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Abstract 
 

We provide detailed derivation of the equations in our paper, “Diffraction Profiles of 

Elastically Bent Single Crystals with Constant Strain Gradients” in 5 sections. In the 1st 

section, we derive the classical plane-wave dynamical diffraction theory from first 

principles. In the 2nd section, we develop the formalism which leads to the recursion 

equations for dealing with the diffraction problem from strained crystals. In the 3rd 

section, we show how these recursion equations lead to differential equations that make 

analytical solutions possible for some cases. In the 4th section, we show the solution of 

these differential equations for a constant strain gradient, and in the 5th section, we 

combine this solution with Kato’s spherical wave theory and provide the integral 

equation for the surface intensity distribution in real space which can be evaluated 

through numerical integration. We also provide analytical equations that approximate this 

integral for simple calculations. 
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1. Plane-wave Dynamical Diffraction Theory for Perfect Crystals 

 

In describing diffraction from perfect crystals using the Ewald-Von Laue formulation, 

Maxwell’s equations can be reduced to the following set of equations (Authier, 2002, 

Pinsker, 1978) 
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Here ][hlD
v

 refers to the component of the electric displacement lD
v

 parallel to hD
v

, K
v

 is 

the wave vector in vacuum, hk ,0

v
 are wave vectors in the crystal, hχ  is the h’th Fourier 

coefficient of the susceptibility and the summations are done over all reciprocal lattice 

vectors. 

Using two-beam approximation (Authier, 2002, Pinsker, 1978), fundamental 

equations are reduced to two equations: 
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where C , the polarization factor, is equal to θ2cos  for π-polarization and 1 for σ-

polarization. At the exact Bragg angle calculated from the kinematical theory, the 

diffracted wavevector hK
v

 in vacuum must satisfy: 

h

h

KK
hKK

=
+=

0

0

vvv

.                                                    (1.3) 

From Figure 1, we also have 
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There are a number of assumptions that need to be made about the angles in order for the 

problem to be tractable, first the incidence always occurs from the left side and β and θ 

are in the range of 0 to π/2, while ϕ can vary from -π (on the left side of nv ) to π (on the 

right side of nv ). The exit angle γ is not independent, but determined by ϕ and β (or θ). 

Subscript B is used to refer to parameter values at the exact Bragg condition calculated 

from the kinematical theory. Combining Equations (1.3) and (1.4), we obtain, 
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Fig. 1. Diffraction geometries and coordinates system. a) Bragg case, where |γ| < π/2 
and cos γ > 0; b) Laue case, where  |γ| > π/2 and cos γ <0. 
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The exit angle, Bγ , can be calculated from Equations (1.3) and (1.4), using the equation 

of the horizontal component of hK
v

, 
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Inside the crystal, the plane wave vectors hk ,0

v
 are not equal to hK ,0

v
. However, the 

tangential component of the wave vector must be continuous across the interface to 

satisfy the boundary conditions at the interface, 
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Therefore, the x-component of the wave vector inside the crystal remains unchanged and 

we simply need to introduce a small change in vertical component for 0k
v

, 
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The periodicity of χ  leads to a Bloch wave solution to the wave equation, which means, 
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Now we consider a plane wave incident on the crystal with an incidence angle deviating 

from the exact Bragg angle Bθ by η. Eq. (1.5) becomes, 
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We may write γΔ  in terms of η , by noticing the fact that the diffracted wave outside of 

the crystal still possesses a wave vector )cos,(sin γγ −= KK h

v
 and its x-component is the 



same as that of hk
v

 in the crystal. Thus, using (1.5) and (1.8), it follows that:  
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Using Eqs. (1.5) and (1.6), we can prove, 
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BBBBB γββγββγγγ cos/coscossin)sin( Δ=Δ⇒Δ+≈Δ+ . 

Substituting Eqs. (1.7) and (1.8) into Eq. (1.2), and utilizing several trigonometric 

relations of angles, precise to the first order, one obtains: 
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Here we make several approximations to simplify the expression. First, we assume 

Kk h ≈,0 , so 0k  and hk  in the denominator can be replaced by K . Second, β  and γ  are 

large angles so that Bγγ coscos ≈ , Bββ coscos ≈  and the 2δ  term can be ignored. 

