Journal of Applied Crystallography

ISSN 0021-8898

Supplementary Material for

Optimum velocity of a phase space transformer for cold neutron backscattering spectroscopy

Marcus Hennig, a Bernhard Frick and Tilo Seydel a*

Institut Max von Laue - Paul Langevin, Grenoble, France. Correspondence e-mail: seydel@ill.eu

© 0000 International Union of Crystallography Printed in Singapore – all rights reserved Here we provide supplementary material for the implementation of the numerical methods quoted in the paper.

1. Bragg reflection on a mosaic crystal

To mathematically describe the Bragg reflection of neutrons on a mosaic crystal, we consider a polychromatic and divergent neutron beam, denoted by a single random wavevector ${\bf k}$ impinging on a mosaic crystal with lattice spacing d. As first step, we assume an isotropically reflecting powder. Hence, an impinging neutron will find a crystallite in the powder with an orientation such that the condition for Bragg reflection is fulfilled. By assigning a probability for reflection according to the Sears equation (Sears, 1997a; Sears, 1997b) we can then readily reduce the powder to a mosaic crystal. For each neutron with wave vector ${\bf k}$ the reciprocal lattice vector ${\bf Q}$ of the crystallite is determined by the set of equations:

$$\mathbf{k}_{f} = \mathbf{k} + \mathbf{Q}$$

$$||\mathbf{k}_{f}|| = ||\mathbf{k}|| \text{ and } ||\mathbf{Q}|| = \frac{2\pi}{d}.$$
(1)

Given \mathbf{k} and d, and be \mathbf{Q}_0 a solution of the equations 1, the continuous set of all possible solutions is obtained by rotating \mathbf{Q}_0 about the incident wave vector \mathbf{k} with an angle $\varphi \in [0, 2\pi]$,

$$\mathbf{Q}(\varphi) = \exp\left(\varphi \frac{\mathbf{k}}{||\mathbf{k}||} \wedge\right) \mathbf{Q}_0 \tag{2}$$

where $\exp\left(\varphi\frac{\mathbf{k}}{||\mathbf{k}||}\wedge\right)$ acts as a rotational operator and \wedge denotes the vector cross product.

It remains to find an arbitrary solution \mathbf{Q}_0 . It is possible to solve equation 1 in two dimensions and construct from this result the three-dimensional solution to equation 1. In the following all vectors are considered to be elements of the two-dimensional space. We expand $\|\mathbf{k} + \mathbf{Q}\|^2 = \|\mathbf{k}_f\|^2$, and by introducing the angle θ between \mathbf{Q} and \mathbf{k} we obtain

$$\mathbf{k} \cdot \mathbf{Q} = Qk \cos(\theta) = -\frac{Q^2}{2}.$$
 (3)

This relation enables us to generate **Q** by both scaling and rotating **k** about the point of origin by an angle θ :

$$\mathbf{Q} = \frac{Q}{k} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \mathbf{k}. \tag{4}$$

Using equation 3 to express θ in terms of Q and k yields

$$\mathbf{Q} = -\frac{Q^2}{2k^2} \begin{pmatrix} 1 & -\sqrt{\frac{4k^2}{Q^2} - 1} \\ +\sqrt{\frac{4k^2}{Q^2} - 1} & 1 \end{pmatrix} \mathbf{k}. \quad (5)$$

For a physical solution we have to require that the matrix has no complex entries, which is fulfilled if

$$Q^2 \le 4k^2 \Leftrightarrow Q \le 2k \Leftrightarrow \lambda \le 2d \tag{6}$$

which coincides with Bragg's law. Finally we construct a solution in the three-dimensional space by projecting the wavevector onto the inclined plane that is perpendicular to the XY-plane. To this end, we introduce an isomorphism, consisting of a polar transformation and the identity function:

$$\mathbf{k} \to \begin{pmatrix} \varphi \\ \mathbf{k}_2 \end{pmatrix} = \begin{pmatrix} \arg(k_x, k_y) \\ \sqrt{k_x^2 + k_y^2} \\ k_z \end{pmatrix}$$
 (7)

and its corresponding inverse

$$\begin{pmatrix} \varphi \\ \mathbf{k}_2 \end{pmatrix} \to \mathbf{k} = \begin{pmatrix} k_{xy} \cos \varphi \\ k_{xy} \sin \varphi \\ k_z \end{pmatrix}$$
(8)

We transform the three-dimensional wavevector \mathbf{k} using the coordinate transformations 7, obtaining both the two-dimensional wavevector \mathbf{k}_2 and the angle φ . For the given \mathbf{k}_2 we calculate the corresponding \mathbf{Q}_2 using equation 5. Transforming φ and \mathbf{Q}_2 back to the three-dimensional space by using equation 8 results after some algebraic manipulations in

$$\mathbf{Q} = -\frac{Q^2}{2k^2} \left\{ \mathbf{k} + \frac{1}{Q} \sqrt{\frac{4k^2 - Q^2}{k_x^2 + k_y^2}} \begin{pmatrix} k_x k_z \\ k_y k_z \\ -k_x^2 - k_y^2 \end{pmatrix} \right\}.$$
(9)

With this, we have one arbitrary solution \mathbf{Q}_0 to equation 1. The continuous set of all possible solutions is then generated by means of a rotation as described by equation 2. Among all possible \mathbf{Q} we chose the one which is in the scattering plane orthogonal to the crystallite surface, which is precisely \mathbf{Q}_0 due to its construction. Finally, we obtain:

$$\mathbf{Q}(\mathbf{k}) = -\frac{Q^2}{2k^2} \left\{ 1 + c \begin{pmatrix} k_z & 0 & 0 \\ 0 & k_z & 0 \\ -k_x & -k_y & 0 \end{pmatrix} \right\} \mathbf{k}$$
 (10)

research papers

with

$$c = \sqrt{\left(\frac{4k^2}{Q^2} - 1\right) / \left(k_x^2 + k_y^2\right)}. (11)$$

2. Monte Carlo Algorithm

We employ a Monte Carlo simulation in order to estimate the distribution of wavevectors after the neutrons passed the PST. For this purpose, we generate first a set of random neutrons described by a wavevector \mathbf{k} , a position \mathbf{r} and a weight p. The random wavevectors \mathbf{k} are drawn from an appropriate distribution function such that they have the required divergence and polychromaticity. The weight p of all neutrons is initially set to unity and the total of all weights corresponds the the flux of the neutrons. After performing a raytracing by shifting the position \mathbf{r} of the neutrons such that they hit the crystal surface, their

wavevectors are transformed by

$$\mathbf{r}' = \mathbf{r}$$

 $\mathbf{k}' = \mathbf{k}' + \mathbf{Q}(\mathbf{k}' - \mathbf{K})$
 $p' = R \cdot p$ (12)

where **K** corresponds to the velocity of the crystal as defined in the paper and R is the Sears reflectivity (Sears, 1997a; Sears, 1997b) taking the mosaic structure of the crystal into account. The momentum transfer vector \mathbf{Q} is calculated using equation 10.

References

Sears, V. (1997a). *Acta Crystallographica Section A*, **53**, 35–45. Sears, V. (1997b). *Acta Crystallographica Section A*, **53**, 46–54.