Supplementary material for "On the space group dispute of stibnite", Sørensen and Lundegaard.

Table 1: UMWEG98 input file used for reflection 530

```
Renninger pattern of the forbidden 5 3 0 - reflection
530.ps
11.2783 3.8216 11.1966 90. 90. 90.
Mo
0.10 0.10 76. 2.00 0.01
-70. 40. 50. 0 . }050
62 5 2
Sb 1
S 1
1 0.5 0.029290
```



```
1
```



```
2 0.5
0.00564 0.00472 0.00665 0.0
2
0.00685
2
0.00573 0.00546 0.00570 0.0 -0.00021 0.0
5 3 0 0. 0. 0. 0.
0.1.1.
4. 0. 0.
0.0.0.
```

Figure 1: Ψ-scan of reflection 1060

Figure 2: Ψ-scan of reflection 020

Figure 3: Ψ-profiles for the systematic absent 012 reflection. (a) experimentally determined and (b) calculated by UMWEG98 [2].

(a)

(b)

Figure 4: Ψ-scan of reflection 024 . The mirror symmetry is lost due to the step size in Ψ being large than the width of the peaks. The 180° rotational symmetry is maintained, since the used step size $\left(\Delta \Psi=1^{\circ}\right)$ is a modulus of 180°.

Figure 5: Ψ-profiles for the systematic absent 003 reflection. (a) experimentally determined and (b) calculated by UMWEG98 [2]. The hight of the measured profile in the range -110 to -80° (and 80 to 110°) is lower than the calculated profile. This is in good accordance with the absorption profile, which is similar to the profile of the 006 reflection (Fig 6).

Figure 6: Ψ-scan of reflection 006

Figure 7: Plot of F^{2} of the reflections $h / 2 k / 2 l / 2$ as a function of F^{2} of the $h k l$ reflections with at least one of the miller indices odd from the 110 K data set [1]. Observed diffraction for the $h / 2 k / 2 l / 2$ reflections will therefore be purely from $\lambda / 2$ radiation. The linear regression line has a slope of $0.00021(2)$.

References

[1] L. F. Lundegaard, H. O. Sørensen, T. Balić-Žunić, and E. Makovicky. Unpublished results, 2003.
[2] E. Rossmanith. UMWEG-98: a program for calculation and graphical representation of multiple diffraction patterns. J. Appl. Cryst., 32:355361, 1999.