Third, we assume BBB θηθηθ cossin)sin( ≈−+ , which is valid when the deviation angle, 

η , is not very large and Bθ  is not close to 2/π . As a result we are not considering the 

grazing incidence or emergence, nor the case that Bragg angle is close to π/2. With these 

approximations the fundamental equation of dynamical diffraction with two-beam 

condition can be written as: 
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For non-trivial solutions the determinant of the coefficient matrix of Eq. (1.10) must be 

zero, which leads to the dispersion equation, 
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Eq. (1.11) is a quadric function of δ which has two roots, 
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g is the geometry factor, which is positive for Bragg geometry and negative for Laue 

geometry, and v is the deviation parameter. The “m ” sign implies that two wave branches 

will be excited for both forward-diffracted and diffracted beams. Thus, in general the 

entire wave field in a perfect crystal is represented by a set of four plane waves. To 

denote those branches there is one thing needs to be clarified: the complex variable w has 

two possible values determined by the phase of the complex argument under the square 

root.  

In the Laue case where g  is negative, we assume the real component of w  is 

always positive and denote the “-” sign in Eq. (1.12) as branch 1. In the Bragg case where 

g  is positive, to avoid ambiguity, we set a cut line from origin to the positive infinity of 

the x-axis on the complex plane and restrict the phase of a complex variable to (0, 2π). 

This means the phase of w will vary within (0, π) and its imaginary part is always 

positive. By this convention, we denote the “-” sign in Eq. (1.12) as branch 1 and the “+” 

sign as branch 2. The real part of δ  represents refraction and its imaginary part 

absorption. We shall notice a wave form )2exp( rki vv
⋅− π  is used in our derivation; as a 



result a positive )Im(δ  stands for a wave increasing with depth, while a negative )Im(δ  

stands for a wave decreasing with depth. In the Bragg case ( 0>g ), 0]Im[ )1( <δ but 

0]Im[ )2( >δ , thus, for a semi-infinite crystal branch 2 is physically impossible due to the 

fact that at infinity the amplitude of branch 2 will be infinit. In the Laue case ( 0<g ), the 

thickness is finite and )Im(δ  for both branches have negative values, and both branches 

will be excited.  But when η  is very negative only branch 1 is strongly excited, and when 

η  is very positive only branch 2 is strongly excited, according to our definition of 

branches. Substituting Eq. (1.12) into Eqs. (1.7) and (1.8), we deduce expressions of 

wave vectors 0k
v

 and hk
v

, 
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Substituting the expressions of δ given in Eq. (1.12) into Eq. (1.10), one obtains 

the diffraction coefficient in terms of deviation angle η , 
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Combining Eq. (1.14) with Eq. (1.12) is still insufficient to describe the whole wave field 

because we don’t know the fraction of energy taken by each branch. By applying proper 

boundary conditions, for example, 1)2(
0

)1(
0 =+ DD  and 0)2()1( =+ hh DD  for Laue 

geometry, we can solve the amplitudes of all these four plane waves. Consequently, the 



entire wave field inside a perfect crystal corresponding to an incident plane wave is 

expressed as the superposition of all excited waves, 
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2. Recursion Relations for Strained Crystals 
 

Using some simple considerations, we can extend the classical theory to a strained 

case. The basic idea is to consider the dynamical diffraction of a very thin layer in a 

distorted crystal (Fig. 2), and treat the strain within this layer as constant and the layer as 

still perfect. The four plane waves in Fig. 2 (two for reflection and two for transmission) 

with constant amplitudes on the top boundary of the thin layer propagate through the 

thickness and then reach the bottom boundary. If the wave amplitudes of these four plane 

waves at one boundary are known, taking into account the phase change and absorption 

which can be obtained from the classical theory, one can obtain the total diffracted and 

forward-diffracted wave amplitudes at the other boundary, leading to the recurrence 

relations for reflection and transmission. All results obtained in classical dynamical 

diffraction theory are applicable to this thin layer except local values must be used for all 

parameters to reflect the change of material properties. The concept of a local dispersion 

equation is introduced as in the optical theory of dynamical diffraction (Authier, 2002), 

which describes the ray trajectory inside a strained crystal. In our model because the 

entire wave field, not the individual branch is considered, the “interbranch scattering” 

problem (Balibar et al., 1983)  for large strain gradients, which refers to the energy 

interchange between two branches, is solved automatically, and the limitation of very 

small deformation field in optical theory is eliminated.  



