Legend to Supplementary Figures - Figure S1 Predicted secondary structural elements for the sequence of sperm Whale myoglobin N-Butyl isocyanide [PDB-id: 105M]. - Figure S2 The schematic diagram represents the comparison of secondary structures predicted (CSSP) by the proposed server and the correct secondary structural elements (PDB) obtained from the three-dimensional structure of sperm Whale myoglobin N-Butyl isocyanide [PDB-id: 105M]. - **Figure S3** The consensus secondary structure predicted by CSSP for the sequence of Mannose-specific agglutinin (Lectin) from *Glanthus Nivalis* [PDB-id: 1JPC]. - Figure S4 The diagram represents the comparison of secondary structures predicted (CSSP) and the secondary structures observed (PDB) in the three-dimensional structure of Mannose-specific agglutinin from *Glanthus Nivalis* [PDB-id: 1JPC]. ## Figure S1 | _ | | |--|---|--|--------------------------------------|--|----------------------------|----------------------------|--|-------|---------|---------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|---------------------------------------|---|---|---|---|---|--------------------------|--------| | | | | 1 (|) | | | 2 | 2 0 | | | | 3 | 0 | | | | 4 | 4 0 | | | 5 | 0 | AA Sequence | : | VLSEGEWQL | | | | | | | | _ | | | | | | | | | | | | | | DSC | : | ССССССНН | GOR IV | : | ССССССНН | H | ННН | ΗН | ΗН | ННІ | HH | CC | CE | HH | HH | НН | HH | CC | CCF | HH | ННН | HH | ННН | ННН | | | Predator | : | СССССНННН | H | ННН | ΗН | ΗН | ННІ | HHC | CC | CE | HH | НН | НН | НН | HC | HE | HH | ННН | ICC: | ННН | ННН | | | SIMPA96 | : | ССССНННН | H | ННН | ΗН | ΗН | ННІ | ННС | CC | HH | НН | НН | НН | НН | CC | HE | HH | ННН | НН | ННН | ННН | | | PSIPRED | : | СССННННН | ΗI | ННН | ΗН | ΗН | H C (| CHH | HH | НН | НН | НН | НН | НН | HC | НЕ | HH | ННН | НН | H C C | CCC | | | PROFphd | : | СССССНННН | Н | ННН | ΗН | ΗН | ННІ | HH | CC | НН | НН | НН | НН | НН | CC | НЕ | HH | ННН | HC | ННН | ННС | | | Consensus | : | СССССНННН | Н | ННН | ΗН | ΗН | НН | HH | CC | НН | НН | НН | НН | НН | CC | CHE | HH | ННН | НН | ннн | ННН | 6 (|) | | | - | 7 0 | | | | 8 | 0 | | | | | 90 | | | 10 | 0 | | | | | 1 | | | | | | | | | I | | | | | | 1 | | | 1 | | | AA Sequence | : | TEAEMKASE | D I | LKK | НG | VT | VL: | CAI | G.A | II | KK | KG | нн | EA | ΕI | KI | 2 L Z | AOS | HA | гкн | KIP | • | | DSC | : | нннннннн | Н | ННС | СС | СЕ | EEE | НН | НН | НН | НН | НС | CC | CCC | CC | CCE | HH | ннн | НС | CCC | CCC | | | GOR IV | : | нннннннн | Predator | : | нннннннн | Н | НС | CC | СН | нн | нн | НЕ | НЕ | НН | I C C | CC | CCC | CF | НН | Н | ннн | нн | ннс | CCC | | | SIMPA96 | : | нннннннн | PSIPRED | : | СНННССССН | PROFphd | : | НННННННН | Consensus | : | нининини | Consensus | • | | 111 | 1 11 11 | | C 11 | 11 11 1 | 1111. | . 11 1. | | . 11 1. | 1110 | | , 11 11 | . 11 1 | 1 11 1 | 1 11 1 | | 1 11 11 . | | | | | | | 1 | 1 (|) | | | 1 2 | 2.0 | | | | 13 | \cap | | | | 1 . | 4 0 | | | 15 | \cap | | | | 1 | Ι (|) | | | 1 4 | | | | | 1 0 | U | | | | Τ. | 1 | | | 1 0 | O | | AA Sequence | | IKYLEFISE | ,
7 | | 17 Τ . | пС | риі | CCL | FC | י א ב | A (| \
