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The solution scattering intensity of a rectangular cuboid with a uniform electron density contrast, ∆ρ0, and dimensions ω,
τ and µ, in the x, y and z directions, respectively, is:

I (q) =
8∆ρ2

0

q6

2π̂

0

dφq

π̂

0


[1− cos (q sin θq cosφqω)]×
[1− cos (q sin θq sinφqτ)]×

[1− cos (q cos θqµ)]×
sin−3 θq cos−2 φq sin−2 φq cos−2 θq

 dθq. (1)

Stack of infinite flat uniform slabs with varying electron density N is the number of infinite flat slabs. τi and τi−1

are the start and end points of the ith slab, along the z direction. The electron density contrast of the ith slab is defined as
∆ρi = ρi − ρsolvent, where ρsolvent is the solvent electron density and ρi is the uniform slab electron density. The scattering
intensity in solution is:

I (q) =
8π2S

q4

N∑
i=1

N∑
j=1

∆ρj∆ρi

 cos [q (τj − τi)]−
2 cos [q (τj−1 − τi)] +
cos [q (τj−1 − τi−1)]

 , (2)

where S is a correction prefactor with units of area.

Stack of infinite flat slabs having a Gaussian electron density profile along the normal direction It is useful
to consider a stack of N infinite flat layers that have a uniform electron density contrast in the xy plane, but their electron-
density contrast profile along the z direction is given by a sum of N Gaussian functions where the maximum of the electron
density contrast, ∆ρi, of the ith layer is centered at z = zi and the full width at half maximum (FWHM) of the ith layer is
τi . In this case :

I (q) =
2π3S

q2 ln 2

N∑
i=1

N∑
j=1


∆ρj∆ρiτjτi·

e−
q2(τ2

i +τ2
j )

16 ln 2 ·
cos [q (zi − zj)]

 . (3)

Multiple uniform spherical shells with varying electron density We now consider the case of a sequence of N
shells. The uniform electron density contrast of the ith shell is ∆ρi, its core radius is Ri−1 and its outer shell radius is Ri,
where R0 ≡ 0. In this case:

I (q) = 4π

∣∣∣∣∣∣∣
4π

q2


N−1∑
i=1

(∆ρi −∆ρi+1)
[
cos (qRi)Ri − sin(qRi)

q

]
−∆ρN

[
cos (qRN )RN − sin(qRN )

q

]

∣∣∣∣∣∣∣
2

. (4)

Multiple spherical shells with Gaussian electron density profiles along the radial direction A more realistic
situation of multiple spherical shells is when each layer has a Gaussian electron density profile along the radial direction, r.
The center of the ith layer is located at ri, its FWHM is τi and its electron density contrast at ri is ∆ρi. In this case we get:
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I (q) = 4π
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where y is an integration variable.

Concentric uniform hollow cylinders with varying electron density The intensity of N concentric hollow cylinders
that each has a uniform electron density contrast, ∆ρi, shell radius, Ri, core radius, Ri−1, and height, 2h , is:
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where x = cos θq.
If the concentric cylinders are infinitely long the measured intensity in solution is:

I (q) =
(16π4)L
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

N−1∑
i,j=1

[
(∆ρi −∆ρi+1)RiJ1 (qRi)×
(∆ρj −∆ρj+1)RjJ1 (qRj)

]
+2

N−1∑
i=1

[
RN∆ρNJ1 (qRN )×

(∆ρi −∆ρi+1)RiJ1 (qRi)

]
+R2

N∆ρ2
NJ

2
1 (qRN )

 , (7)

where L is a correction prefactor with units of length.

