SUPPORTING INFORMATION

In-crystal Chemical Ligation for Lead Generation

Junji Yamane,^{ab} Naoki Ohyabu,^b Min Yao,^a Hiroshi Takemoto^b and Isao Tanaka^{a*}

^aGraduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan, and ^bShionogi Innovation Center for Drug Discovery, Shionogi & CO., LTD., Sapporo 001-0021, Japan. E-mail: tanaka@castor.sci.hokudai.ac.jp

^{*}To whom correspondence should be addressed

Supplementary Methods

General

All compounds were synthesized from commercially available starting materials. The ¹H NMR spectra were o recorded on a Brucker DRX600. The spectra were recorded in hexadeuterodimethyl sulfoxide (DMSO-d₆, TMS internal standard). ESI-MS was obtained on a Shimadzu LCMS-2010EV.

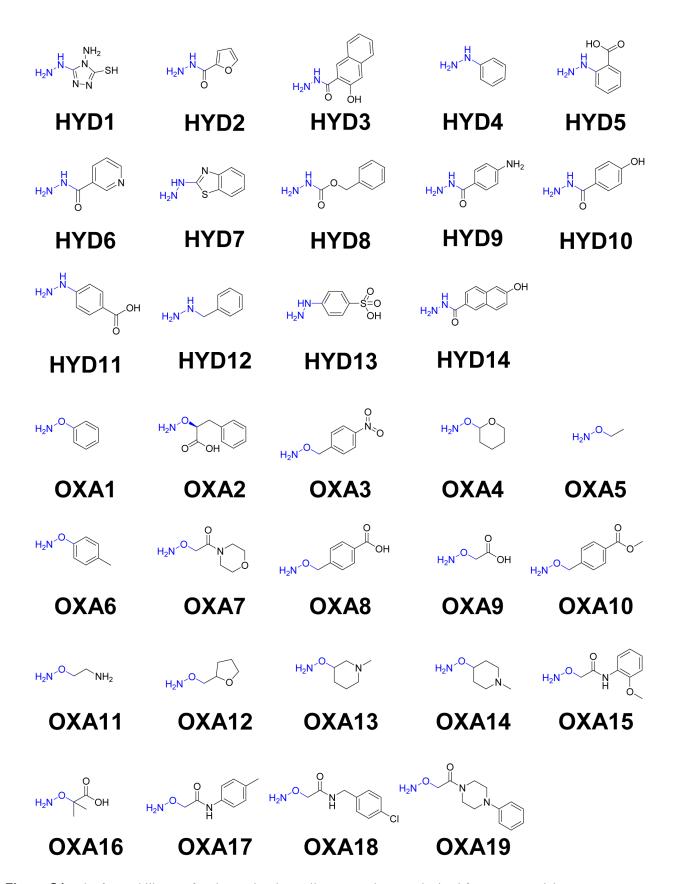
Syntheses of ALD2-OXA9, ALD2-OXA16, ALD2-HYD6

Aldehyde (1 mmol) and hydrazine or hydroxylamine (1 mmol) were dissolved in 0.1 M HEPES-NaOH buffer, pH = 7.8 (10 ml), supplemented with 1 mM aniline. The reaction mixture was stirred for 60 min at room temperature and the mixture was purified by reversed-phase HPLC (20% - 80% CH3CN / H2O, containing 0.1 % formic acid) with UV detection at 254 nm to afford the desired compound.

(E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid (ALD2-OXA9): a white powder; 1H-NMR (DMSO-d₆, 600 MHz): δ 9.47 (br s, 2H), 9.26 (br s, 2H), 8.49 (s, 1H), 7.91 (d, 2H, J = 8.3 Hz), 7.84 (d, 2H, J = 8.3 Hz), 4.73 (s, 2H); ESI-MS (positive) m/z 222 (M+H)⁺, (negative) m/z 220 (M-H)⁻.

(E)-2-(4-carbamimidoylbenzylideneaminooxy)-2-methylpropanoic acid (ALD2-OXA16): a white powder; 1H-NMR (DMSO-d₆, 600 MHz): δ 9.43 (br s, 2H), 9.18 (br s, 2H), 8.39 (s, 1H), 7.89 (d, 2H, J = 8.3 Hz), 7.81 (d, 2H, J = 8.3 Hz), 4.73 (s, 2H); ESI-MS (positive) m/z 250 (M+H)⁺, (negative) m/z 248 (M-H)⁻.

