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Abstract

The asymptotic behaviour, at large scattering vector q, of the small-angle scattering

intensities of isotropic plane samples is similar to that of three-dimensional samples. In

fact, its expression, limited to the first two leading terms, is c1γ
(1)(0)/q3+c3γ

(3)(0)/q5,

where c1 and c3 are appropriate numerical constants and γ(1)(0) and γ(3)(0) the values,

at the origin, of the first and third derivatives of the two-dimensional correlation

function. These values are proportional to the specific length and to the mean square

reciprocal curvature radius of the interface curve. The angularity of the latter can

also be determined, while the presence of oscillations in the appropriate Porod plot is

related to a parallelism condition obeyed by the interface curve. These results are useful

for analysing the small-angle scattering intensities collected under grazing incidence

and diffused by film samples that are a collection of homogeneous cylinders of arbitrary

right sections.
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Appendix A
Algebraic singularities and oscillatory terms

We relax now the continuity assumption on the γ‖(r) derivatives of order greater

than one. Item (c) of §2 stated the geometrical conditions responsible for an algebraic

singular behaviour of γ
′′

‖
(r) while the behaviour around the singularity is specified

by Eq. (18). This implies that the subsequent derivatives no longer are integrable

functions so that the procedure, expounded in §3 to get the asymptotic behaviour

of the scattering intensity, requires more care. In fact, it will be shown now that

these singularities involve further terms beside the ones already worked out in the

asymptotic expansion of the scattering intensity.

Quite generally, let δ0 , . . . , δI denote the r values where γ
′′

‖
(r) and its higher order

derivatives are singular. Around one of these points (say δk, according to Eq.s (28)

and (36) of I) the γ
′

‖
(r) behaviour reads

γ
′

‖
(r) = gk,0 +

∑4
p=1 g

−

k,p
(δk − r)p/2 + o((δk − r)2) if r < δk, (47)

γ
′

‖
(r) = gk,0 +

∑4
p=1 g

+

k,p
(r − δk)p/2 + o((r − δk)2) if r > δk. (48)

Here, superscripts + and − denote that δk is approached from the right and left,

respectively. From Eq.s (47) and (48) follows that the right (left) second derivative

is not singular if g
+

k,1
= 0 (g

−

k,1
= 0). Similarly, if both g

+

k,1
= 0 and g

+

k,3
= 0, the

right third derivative also is regular about δk. Besides, at δ0 = 0, behaviour (48) only

occurs with g
+

0,1
= g

+

0,3
= 0 because the third right derivative is regular at r = 0. At the

end point δI =∞, the assumed exponential decrease of the CF implies that gI+1,0 =

g
−

I+1,1
= g

−

I+1,2
= . . . = 0 and behaviour (48) does not exist. We shall discuss the

simplest case of a single algebraic singularity at r = δ1 = δ. Further, by assumption,
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the singularity is present if δ is approached from the right. Putting

g1(r) ≡
d
(
rγ
′

‖
(r)
)

dr
, if 0 ≤ r ≤ δ, (49)

g2(r) ≡
d
(
rγ
′

‖
(r)
)

dr
, if δ < r, (50)

and using Eqs. (47) and (48) one finds that

g1(r) = g0,0 + 2g
+

0,2
r + 3g

+

0,4
r2 +O(r4), as r → 0+ (51)

g1(r) = (g1,0 − g
−

1,2
δ) + 2(g

−

1,2
− g−

1,4
δ)(δ − r) + (52)

3(g
−

1,4
− g−

1,6
δ)(δ − r)2 +O((δ − r)3), as r → δ−

g2(r) =
δg

+

1,1

2
√
r − δ

+ (g
1,0

+ δg
+

1,2
) +

3

2
(g

+

1,1
+ δg

+

1,3
)
√
r − δ + (53)