 

Usually, a deformation field consists of rotations and changes of the spacing of 

the lattice planes, and their effects are reflected by the local deviation angle, η, which is 

the difference in the incidence angle from the local exact Bragg angle. A strain will cause 

a shift of the local Bragg angle that can be calculated from Bragg’s law, and a rotation 

angle δθ will cause a change in the local incidence angle. Thus, the deviation angle can 

be written as: 

Bθεδθηη tan0 ++= ,                                             (2.1) 

where 0η  is the value of η  for the unstrained crystal. Inside a very thin layer, dynamical 

diffraction theory of perfect crystals still holds and the forward-diffracted and diffracted 

waves are still written in the form of Bloch waves: 
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Here we use h ′
v

 to represent the local reciprocal lattice vector, which is a function of 

depth, z. By using the local values, we can find the diffraction coefficient )( jc and wave 

Fig. 2. Dynamical diffraction on a thin layer with thickness dz. Inside the layer 
the strain is treated as constant.  
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vectors )(
0

jk
v

 and )( j
hk
v

 of each branch from Eq. (1.13) and (1.14). Usually, the diffraction 

ratio Dh/D0 is what we want to know, where both hD  and 0D  are the sum of two wave 

branches. By substituting Eq. (1.13) into Eq. (2.2), we can obtain the expression of the 

overall diffraction coefficient, 
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with BwK γπ cos/=Φ . 

Because only the vertical components of wave vectors can vary in a deformed 

crystal, for convenience, we can define a new variable X that solely depends on z, 

0
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D
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X has the same modulus with the true diffraction ratio, but differs it by a phase depending 

on positions.  At boundaries of this layer, we can write: 
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and the subscripts 1 and 2 of X refer to its value at depth z1 and z2. By substituting Eq. 

(1.14) to Eq. (2.4), we obtain two equations: 
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After canceling out )1(
0D  and )2(

0D  on both sides of Eq. (2.5) and plugging in the 



expressions of the diffraction coefficient, one obtains the recurrence relation for 

reflection, 
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This recurrence relation is not a new result. It has been obtained by some authors from 

integrating the Takagi-Taupin equations for a perfect lamellar of crystal (Halliwell et al., 

1984, Bartels et al., 1986), and is implemented in some commercial software, such as 

RADS2, which is used for rocking curve simulation of epitaxially grown heterostructures, 

but our approach gives a very simple and clear derivation of this relation.  

The derivation of the recurrence relation for transmission is analogous to that of 

reflection. The overall forward-diffracted wave is the sum of two excited branches, 

therefore the ratio of the forward-diffracted wave amplitude at 2zz =  to that at 1zz =  is 

written as: 
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00 −=′ . Using Eqs. (2.5), we obtain the recurrence relation of 

the transmission at z1 to its adjacent layer at z2, 
                                                 
2 RADS is a product of Bede Scientific Instruments Ltd. 
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where Y is defined as 

)2exp()( 00 rKirDY vvv ⋅′= π . 

The subscripts 1 and 2 of Y refer to its value at depth z1 and z2. We should note that 

|X|=|Dh/D0|, |Y|=|D0| and |XY|=|Dh|, and the expressions of the true diffracted and 

forward-diffracted wave with correct phase terms are:   
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Combining with Eq. (2.7) and Eq. (2.8), by applying dynamical diffraction theory 

consecutively on thin slabs with constant strain, we are able to solve the entire x-ray 

wave field in crystals with heterostructures, misorentation or strain field. 

