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S1 Form Factor Expressions

S1.1 Rectangular cuboid with a uniform electron density

The solution scattering intensity of a rectangular cuboid with a uniform electron density contrast, Apg, and dimensions w,
7 and p, in the z,y and z directions, respectively, is:
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S1.2 Layered structures

Stack of infinite flat uniform slabs with varying electron density NN is the number of infinite flat slabs. 7; and 7;_4
are the start and end points of the ith slab, along the z direction. The electron density contrast of the ith slab is defined as
Ap; = pi — Psolvents WheTe pPgoivent 18 the solvent electron density and p; is the uniform slab electron density. The scattering
intensity in solution is:

W2 cos g (75 — 71)] -
1) = 5SS A ap | 2eonlq (s - )+ V. )
i=1j=1 cos (g (Tj—1 — Ti—1)]

where S is a correction prefactor with units of area.

Stack of infinite flat slabs having a Gaussian electron density profile along the normal direction It is useful
to consider a stack of IV infinite flat layers that have a uniform electron density contrast in the xy plane, but their electron-
density contrast profile along the z direction is given by a sum of N Gaussian functions where the maximum of the electron
density contrast, Ap;, of the ith layer is centered at z = z; and the full width at half maximum (FWHM) of the ith layer is
7; . In this case :
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S1.3 Spherical structures

Multiple uniform spherical shells with varying electron density We now consider the case of a sequence of N
shells. The uniform electron density contrast of the ith shell is Ap;, its core radius is R;_; and its outer shell radius is R;,
where Ry = 0. In this case:
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Multiple spherical shells with Gaussian electron density profiles along the radial direction A more realistic
situation of multiple spherical shells is when each layer has a Gaussian electron density profile along the radial direction, r.
The center of the ith layer is located at r;, its FWHM is 7; and its electron density contrast at r; is Ap;. In this case we get:
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where y is an integration variable.

S1.4 Cylindrical structures

Concentric uniform hollow cylinders with varying electron density The intensity of NV concentric hollow cylinders
that each has a uniform electron density contrast, Ap;, shell radius, R;, core radius, R;_1, and height, 2h , is
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where x = cos 0.
If the concentric cylinders are infinitely long the measured intensity in solution is:
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where L is a correction prefactor with units of length.

Concentric hollow cylinders with Gaussian electron density profiles along the radial projection A more
realistic situation is when each cylindrical layer has a Gaussian electron density profile along its radial projection, ;. The
center of the ith layer is located at r;, its FWHM is 7; and its electron density contrast at r; is Ap;. The intensity of this
model is:

. 2
|:51n(qcos th):| sin (aq) %

3973 cos O
10 =25 [{ o o —amaey 2 b, ®)
q S Apife i r1Jo (gsin@gry)dry
i=1 0
For infinitely long cylinders the measured intensity in solution is:
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Concentric hollow cylindroids with varying electron density A cylindroid is a rod with an elliptical cross section
that is defined by its radii, a and b along the x- and y-axes. The scattering intensity from N concentric hollow cylindroids
that each has a uniform electron density contrast Ap;, shell radii a; and b;, along the x and y directions, respectively, and
the corresponding core radii, a;_; and b;_; and height 2h is:
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where €; (a;,b;) =1/1 — (2—) is the eccentricity of the ith elliptical cross section.

For infinitely long cylindroids the measured intensity in solution is:

- (o - 2
7iqb1 cos(zr ZQ)T
| @ dp TV
i=1 b + 1
9 L27T 27 —7quOS(¢r—¢q)\/1—€%COSQ o a2 cos2(pr—dq)
T
I(q)="4- / _ig bty cos(or—dq) do,| do,, (11)
0% + Apye Vieheosor 1
bN 1
[iq cos(@r—oq)y/1-2%; cos? 4y tEaTs }
Ap
L~ 2 cos2(¢1~—¢q) J

where L is a correction prefactor with units of length.

S1.5 Coaxial helical structures

A series of coaxial shifted infinitely long thick helices with a uniform electron density We look at k infinitely
long thick coaxial helices or radius R, pitch P, each of electron density Ap; and cross section radius R},. The helices are
displaced along a common z axis by amounts A; from the first helix. The solution scattering intensity is:
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where h,,q, is a function of ¢ and is given by: hpax = floor (%).
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A series of coaxial shifted finite length thick helices with a uniform electron density When the helices have a
finite length | = N P:
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where x = cos 0.

A series of coaxial shifted finite length helices composed of discrete spheres with a uniform electron density
We now consider the case of N coaxial discrete helices of radius Rjeji and pitch P. The jth helix is displaced from the first
helix by A; and composed of Nypperes spheres of radius R; and uniform electron density contrast Ap;. The gap between two

spheres along the helix is d,, and the projection of the distance between the centers of two adjacent spheres on the z-axis is
P(2R;+64)

2=, The scattering intensity in solution is:
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S2 Peak Centers and Phases

The 3D reciprocal lattice vectors (see section 2.3.2 of the paper for parameter definitions) are given by (Als-Nielsen &
McMorrow, 2001):
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If dy = (x1,y1,21), d2 = (72,Y2, 22) and d3 = (x3,y3, 23), then:
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2D crystals can be represented in the x — y plane by two basis vectors: @; = (z1,41) , d2 = (z2,y2) and each lattice point in
real space is given by Ry, », = n1d; + neds where n; and ny are integers. In reciprocal space d@j = 2?” (Z (y2) — ¢ (z2)) and

ay = 2?’7 (Z (—y1) + 9 (z1)), where s = 21y2 — y122.