2(g
+

1,2
+ δg

+

1,4
)(r − δ) +

5

2
(g

+

1,3
+ δg

+

1,5
)(r − δ)3/2 +O((r − δ)2), r → δ+,

where, as it will be clear later, we only considered the terms that yield asymptotic

terms that do not decrease faster than q−5. Setting

G1(q) ≡
∫ δ

0
J0(qr)g1(r)dr, (54)

G2(q) ≡
∫ ∞
δ

J0(qr)g2(r)dr, (55)

from Eq. (24) follows that

γ̃‖(q) = −2π

q2

[
G1(q) +G2(q)

]
. (56)

To determine the asymptotic behaviour of γ̃‖(q) we must determine those of G1(q)

and G2(q) up to the O(q−3) terms included. These are obtained using the reported

expressions of g1(r) and g2(r). In fact, the asymptotic behaviour of G1(q) is obtained

integrating by parts. A first integration gives

G1(q) = −
(g1,0 − g

−

1,2
δ)J0(qδ)

q
+
g0,0

q
+

1

q

∫ δ

0
J0(r q)g

′

1
(r)dr, (57)
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where we used Eq.s (25), (27) and (52). An integration by parts of the above integral

and Eq.s (33), (34) and (52) give∫ δ

0
J0(r q)g

′

1
(r)dr = −

2(g
−

1,2
− g−

1,4
δ)J1(qδ)

q
− 1

q

∫ δ

0
J1(r q)g

′′

1
(r)dr. (58)

Finally, an integration by parts of the last integral and Eq.s (37), (38) and (52) yield∫ δ

0
J1(r q)g

′′

1
(r)dr = −

g
′′

1
(δ−)J2(qδ)

q
+

6g0,4

q
+

1

q

∫ δ

0
J2(r q)g

′′′

1
(r)dr (59)

with g
′′

1
(δ−) ≡ 6(g

−

1,2
− g−

1,4
δ). Below Eq. (38) we noted that the leading asymptotic

term of J2(x) oscillates and decreases as x−1/2 [see Eq. (29)]. Then, the last term on

the right-hand side of Eq. (59) is o(q−1) and the first term is O(q−3/2). Collecting

these results and recalling that g0,0 = γ
′

‖
(0+) and g0,4 = γ

′′′

‖
(0+)/2, one finds that

G1(q) ≈
γ
′

‖
(0+)

q
−

3γ
′′′

‖
(0+)

q3
− (60)

2(g1,0 − g
−

1,2
δ)J0(qδ)

q
−

6(g
−

1,2
− g−

1,4
δ)J1(qδ)

q2
+ o(q−3).

After substituting this expression into Eq. (56) and using Eq.s (15) and (17), the first

two terms reproduce the rhs of Eq. (37). The remaining two terms, by Eq.s (29) and

(35), give rise to a sum of oscillatory contributions. The first leading ones are O(q7/2)

and O(q9/2). The ’frequency’ of the oscillations is equal to 2π/δ and is therefore

determined by δ the position of the singularity.

To get the asymptotic expansion of G2(q) we substitute the asymptotic expansions of

J0(x) (see Eq. 8.451 of GR)

J0(x) ≈
√

2

πx

∑1
k=0

[
(−1)kΓ(2k+ 1

2
)

22k(2k)!Γ( 1
2
−2k)

cos(x−π
4

)

x2k
−

(−1)kΓ(2k + 3
2)

22k+1(2k + 1)!Γ(−1
2 − 2k)

sin(x− π
4 )

x2k+1

]
, (61)

into Eq. (55). The sum is truncated at k = 1 because we are interested in the terms

up to O(q−3) included. One finds

G2(q) ≈
∑1
k=0[akAk(q) + bkBk(q)] (62)
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with

akAk(q) ≡
(−1)k

√
2 Γ(2k + 1

2)

22k
√
π (2k)!Γ(1

2 − 2k)

∫ ∞
δ

cos(qr − π
4 )