C | MN | ת <i>א</i> ו | т. т | т. т | וסי | '
Kut | - A A | v v v | FIG | 1 | | | | | | | | | | | E G | LVI | 'A Ç | , Gr | | | ш | | : 1/1 | | . AA | CIL | | | | SOURCE CONTRACTOR OF THE CONTR | : | | | | | | | | | 00 | чии | ппп | υц | | ппг | пцп | | | ппп | ם ם ם | | | | DSC | : | СННННННН | ΗΙ | ННН | EΕ | СС | CCC | CCC | CC | | | | | | | | НН | ННН | | | | | | DSC
GOR IV | : | C H H H H H H H H H H H H H H H H H H H | H I
H I | H H H
H H H | E E
H H | C C
H C | C C (| CCC | CC | НН HHH
HHH | ННЕ | НН | ннн | ННС | | | DSC
GOR IV
Predator | : | С Н Н Н Н Н Н Н Н
Н Н Н Н Н Н Н Н Н
С Н Н Н Н | Н I
Н I
Н I | H H H
H H H
H H H | EE
HH
HH | C C
H C
H H | C C (
C C (| | CC | HH | HH | НН | НН | НН | НН | НН | H H H
H H I
H H I | Н Н Е
Н Н Е
Н Н Е | н н н і
і н н і | ННН | ННС | | | DSC
GOR IV
Predator
SIMPA96 | :
:
: | СННННННН
НННННННН
СННННННН
ННННННН | H I
H I
H I
H I | H H H
H H H
H H H
H H H | E E
H H
H H
H H | CC
HC
HH
HC | C C (
C C (
C C (| | C C | H E
C C
C H E | HH
CCC
HH | I Н Н
С С Н
I Н Н | H H
H H
H H | I H H
I H H
I H H | H H H
H H H | НН
НН
НН | H H H H H H H H H H H H H H H H H H H | H H E
H H E
H H E
H H E | H H H : | н н н
н н н
н н н | ННС
ННН
ННС | | | DSC GOR IV Predator SIMPA96 PSIPRED | : : : : : | СНИННИННИ ННИННИННИ СИНИННИНИ НИНИННИ ННИННИ ННИННИ | H II
H II
H II
H II | H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH | CC
HC
HH
HC | C C (
C C (
C C (
C H H (| | | H E
C C
C H E | HHE
CCC
HHE | I Н Н
С С Н
I Н Н | H H
H H
H H | I H H
I H H
I H H | H H H H H H H H H H H H H H H H H H H | Н Н Н
Н Н Н
Н Н Н | H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H | H H H I
H H H I
H H H I | H H H
H H H
H H H
H H H | H H C
H H H
H H C | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPhd | :
:
: | СНИННИННИ ННИННИННИ СНИННИННИ НИННИННИ ННИННИ НИННИ ННИННИ | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED | : : : : : | СНИННИННИ ННИННИННИ СИНИННИНИ НИНИННИ ННИННИ ННИННИ | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPhd | : : : : : | СНИННИННИ ННИННИННИ СНИННИННИ НИННИННИ ННИННИ НИННИ ННИННИ | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPhd | : : : : : | СНИННИННИ ННИННИННИ СНИННИННИ НИННИННИ ННИННИ НИННИ ННИННИ | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd Consensus | : : : : : | СНИННИННИ ННИННИННИ СНИННИННИ ННИННИННИ ННИННИ ННИННИ ННИННИ ННИННИ | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd Consensus | : : : : : : | СНИНИНИНИ
НИНИНИНИНИ
СИНИНИНИНИ
НИНИНИНИ | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd Consensus | : : : : : | СНИНИННИН
НИНИННИНН
СНИНИННИНН
НИНИННИНН
НИНИННИНН
НИНИННИНН
НИНИННИНН
ИНИНИНННИН
YQG
CCC | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd Consensus AA Sequence DSC GOR IV | : | СНИНИНИНИ
НИНИНИНИНИ
СИНИНИНИНИ
НИНИНИНИНИ
НИНИНИНИНИ
НИНИНИНИ | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd Consensus AA Sequence DSC GOR IV Predator | : | CHHHHHHHHH HHHHHHHHH CHHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHHH HHHHHHHHHH HHHHHHHHHH YQG CCC EEC CCC CCC | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPhd Consensus AA Sequence DSC GOR IV Predator SIMPA96 | : | СННННННН
ННННННННН