(E)-4-((2-nicotinoylhydrazono)methyl)benzimidamide (ALD2-HYD6): a white powder; 1H-NMR (DMSO-d₆, 600 MHz): δ 10.15 (s, 1H), 9.45 (br s, 2H), 9.21 (br s, 2H), 9.13 (s, 1H), 8.80 (d, 1H, J = 4.4 Hz), 8.64 (s, 1H), 8.34 (d, 1H, J = 8.3 Hz), 7.99 (d, 2H, J = 8.3 Hz), 7.60 (dd, 1H, J = 8.3, 4.4 Hz); ESI-MS (positive) m/z 268 (M+H)⁺, (positive) m/z 266 (M-H)⁻.



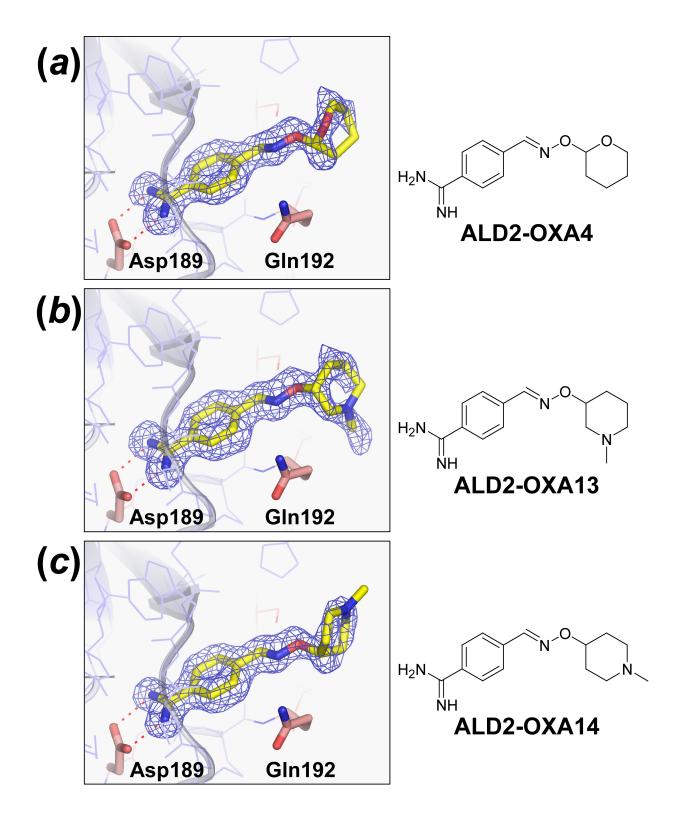
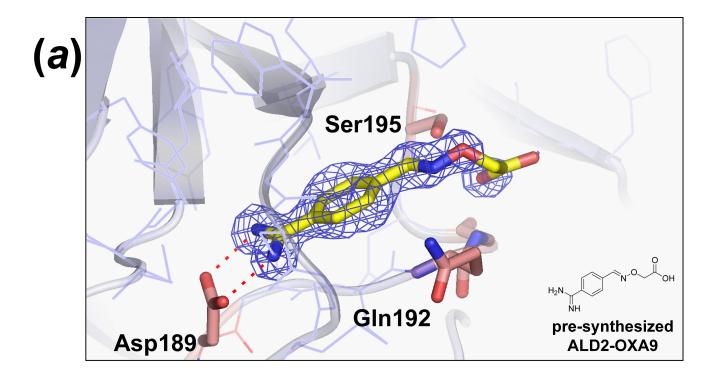


Figure S1 The focused library of tuning molecules. All compounds were obtained from commercial sources.



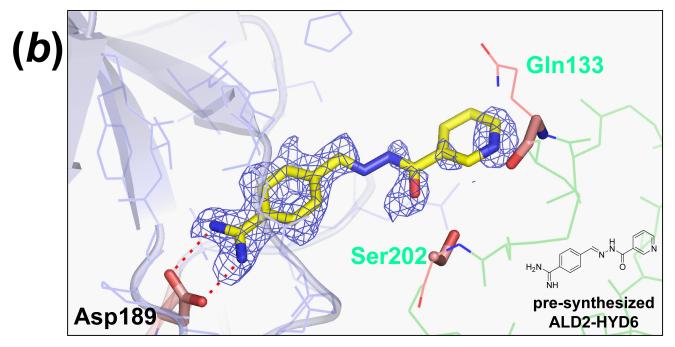

$$H_{2}N$$
 $H_{2}N$ $H_{2}N$

Figure S2 Dose-response curves of benzamidine, **ALD2-OXA9**, and **ALD2-OXA16**. The experiments and calculations of kinetic parameters were performed as described in the Methods section. To obtain the half maximal inhibitory concentration (IC_{50}), we used the percentage of inhibition (% inhibition) and the inhibitor concentration [I] as parameters for nonlinear curve fitting. The calculations were performed using the monophasic Hill equation. Obtained IC_{50} and Hill slope values were also shown. The experiment was repeated three times with essentially identical results.