(qr)2k+ 1
2

g2(r)dr (63)

and

bkBk(q) ≡ −
(−1)k

√
2 Γ(2k + 3

2)

22k+1
√
π (2k + 1)!Γ(−1

2 − 2k)

∫ ∞
δ

sin(qr − π
4 )

(qr)2k+ 3
2

g2(r)dr. (64)

Here Ak(q) and Bk(q) denote the integrals and ak and bk the numerical coefficients in

front of the integrals. Clearly Ak(q) can be written as

Ak(q) =
1

q2k+ 1
2

Re

(
e−

iπ
4

∫ ∞
δ

eiqr
g2(r)

r2k+ 1
2

dr

)
(65)

where Re means real part. In the same way, Bk(q) can be expressed as the imaginary

part of a similar integral. Now, we rewrite Eq. (53) as

g2(r)/r2k+ 1
2 =

1√
r − δ

ψ1(r)

r2k+ 1
2

+
ψ2(r)

r2k+ 1
2

(66)

where ψ1(r) and ψ2(r) exponentially decrease as r →∞ and behave as

ψ1(r) ≈
δg

+

1,1

2
+

3

2
(g

+

1,1
+ δg

+

1,3
)(r − δ) +

5

2
(g

+

1,3
+ δg

+

1,5
)(r − δ)2 + . . . (67)

ψ2(r) ≈ (g
1,0

+ δg
+

1,2
) + 2(g

1,2
+ δg

+

1,4
)(r − δ) + . . . (68)

as r → δ+. Ak(q) becomes the sum of two integrals respectively involving ψ1(r)/r2k+ 1
2

and ψ2(r)/r2k+ 1
2 . Their asymptotic behaviours are respectively given by Eq.s (4) and

(2) of section 2.8 of Erdéley (1957) with the obvious substitutions (1− λ)→ 1/2 and

ϕ(t)→ ϕ1,k(r) ≡ ψ1(r)/r2k+ 1
2 (69)

in the first case, and

ϕ(t)→ ϕ2,k(r) ≡ ψ2(r)/r2k+ 1
2 (70)

in the second one (besides x → q, t → r, α → δ and β → ∞). Hence, the first three

leading terms of Ak(q) are

Ak(q) =
∑2
n=0

[
Γ(n+1/2) ϕ1,k

(n)(δ) cos(qδ+πn/2)

n! q2k+n+1 − (71)

ϕ2,k
(n)(δ) cos(qδ + πn/2− 3π/4)

q2k+n+3/2

]
.
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In a similar way one finds that

Bk(q) =
∑1
n=0

[
Γ(n+1/2) ϕ1,k

(n)(δ) sin(qδ+πn/2)

n! q2k+n+2 − (72)

ϕ2,k
(n)(δ) sin(qδ + πn/2− 3π/4)

q2k+n+5/2

]
.

Once results (71) and (72) are substituted into Eq. (62), the sums over k and n will be

restricted to those values such that the resulting exponents of q do not exceed value

3, i.e. (2k+n+1) ≤ 3, (2k+n+3/2) ≤ 3, and so on. In this way, G2(q) will be a sum

of known terms that have an oscillatory vanishing behaviour. The frequency of the

oscillation is determined by δ. For each term, the amplitude of the oscillation vanishes

as a reciprocal power of q with an exponent integers or half-integer (not smaller than

one). Actually, powers q−1 and q−3/2 are present if and only if the second derivative

of the CF is singular. In such a case, combining these results with Eq.s (56) and (60),

the asymptotic oscillatory leading contribution to γ̃‖(q) reads

−2π

√
δ

2

g
+

1,1
cos(qδ)

q3
. (73)

This is the case of the SqBf illustrated on the left of Fig. 1. In a similar way, if the

second derivative of the 2D CF is continuous and the third is not, the amplitudes of

the first two oscillatory asymptotic leading terms decrease as q−2 and q−5/2. This is

the T case illustrated on the right of Fig. 1.
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