 

3. Fundamental Differential Equations for Strained Crystals 
 
 To find the analytical description of the wave field, generic equations including 

the misorientation or strain function need to be established. The idea is to reduce the 

thickness 12 zzdz −= of the layer into an infinitesimal thickness and write all functions 

as Taylor expansions around z . When dz becomes infinitesimal, the approximation up to 



the first order of dz is always justified, but in practice dz  cannot be smaller than the 

interplanar spacing, hkld . Thus the approximation up to the first order is equivalent to the 

statement that the variation of the strain over a range of hkld  is very slow and high order 

derivatives can be neglected. Consequently, Eq. (2.6a) turns into [if Eq. (2.6b) is used, 

the result is the same],  
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By rearranging terms and neglecting high order terms in dz, one obtains the differential 

equation for diffraction:  
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Very similarly, by expanding Eq. (2.8a) or Eq. (2.8b) as a Taylor series, up to the first 

order of dz, we can deduce, 
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By noting YYY /')'(ln = , we recognize Eq. (3.2) is the equation that relates the local 

amplitude attenuation of the forward-diffracted wave to the local diffraction ratio X. This 

is the equation of extinction. The weakening effect of transmission due to diffraction is 

shown clearly by Eq. (3.2). Furthermore, if we differentiate both sides of Eq. (3.2) and 

substitute into Eq. (3.1), a new equation only involving YY /'  is derived, 
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with BKa γπ cos2/=  . Since YYYYYY /'')/'()'/'( 2 =+ , Eq. (3.3) can also be written as, 
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This equation can be further simplified if we set )(])1(exp[)( 0 zUzgiazY −−= χ , which 

leads to a wave equation in the simple form: 
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and Eq. (3.2) is rewritten as 
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Eqs. (3.1) and (3.5) are the fundamental differential equations of dynamical diffraction on 

crystals with a one-dimensional strain field, with the incident-plane-wave and two-beam 

approximations. They are not independent equations, but related by Eq. (3.6), so we only 

need to solve one equation to obtain the complete set of solutions. We note these 

differential equations have a similar form to the well-known Howie-Whelan equations in 

electron diffraction (Diffraction and Imaging Techniques in Material Science, 1978).  

 
4. Analytical Solutions in Symmetric Bragg Case 

 

For simplicity, in the following we only consider symmetric Bragg diffraction and 

a σ-polarized incident plane wave. Under these conditions the fundamental differential 

equations we derived in the preceding section are simplified to: 
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For a given constant misorientation/strain gradient in the normal direction, we can write 

the deviation angle as: 

z'0 ηηη += ,                                          (4.2) 

where 'η  is a constant. Accordingly, the deviation parameter v  will be a linear function 

of depth z too, 

zvvzv ')( 0 += ,                                                     (4.3) 

where 'v  is a constant and 0v  is the value of v at the entrance surface. 

 Due to its linearity, Eq. (4.1c) is the one we can find a solution easily. Combined 

with Eq. (4.1b), the diffraction coefficient X can be derived as well. To simplify Eq. 

(4.1c) we define a new variable q, 
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Eq. (4.1c) is then transformed to: 
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= . The solution of Eq. (4.5) is a parabolic cylinder function, which is 

known as a Weber function. To explain the physical meaning of the solution in a better 

way, we transform Eq. (4.5) to a Hermite equation, 
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with )()2/exp()( 2 qYqq =ζ . Eq. (4.6) can be solved using a polynomial series (Arfken 

& Weber, 1995). Assuming )(qζ  can be expanded to a series of polynomials, 
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Substituting the above equation into Eq. (4.6), one obtains a new equation, 
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The sum of the coefficients of terms with same polynomial number n must be zero to 

fulfill Eq. (4.8). This results in the coefficient iteration equation: 
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It is seen that all even coefficients, C2n, can be written in terms of C0, and all odd 

coefficients, C2n+1, can be written in terms of C1. Using 0C  and 1C , we can construct two 

linearly independent solutions, 
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here 11 F  is a confluent hypergeometric function.(Andrews, 1985, Magnus et al., 1966, 