In the case of 1D crystals the lattice points in real space are given by: R,, = n;d; where @; = aZ. In reciprocal space we
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1D crystals are therefore represented only by the length a of their repeat unit and th = =7=1. In solution scattering we only

get the magnitude of the Bragg scattering vectors: ’éh’ = % From the peak positions we only need to find the index h

and repeat distance a.
2D crystals can be represented by two basis vectors of lengths a and b and the angle between them ~. Those parameters
determine the type of lattice we get. If v = 5 we get a rectangular lattice. If v = 7 we get a centered rectangular lattice. If

v # 5,7 we get an oblique lattice. If v = § and a = b we get a square lattice. If v = 2?“ and a = |d1| = |d2] = b we get a
hexagonal lattice.
We can always rotate the lattice so that d@; is along the & direction and is given by:
C_L'1 = a(l, O) (20)
do is then given by:
ds = b(cos~y,sin-y). (21)
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In solution we only measure the absolute values:
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We need to fit a, b,y and the indexes h and k of each peak.

In 3D we can select a plane use the 2D vectors as above and add a third vector @3 defined by it length ¢ and two more angles
« and (3, where the former is between the vectors d; and ds, and the latter is between the vectors ds and ds3. In real space
the basis vectors are given by:
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and in reciprocal space:
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The Bragg scattering vector amplitudes are:
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Here there is also classification of special cases. The general lattice is triclinic: @ # b # ¢ and o # 8 # 7. There are 2
monoclinic lattices: a # b # ¢ and o = v = 90 # 3, 4 orthorhombic lattices, for which a # b # c and a« = = vy = 90, 2
tetragonal lattices a = b # c and o = = v = 90, 3 cubic lattices a = b = c and a = § = vy = 90, a trigonal latticea = b= c¢
and a = f =y < 120, # 90, and a hexagonal lattice a = b # ¢ and o = § = 90, = 120.

S3 Algorithms

Algorithm 1 Automatic Baseline Detection

1: Start the baseline from a given point (¢min), end the baseline at the global minimum of the data
2: Interpolate a line between the beginning and the end of the baseline with zero slope and an intercept at the global
minimum
while baseline end-point is larger than the start-point do

while baseline does not intersect the data do

Increase line slope by € and interpolate the start and end points

end while

Decrease line slope by the exact amount so that the lines don’t intersect

Interpolate the start and end points

Set the end-point of the baseline to the leftmost intersection point
10: end while
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Algorithm 2 Automatic Peak Detection
1: Divide [I (¢) — B (q)] by FF (q) and set to SF, (q)
2: Divide data points into segments according to o
3: Calculate Goodness of Fit (GOF, see below) between SF, and SF,, set to x?
4: for each segment do

5: Calculate GOF of SF,. and SF, in the segment

6: Sum the difference between SF, and SF, for all points in the segment

7 if sum is not positive then

8: Continue to the next segment

9: end if

10: if GOF of the segment is greater than or equal to 7 - x? then

11: Flag a peak to be added

12: end if

13: if the previous segment’s GOF is greater than the current segment’s GOF (we’ve passed the peak’s maximum), and
a peak is flagged to be added then

14: Find the local maximum in this segment and the previous one, set to peak center

15: Set the amplitude to the difference between SFy and SF, at the peak center

16: From amplitude, center and SFy, deduce FWHM and add the peak to SF,

17: Clear the “add peak” flag

18: end if

19: end for




S4 Additional Features

S4.1 Goodness of Fit Criteria

The fitting procedure requires a signal-model difference measure, or Goodness of Fit. In order to calculate it, several
approaches may be taken. We allow the user to choose between the Coefficient of Determination, B2, and Weighted Sum of
Squared Residuals, x? We use w(q) = /@ + 1 as the weight function for X2, as to give significantly more weight to the higher
g-range values.

S4.2 Instrument Resolution

In order to simulate the finite instrument resolution of a measurement we use a Gaussian weighted moving average on the
theoretical model. Each point is averaged with the points around it with Gaussian weights of width o

_ (qi*q'n)z

Pl = Sullan) 5

( — n)2
En o a 2;12
The limits on the index n are determined by a cutoff of +30 around ¢;. The points closer to the edge have the Gaussian
function cropped on either side so that it remains symmetrical.

S5 Running X+ on Linux

X+ is built for Windows, but can be run under Linux using Wine. A few additional programs must be installed under Wine.
The following is the full set of commands required to get X+ up and running. If any of the programs are installed, skip the
relevant command.

# apt-get install wine

$ wget http://winezeug.googlecode.com/svn/trunk/winetricks

$ sh winetricks corefonts dotnet20

$ sh winetricks verun2008

$ sh winetricks gdiplus
Run X+:

$ wine X+.exe



S6 Screenshots and short explanations
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The Form Factor pane. The model’s parameters are entered in the areas surrounded by the
blue boxes. Polydispersity of a parameter is controlled in the red dotted box. Constraints
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be drawn on the graph itself with the mouse. Selected peaks can be moved to the
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