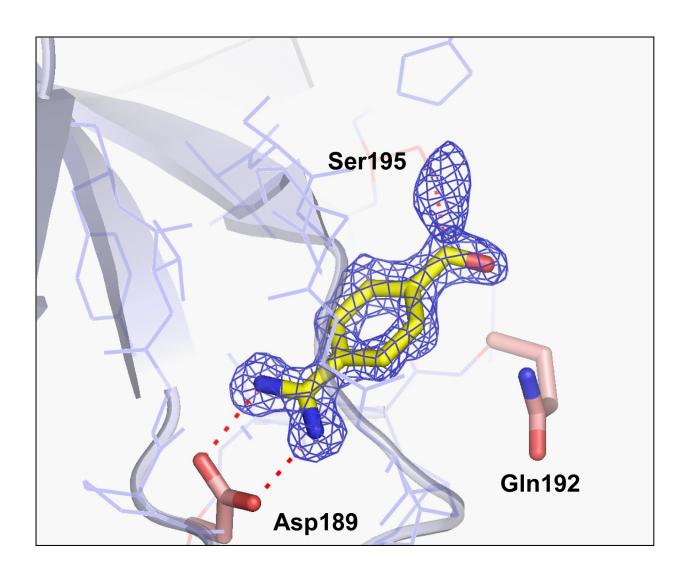


Figure S3 Marginal complex formation of self-assembled oximes. Self-assembled oximes (yellow carbon sticks) are superposed on the sigmaA-weighted Fo-Fc maps (a blue mesh contoured at 2.5 σ). Interacting side chains are shown as sticks. (*a*) **ALD2-OXA4**. (*b*) **ALD2-OXA13**. (*c*) **ALD2-OXA14**.

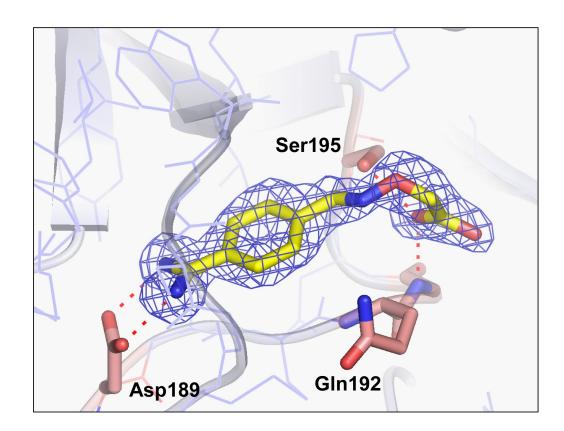


Figure S4 Binding of pre-synthesized oxime and hydrazone to the active site. **ALD2-OXA9** and **ALD2-HYD6** (yellow carbon sticks) are superposed on sigmaA-weighted Fo-Fc maps (a blue mesh contoured at 2.5 σ). Interacting side chains are shown as sticks. (*a*) Pre-synthesized **ALD2-OXA9**. (*b*) Pre-synthesized **ALD2-HYD6**. The symmetry-related counterpart is shown as green.

Figure S5 Blank ligation experiment without tuning molecule (but with aniline) using **ALD2**-bound crystal. Interacting side chains are shown as sticks. The sigmaA-weighted Fo-Fc map (a blue mesh contoured at 2.5σ) shows the "unknown" density blob at the expected position.

Figure S6 Selection of self-assembled oxime from cocktail solution of two tuning molecules. Top: The sigma-weighted Fo-Fc maps superposed with **ALD2-OXA9** and **ALD2-OXA16**. Bottom: The sigma-weighted Fo-Fc map (a blue mesh contoured at $2.5 \, \sigma$) of cocktail experiment showing more potent inhibitor **ALD2-OXA9** (yellow carbon sticks) is bound. Interacting side chains are shown as sticks. The hydrogen bond is given by a red line.