Luke, 1969) The general solution is the linear combination of these two confluent 

hypergeometric functions, 
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In general, the linear combination coefficients are determined by boundary conditions 

and expressed in complicated forms. Here we consider a special case in which the crystal 



thickness is infinite. In reality, an infinite thick crystal with a linear strain gradient is 

physically impossible, but this is a good approximation to the true solution if the crystal 

thickness is large. Under this assumption the boundary condition for Bragg diffraction 

can be written as: 

0→Y  if +∞→z .                                               (4.12) 

According to the definition, q is proportional to z and ∞→q as ∞→z . For an infinitely 

thick crystal, the boundary condition at infinity requires that the forward-diffracted wave 

intensity is decreased to zero. When q is very large, in Eq. (4.10) we only need to keep 

terms with very large n, and approximately, nCC nn /2~/2+ , which is equivalent to the 

expansion coefficients of an exponential function. Thus, if |q|→¶, the approximate 

expression of )(qζ  is: 

)exp(~)( 2qqζ , 

and 

)2/exp(~)( 2qqY . 

Because +∞→−= zaq i0
2 2)Re( χ  when +∞→z (in our derivation, we chose the wave 

form )2exp( rki vv
⋅− π , so i0χ  is negative), either 1Y  or 2Y  does not converge at infinity and 

is not the solution. To find the combination coefficients C0 and C1 that can construct a 

function convergent at infinity, we need to study the asymptotic expansions of 1ζ  and 2ζ  

around infinity. It is known that for ∞→x , the asymptotic expansion of a confluent 

hypergeometric function is (Slater, 1960): 
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for ,...,2,1,0, =SR and 1=ε  if π<< xarg0 , 1−=ε  if 0arg ≤<− xπ . Hence, 
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The second terms on the right side of Eqs. (4.14a) and (4.14b) represents a steeply 

increasing function as ∞→q and should be canceled to ensure convergence at infinity. 

This requires a special linear combination of 1ζ  and 2ζ  to construct the solution, which 

is known as a Hermite function, 
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where Γ  represents a gamma function. For a normalized incident beam, a normalization 

factor is introduced to ensure that 1)0( ==zY , 
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If we write q in terms of z and expand q2, because zKq iB 0
2 )sin/()2/Re( χθπ=− ( i0χ is 

the imaginary part of 0χ and is negative in our derivation), the pre-exponential factor 

actually represents the normal linear photoelectric absorption.  

To find the expression of X, we utilize the differential formulas of Hermite 

function (Andrews, 1985), 
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By combining with Eq. (4.1b), the expressions of X  is derived, 
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The right-hand side of Eq. (4.18) consists of two terms; the first one represents the linear 

photoelectric absorption and the second one represents dynamical attenuation by 

reflection. Eqs (4.16), (4.18) and (4.19) are the analytical solutions for diffraction on an 

infinitely thick crystal with a constant strain gradient, and are good approximations for 

crystals with thickness larger than the penetration depth. We may call this the thick-

crystal approximation. The rigorous solutions for a crystal with finite thickness can also 

be obtained by noting that )( qH b −  is also a solution to Eq. (4.6). For ⋅⋅⋅±±≠ ,2,1,0b , 

which is the case in dynamical diffraction, )( qH b −  is linearly independent of )(qH b . 

Thus, the general solution can also be written as:  
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The boundary condition at tz =  in the Bragg case requires: 
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and the exact solution is  
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with )]()()[2/exp( 00
2
00 qHCqHqY btb −+−=  and )0(0 qq = . From Eq. (4.1b), one 

obtains: 
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5. Surface Intensity Distribution for Spherical Incident Wave 

a) General Formalism 

To obtain the correct expression of the diffracted wave for an incident spherical 

wave, we follow Kato’s spherical-wave theory (Kato, 1960).  His method comprises three 

steps: 

i. Expand a spherical wave in terms of a distribution of plane waves with same 

wave number by means of the Fourier transform. 

ii. Apply the plane-wave model for each plane wave component of the spherical 

wave to obtain the forward-diffracted and diffracted wave amplitude 

corresponding to this plane wave component.    



iii. Obtain the sum of the induced wave amplitudes of all plane-wave components 

by means of the inverse Fourier transform to obtain the induced wave 

amplitude caused by the incident spherical wave. 