Concentric hollow cylinders with Gaussian electron density profiles along the radial projection A more
realistic situation is when each cylindrical layer has a Gaussian electron density profile along its radial projection, r⊥. The
center of the ith layer is located at ri, its FWHM is τi and its electron density contrast at ri is ∆ρi. The intensity of this
model is:

I (q) =
32π3
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0
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2
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For infinitely long cylinders the measured intensity in solution is:

I (q) = 64π4L
q

∣∣∣∣∣ N∑i=1

∆ρi
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2

. (9)

Concentric hollow cylindroids with varying electron density A cylindroid is a rod with an elliptical cross section
that is defined by its radii, a and b along the x- and y-axes. The scattering intensity from N concentric hollow cylindroids
that each has a uniform electron density contrast ∆ρi, shell radii ai and bi, along the x and y directions, respectively, and
the corresponding core radii, ai−1 and bi−1 and height 2h is:
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, (10)
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where εi (ai, bi) ≡
√

1−
(
bi
ai

)2

is the eccentricity of the ith elliptical cross section.

For infinitely long cylindroids the measured intensity in solution is:
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where L is a correction prefactor with units of length.

A series of coaxial shifted infinitely long thick helices with a uniform electron density We look at k infinitely
long thick coaxial helices or radius R, pitch P , each of electron density ∆ρi and cross section radius Rics. The helices are
displaced along a common z axis by amounts ∆j from the first helix. The solution scattering intensity is:

I (q) =
8π3L
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2
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where hmax is a function of q and is given by: hmax = floor
(
qP
2π

)
.

A series of coaxial shifted finite length thick helices with a uniform electron density When the helices have a
finite length l = NP :
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2πP 2
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∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣

2
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where x = cos θq.

A series of coaxial shifted finite length helices composed of discrete spheres with a uniform electron density
We now consider the case of N coaxial discrete helices of radius Rhelix and pitch P . The jth helix is displaced from the first
helix by ∆j and composed of Nspheres spheres of radius Rj and uniform electron density contrast ∆ρj . The gap between two
spheres along the helix is δw and the projection of the distance between the centers of two adjacent spheres on the z-axis is

given by: δjz ≡
P (2Rj+δw)
2πRHelix

. The scattering intensity in solution is:

I (q) =

N∑
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{ 32π2

q6
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0
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√
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π

(
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j
z−n′δ

j′
z +∆j−∆

j′
)

P

 cos
(
qx
(
nδjz−n′δj

′
z

))} , (14)

where x = cos θq.

The 3D reciprocal lattice vectors (see section 2.3.2 of the paper for parameter definitions) are given by (Als-Nielsen &
McMorrow, 2001):

~a∗1 =
2π~a2 × ~a3

~a1 · (~a2 × ~a3)
,~a∗2 =

2π~a3 × ~a1

~a1 · (~a2 × ~a3)
,~a∗3 =

2π~a1 × ~a2

~a1 · (~a2 × ~a3)
. (15)

If ~a1 = (x1, y1, z1), ~a2 = (x2, y2, z2) and ~a3 = (x3, y3, z3), then:
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vc = ~a1 · (~a2 × ~a3) =
x1 (y2z3 − y3z2) + y1 (x3z2 − x2z3) + z1 (x2y3 − x3y2)

(16)

and we get that:

~a∗1 =
2π

vc
(x̂ (y2z3 − y3z2)− ŷ (x2z3 − x3z2) + ẑ (x2y3 − x3y2)) (17)

~a∗2 =
2π

vc
(x̂ (y3z1 − y1z3)− ŷ (x3z1 − x1z3) + ẑ (x3y1 − x1y3)) (18)

~a∗3 =
2π

vc
(x̂ (y1z2 − y2z1)− ŷ (x1z2 − x2z1) + ẑ (x1y2 − x2y1)) (19)

2D crystals can be represented in the x− y plane by two basis vectors: ~a1 = (x1, y1) , ~a2 = (x2, y2) and each lattice point in

real space is given by ~Rn1,n2
= n1~a1 + n2~a2 where n1 and n2 are integers. In reciprocal space ~a∗1 = 2π

s (x̂ (y2)− ŷ (x2)) and
~a∗2 = 2π

s (x̂ (−y1) + ŷ (x1)), where s = x1y2 − y1x2.

