2







k +
1
Q

√

4k2 − Q2

k2
x + k2

y





kxkz

kykz

−k2
x − k2

y











. (9)

With this, we have one arbitrary solutionQ0 to equation 1.
The continuous set of all possible solutions is then generated
by means of a rotation as described by equation 2. Among all
possibleQ we chose the one which is in the scattering plane
orthogonal to the crystallite surface, which is preciselyQ0 due
to its construction. Finally, we obtain:

Q (k) = −
Q2

2k2







1 + c





kz 0 0
0 kz 0

−kx −ky 0











k (10)
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with

c =

√

(

4k2

Q2
− 1

)

/
(

k2
x + k2

y

)

. (11)

2. Monte Carlo Algorithm

We employ a Monte Carlo simulation in order to estimate the
distribution of wavevectors after the neutrons passed the PST.
For this purpose, we generate first a set of random neutrons
described by a wavevectork, a positionr and a weightp. The
random wavevectorsk are drawn from an appropriate distribu-
tion function such that they have the required divergence and
polychromaticity. The weightp of all neutrons is initially set
to unity and the total of all weights corresponds the the flux of
the neutrons. After performing a raytracing by shifting theposi-
tion r of the neutrons such that they hit the crystal surface, their

wavevectors are transformed by

r′ = r

k′ = k′ + Q(k′ − K)

p′ = R · p (12)

whereK corresponds to the velocity of the crystal as defined
in the paper andR is the Sears reflectivity (Sears, 1997a; Sears,
1997b) taking the mosaic structure of the crystal into account.
The momentum transfer vectorQ is calculated using equa-
tion 10.

References

Sears, V. (1997a).Acta Crystallographica Section A, 53, 35–45.
Sears, V. (1997b).Acta Crystallographica Section A, 53, 46–54.

2 Hennig, Frick and Seydel · Supplementary Material J. Appl. Cryst. (0000). 00, 000000

IUCr macros version 2.1.2: 2010/05/13