 

Detailed discussions about Kato’s theory can be found in the textbooks by  

Pinsker (Pinsker, 1978) and Authier (Authier, 2002). Here we give a brief derivation. In 

real space a scalar wave emitted by a point source can be written as (the time dependent 

term is dropped) 
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Here K ′
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 is the running vector, having wave components 

'xK , 'yK  and 2
'

2
'

2
' yxz KKKK −−=  

The geometry is shown in Fig. 3. It is clear that the contribution of a given plane wave 

component )2exp( rKi vv
⋅′− π  is '/1 zK .  Thus the induced wave amplitude corresponding to 

an incident spherical wave is 
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where plane
hD ,0  are the amplitude of the forward-diffracted and diffracted waves induced in 

a perfect crystal by an incident plane wave with wave vector 'K
v

, and have forms given in 



Eq. (2.9) (assume the point source is located at the sample surface). The integration over 

'yK  can be performed using stationary phase method (see Appendix A) and taken out,  
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By noticing 0' ηKK x =  and KK z ≈' , the forward-diffracted and diffracted waves caused 

by a point source are 
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Fig. 3. Geometrical representation of a spherical wave incident on a 
single crystal. 
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Pre-factors 0A  and hA  are of no importance in describing the waves and will be 

dropped in following discussion. Eqs. (5.3a) and (5.3b) have the form of the Fourier 

transform, which maps the solution in reciprocal space to real space. Using plane-wave 

solution for diffraction on a crystal with uniform strain gradients given in Eqs. (9a) and 

(9b), we are able to obtain spatial distribution of the forward-diffracted and diffracted 

waves from Eqs. (5.3a) and (5.3b) caused by a point source:  
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These two equations can be valuated by numerical integration. For the purpose of 

analytical analysis, however, approximate equations would be useful. These are derived 

in the following.  

 

b) Approximate Equations for Surface Intensity Distribution 
 

For this purpose we use the asymptotic expansion of the analytical solution for an 

absorption crystal from Olver’s theorem (Slater, 1960) (see Appendix B). The techniques 

used are very similar to those in ref. (Chukhovskii & Malgrange, 1989), but here we take 

absorption into account. In summary, we can expand a Hermite function into: 
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where 4/12/ += bκ . Here the definitions of 1c , 2c , t  and ς  depend on the phase of q . 
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where 1−=ε  if ππ << )arg(2/ q  (negative strain gradient) and 1=ε  if 

2/)arg( ππ −<<− q  (positive strain gradient). Here we reuse symbol t , which does not 

represent sample thickness anymore. The asymptotic expansion of )()2/exp( 1
2 qHq b−−  is 

obtained by using the recurrence relation of Hermite function: 
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Differentiating both sides of Eq. (5.5) and arranging terms, one can obtain 
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The function 1w  represents a wave with amplitude decreasing with depth z , while 

function 2w  represents a wave with amplitude increasing with depth z . It is possible to 

calculate higher order terms from Olver’s theorem and obtain expressions for higher 



order mirage peaks similar to those in ref. (Chukhovskii & Malgrange, 1989). When high 

order terms are considered, the interference fringes caused by rays emerging on the same 

position can be discussed. If we consider a normalized incident plane wave which has 

unit amplitude at the entry surface, when the deviation angle at the entrance surface 0η  

has big negative value for a positive strain gradient or big positive value for a negative 

strain gradient so that 2/)arg( π>q , from Eqs. (5.4b), (5.5) and (5.6), the diffracted 

wave amplitude can be written as (neglecting high order terms): 
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where 0t  is the value of t  at the entrance surface, )0(0 tt = . Below depth ez  at which 

0~)( ezq , or when 0η  has big positive value for a positive strain gradient (big negative 

value for a negative strain gradient) so that 2/)arg( π<q , 02 =c  and only wave 1 

exists.  