In the case of 1D crystals the lattice points in real space are given by: ~Rn1
= n1~a1 where ~a1 = ax̂. In reciprocal space we

get: ~a∗1 = 2π~a1

|~a1|2
= 2π

a x̂.

1D crystals are therefore represented only by the length a of their repeat unit and ~Gh = 2πh
a x̂. In solution scattering we only

get the magnitude of the Bragg scattering vectors:
∣∣∣~Gh∣∣∣ = 2πh

a . From the peak positions we only need to find the index h

and repeat distance a.
2D crystals can be represented by two basis vectors of lengths a and b and the angle between them γ. Those parameters
determine the type of lattice we get. If γ = π

2 we get a rectangular lattice. If γ = π
4 we get a centered rectangular lattice. If

γ 6= π
2 ,

π
4 we get an oblique lattice. If γ = π

2 and a = b we get a square lattice. If γ = 2π
3 and a = |~a1| = |~a2| = b we get a

hexagonal lattice.
We can always rotate the lattice so that ~a1 is along the x̂ direction and is given by:

~a1 = a(1, 0). (20)

~a2 is then given by:

~a2 = b (cos γ, sin γ) . (21)

Therefore:

~a∗1 =
2π

a
(1,
− cos γ

sin γ
), (22)

and

~a∗2 =
2π

b sin γ
(0, 1), (23)

~Gh,k = h~a∗1 + k~a∗2 =

(
2πh

a
,

2π

sin γ

(
k

b
− h cos γ

a

))
. (24)

In solution we only measure the absolute values:

∣∣∣~Gh,k∣∣∣ = 2π

√(
h

a

)2

+
1

sin2 γ

(
k

b
− h cos γ

a

)2

(25)

We need to fit a, b, γ and the indexes h and k of each peak.
In 3D we can select a plane use the 2D vectors as above and add a third vector ~a3 defined by it length c and two more angles
α and β, where the former is between the vectors ~a1 and ~a3, and the latter is between the vectors ~a2 and ~a3. In real space
the basis vectors are given by:

~a1 = (a, 0, 0), (26)

~a2 = (b cos γ, b sin γ, 0) , (27)

~a3 =

(
c cosα, cζ, c

√
sin2 α− ζ2

)
, (28)

where

ζ =
(cosβ − cosα cos γ)

sin γ
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and in reciprocal space:

~a∗1 =

(
2π

a
,
−2π cos γ

a sin γ
,

2π (ζ cos γ − cosα sin γ)

a sin γ
√

sin2 α− ζ2

)
, (29)

~a∗2 =

(
0,

2π

b sin γ
,
−2π (cosβ − cosα cos γ)

b sin2 γ
√

sin2 α− ζ2

)
, (30)

~a∗3 =

(
0, 0,

2π

c
√

sin2 α− ζ2

)
. (31)

The Bragg scattering vector amplitudes are: ∣∣∣~Gh,k,l∣∣∣ = |h~a∗1 + k~a∗2 + l~a∗3| = (32)

2π

ab sin γ

√√√√ (hb sin γ)
2

+ (ka− hb cos γ)
2

+
(hbc(cos γ cos β−cosα)−kacζ sin γ+lab sin2 γ)

2

c2(sin2 γ−cos2 α−cos2 β+2 cos β cosα cos γ)

. (33)

Here there is also classification of special cases. The general lattice is triclinic: a 6= b 6= c and α 6= β 6= γ. There are 2
monoclinic lattices: a 6= b 6= c and α = γ = 90 6= β, 4 orthorhombic lattices, for which a 6= b 6= c and α = β = γ = 90, 2
tetragonal lattices a = b 6= c and α = β = γ = 90, 3 cubic lattices a = b = c and α = β = γ = 90, a trigonal lattice a = b = c
and α = β = γ < 120, 6= 90, and a hexagonal lattice a = b 6= c and α = β = 90, γ = 120.