СНННННННН
НННННННН | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPhd Consensus AA Sequence DSC GOR IV Predator SIMPA96 PSIPRED | : | СНННННННН
НННННННННН
СНННННННН
НННННННН | H I
H I
H I
H I
H I | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd Consensus AA Sequence DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd | : | С Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н | H II
H II
H II
H II
H II | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPhd Consensus AA Sequence DSC GOR IV Predator SIMPA96 PSIPRED | : | СНННННННН
НННННННННН
СНННННННН
НННННННН | H II
H II
H II
H II
H II | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | | DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd Consensus AA Sequence DSC GOR IV Predator SIMPA96 PSIPRED PROFPHd | | С Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н | H II
H II
H II
H II
H II | H H H
H H H
H H H
H H H
H H H
H H H | EE
HH
HH
HH
HH | CC
HC
HH
HC
HH | C C (
C C (
C C (
C C (
H H (
C C (| | | CHE
CHE
CHE | I Н Н
С С С
I Н Н
I Н Н | I Н Н
С С Н
I Н Н
I Н Н | H H
H H
H H
I H H | I H H
I H H
I H H
I H H | HHH
HHH
HHH
HHH | I H I
I H I
I H I
I H I
I H I | H H I
H H I
H H I
H H I
H H I | H H H
H H H
H H H
H H H
H H H | H H H : H H H : H H H : H H H : H H H : | H H H
H H H
H H H
H H H
H H H | HHC
HHH
HHC
HCC | | Percentage of alpha helix predicted = 79.084969 Percentage of beta sheet predicted = 0.000000 Figure S2 ## Figure S3 | | | 1 | 0 | 2 | 0 | 3 0 | 4 0 | 5 0 | |----------------------|---|------------|-------|--------|-------|----------|---------------|------| | | | | | 1 | | Ī | Ī | | | AA Sequence | : | | | | | | YDVDKPIWATNTO | | | DSC | : | CCEEEECCCC | CEEEI | EECCCC | EEEEE | ECCCCEEE | ECCCCCEEEECCC | CCCE | | GOR IV | : | CCCCCCCCC | CCCC | CCCCCC | EEEEE | ECCCCEEE | EECCCCEEEECCC | CCCC | | Predator | : | CCEEECCEEE | CCCEI | EEEECC | EEEEE | CCCCEEEI | EECCEEEEECCC | CCCC | | SIMPA96 | : | CEEEECCCCC | CCCC | CCCCCC | EEEEE | CCCCEEEI | ECCCCCEEECCCC | CCCC | | PSIPRED | : | CCEECCCEE | CCCCI | EEEECC | EEEEE | CCCCEEEI | EECCCEEEECCCC | CCCC | | PROFphd | : | CCEEEECEEC | CCCEI | EEECCE | EEEEE | ECCCCEEE | EECCCCEEEECCC | CCCE | | Consensus | : | CCCCCCCCC | CCCEI | EEECCC | EEEEE | CCCCEEEI | EECCCCCCCCCCC | CCCC | | | | | | | | | | | | | | 6 | 0 | 7 | 0 | 8 0 | 9 0 | 100 | | | | | | - 1 | | I | | | | AA Sequence | : | | | | | | YVCILQKDRNVVI | | | DSC | : | | | | | | EEEEECCCCEEEE | | | GOR IV | : | | | | | | EEEECCCCCEEE | | | Predator | : | | | | | | CEEEECCCCCEEE | | | SIMPA96 | : | | | | | | EEEECCCCEEEE | | | PSIPRED | : | | | | | | EEEEECCCCCEEE | | | PROFphd | : | | | | | | EEEEEECCCEEE | | | Consensus | : | EEEEECCCC | CEEEI | ECCCCC | EEEEE | CCCCCCCI | EEEECCCCCEEE | ECCC | - | D | | | | | | | | AA Sequence | : | RWATGTHTG | | | | | | | | DSC | : | EEEEECCCC | | | | | | | | GOR IV | : | 0 | | | | | | | | Predator | : | | | | | | | | | SIMPA96
PSIPRED | : | CCCCCCCC | | | | | | | | | | CCCCCCCC | | | | | | | | PROFphd
Consensus | : | CCCCCCCC | | | | | | | | Consensus | • | | | | | | | | Percentage of alpha helix predicted = 0.000000 Percentage of beta sheet predicted = 34.862385 Figure S4