  

Consequently, the problem of x-ray Bragg diffraction from a crystal with a 

constant strain gradient illuminated with an incident spherical wave is reduced to 

evaluating two integrals,  

0101 ]sin2exp[ ηθηπ dWxKiKD Bh ∫
∞

∞−

=                                         (5.8a) 



0202 ]sin2exp[ ηθηπ dWxKiKD Bh ∫
∞

∞−

=                                        (5.8b) 

Here 1hD  originates from the entrance surface, while 2hD  originates from a layer beneath 

the sample surface. Equations (5.8-a,b) can be integrated by means of the stationary 

phase method (Appendix A). In the following discussion we assume a positive strain 

gradient. Let us write  

)]()(exp[)()](4)(4exp[
2

)(
010

1
1 tististFtt

b
tfW

hh

h

hh

h +−=+−=
χχ

χ
κςκς

χχ
χ , 

)]()(exp[)()](4)(4exp[
2

)(
020

1

22
2 tististFtt

cb
ctfW

hh

h

hh

h +=+=
χχ

χκςκς
χχ

χ , 

where )](4Im[ ts κς=  and  

)]}(4Re[)](4exp{Re[
2

)()( 0
1

1 tt
b
tftF κςκς +−=

)]}(4Re[)](4exp{Re[
2

)()( 0
1

22
2 tt

cb
ctftF κςκς += . 

Defining the phase terms 21, SS  in Eqts. (5.4):  
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)()(sin2 002 tstsxKS B ++= θηπ . 

For the phase to be stationary, we need to find the point at which 0/ 0 =∂∂ ηjS . The 

derivative of s  with respective to 0η  can be obtained from, 
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For a crystal with absorption, both i0χ  and hiχ  are not zero. In the case 10
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σ cos=  ( hυ  is the phase difference between hrχ  and hiχ , equal 

to 0 or π  for centro-symmetric structures), following approximations can be made 
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 The condition for the phase to be stationary imposes restriction on the travel path 

of the x-ray. When 1−<rν , for wave 1,  
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Similarly, for wave 2: 
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When 1>rν , wave 2 does not exist since 02 =c , and for wave 1,  
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Eqts. (5.9-a, b, c) are the ray trajectory functions that describe the travel path of the 

reflected wave in a crystal with a constant strain gradient. They can be also obtained from 

optical theory of dynamical diffraction (Gronkowski & Malgrange, 1984).  

 

The second part of the problem is determining the reflection intensity distribution 

at the sample surface ( 0=z ) as a function of x.  For 1hD , the phase is not stationary at the 

surface, but the integral can be performed exactly. In the symmetric Bragg case the 

reflection intensity distribution of wave 1 at the sample surface has the form: 
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1I  has a maximum value at 0=x , which is equal to 2
1 )cos4( −= Be θξρ . The first zero 

point of 1I  is located at Bex θξ tan/66.7= . From the property of Bessel function, most 

intensity of the first wave falls within the range from zero to its first zero point. If we 

normalize )0(1I  to unity, the form of 1I  here is identical to Eqt. (4) in our paper, which 

describes the surface reflection intensity distribution for a semi-infinite strain free crystal. 

 

An approximate expression for 2hD  can also be derived using stationary-phase 

method. For a positive strain gradient, when 1−<rν  the second wave field is excited, 

and approximately,  
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Therefore, we arrive at 
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For the intensity, one obtains 
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We notice )8exp( 0σub− is the linear kinematical absorption, since 

)cos/exp()cos/2exp()8exp( 000 BBi xxKub θμθχπσ −=−=− . 

Other terms in Eq. (5.11) are due to dynamical diffraction. When 1>>u  or equivalently 

112
0 >>−rν , the following approximation is valid,  
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and Eqt. (5.11) turns into, 

)]}1ln()/)(/1(1[8exp{)4exp( 2
0022 ++−−≈ uuuubbI hh σσσσρ ,           (5.12) 

which is similar to Eqt. (2), and is only applicable for x  not close to zero ( 10 >>rν ). If 

the crystal is perfect then ∞→b , thus 02 =ρ  and the second wave does not exist. The 

intensity of wave 1 is described by Eqt. (5.10), which is identical to Eqt. (4) in our paper. 