Algorithm 1 Automatic Baseline Detection

1: Start the baseline from a given point (qmin), end the baseline at the global minimum of the data
2: Interpolate a line between the beginning and the end of the baseline with zero slope and an intercept at the global

minimum
3: while baseline end-point is larger than the start-point do
4: while baseline does not intersect the data do
5: Increase line slope by ε and interpolate the start and end points
6: end while
7: Decrease line slope by the exact amount so that the lines don’t intersect
8: Interpolate the start and end points
9: Set the end-point of the baseline to the leftmost intersection point

10: end while

Algorithm 2 Automatic Peak Detection

1: Divide [I (q)−B (q)] by FF (q) and set to SFo (q)
2: Divide data points into segments according to σ
3: Calculate Goodness of Fit (GOF, see below) between SFc and SFo, set to χ2

4: for each segment do
5: Calculate GOF of SFc and SFo in the segment
6: Sum the difference between SFc and SFo for all points in the segment
7: if sum is not positive then
8: Continue to the next segment
9: end if

10: if GOF of the segment is greater than or equal to τ · χ2 then
11: Flag a peak to be added
12: end if
13: if the previous segment’s GOF is greater than the current segment’s GOF (we’ve passed the peak’s maximum), and

a peak is flagged to be added then
14: Find the local maximum in this segment and the previous one, set to peak center
15: Set the amplitude to the difference between SF0 and SFc at the peak center
16: From amplitude, center and SF0, deduce FWHM and add the peak to SFc
17: Clear the “add peak” flag
18: end if
19: end for
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The fitting procedure requires a signal-model difference measure, or Goodness of Fit. In order to calculate it, several
approaches may be taken. We allow the user to choose between the Coefficient of Determination, R2, and Weighted Sum of
Squared Residuals, χ2 We use w(q) =

√
q+ 1 as the weight function for χ2, as to give significantly more weight to the higher

q-range values.

In order to simulate the finite instrument resolution of a measurement we use a Gaussian weighted moving average on the
theoretical model. Each point is averaged with the points around it with Gaussian weights of width σ:

I
′
(qi) =

∑
n I(qn) · e−

(qi−qn)2

2σ2∑
n e
− (qi−qn)2

2σ2

,

The limits on the index n are determined by a cutoff of ±3σ around qi. The points closer to the edge have the Gaussian
function cropped on either side so that it remains symmetrical.

X+ is built for Windows, but can be run under Linux using Wine. A few additional programs must be installed under Wine.
The following is the full set of commands required to get X+ up and running. If any of the programs are installed, skip the
relevant command.

# apt-get install wine
$ wget http://winezeug.googlecode.com/svn/trunk/winetricks
$ sh winetricks corefonts dotnet20
$ sh winetricks vcrun2008
$ sh winetricks gdiplus

Run X+:
$ wine X+.exe
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6  Screenshots and short explanations

The opening window. In this screen, 
the desired geometric model can be 
chosen. In addition, under the Action 
menu, there are options for background 
subtraction (Extract Background…) 
and File Manipulation.

The File Manipulation window allows 
the manipulation of multiple files with 
one click. The options are to convert the 
file from inverse Angstroms to inverse 
nm; scale the entire signal; and to strip 
all headers and text from the files. New 
files are written to a new subdirectory.

The background pane. The Extract Baseline button (pink oval) 
opens a new window where a baseline can be generated. Another 
option is to add functions representing the background (green box).
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The Form Factor pane. The model’s parameters are entered in the areas surrounded by the 
blue boxes. Polydispersity of a parameter is controlled in the red dotted box. Constraints 
and linked parameters are defined in the area surrounded by the dashed pink box.

The Structure Factor pane. In the solid blue box peaks can be added. They can also 
be drawn on the graph itself with the mouse. Selected peaks can be moved to the 
Phase fitter (dotted pink box, follow the green arrows). There, the phase parameters 
can be fit to the peak centers. The iterative fitting can be chosen in the red oval.
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