For a transparent crystal that has 00 == hσσ , b is a pure imaginary number and  

π
π )sinh(

)( 2 bb
b =−Γ − . 

Consequently, Eqt. (5.11) is reduced to 

)11exp()1(
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)2exp(1 2
2/12

12 u
uuu

b
b

I +
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−−
≈ −

π
π

ρ ,                        (5.13) 

which is equivalent to the equation obtained by Chukhovskii and Malgrange 

(Chukhovskii & Malgrange, 1989) for a transparent crystal, except that there is an 

additional (last) exponential term in our derivation. In kinematical limit where the strain 

gradient becomes infinity so that b  becomes zero, 2I  turns into  

)cos/exp( 012 BxI θμρ −= ,                                             (5.14) 

which is the equation predicted by the kinematical theory. 

 

 

 

 



Appendix A 
 

For an integral of the type 

dxxiSxFI ∫
∞

∞−
= )](exp[)( ,       (A1) 

the phase )(xS is generally large and rapidly varying. The integration over most of this 

range would be averaged to almost zero because of the rapid oscillation of )exp(iS , 

except in the neighborhood of a saddle point 0x where the phase is stationary. In other 

words, the first derivative of )(xS is zero at 0x . The integral therefore can be evaluated 

only around 0x . If we may expand S as a  Taylor series around this point, 

⋅⋅⋅+−+= 2
000 ))((''

2
1)()( xxxSxSxS     (A2) 

and )(xF is a slowly varying function around 0x , an approximate value of the integral can 

be obtained  
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where “+” sign is taken if 0)('' 0 >xS  and “-” sign is taken when 0)('' 0 <xS . 

 

 

 

 

 
 



Appendix B 

Olver (Slater, 1960) discussed the asymptotic expansions of solutions to equation 

that has the form 

wzfzk
dz

wd n )]([ 2
2

2

+=     

He showed that for 1,0 ±=n  and large values of k, asymptotic expansions of the solutions 

can be obtained in three cases. Here we will consider only  the first case, 0=n , where 

the equation becomes : 

wzfk
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wd )]([ 2
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Equation (B1)  has two independent asymptotic solutions  
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where ssss KdzzAzfzAzAzA ++′−== ∫+ )()(
2
1)(

2
1)(,1)( 10 , and sK  is an arbitrary 

constant. 

 If we define κ4/qt = , Eqt. 4-c becomes: 

)()1()4()('' 22 tYttY −= κ             (B3) 

Furthermore, we consider the transformation )}1ln(1{
2
1 22 −+−−= ttttς . The 

square root and logarithm are both many-value functions. We chose the principal branch 

for the many-value function logarithm ( π<arg ) and the branch with positive real 



component for the many-value function square-root, so 2/)arg( π<t . A cut line is set 

from 1 to -∞ along the real axis on t plane. By putting 
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we have 
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where 32
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The solution of Eqt. B5 is given by the linear combination of 1w  and 2w , 
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We should note that the above asymptotic expansion is limited to 2/)4/arg( πκ <q , 

but can be extended to 2/)4/arg( πκ >q  by replacing q with qQ −= . If we define 

κ4/Qt = , the form of Eq. (B3) does not change but now 2/)4/arg( πκ <Q and all 

results are the same.  

 The coefficients 1c  and 2c  can be determined from the comparison of leading 

terms with the known asymptotic expansion of )(qY  as ∞→q . In case 2/)arg( π<q  

and ∞→q ,  

4/12222 )16)(2exp()2)(2/exp(~)()2/exp( −−=−− κκκ ttqqqHq b
b , 



and 
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κκ −− )4)](2/1(2exp[~ 22
2 ttw , 

4/124/12 )(~)1( −−− tt . 

From the comparison of the leading terms, one obtains, 
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Therefore, 
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1 ibec πεκ κκ −= −− ,  1=ε if 0)arg( >Q ; 1−=ε  if 0)arg( <Q . 
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