SUPPLEMENTARY INFORMATION High-pressure properties of $\mathrm{TiP}_{2} \mathrm{O}_{7}, \mathrm{ZrP}_{2} \mathrm{O}_{7}$ and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$

Stefan Carlson ${ }^{a *}$ and Anne Marie Krogh Andersen ${ }^{b}$
${ }^{a}$ European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex, France, and ${ }^{b}$ Department of Chemistry, Odense University, DK-5230 Odense M, Denmark.E-mail: carlson@esrf.fr (Received 17 May 2000; accepted 4 October 2000)

Fig. 4. High-pressure diffraction patterns of $\mathrm{TiP}_{2} \mathrm{O}_{7}$. (a) $0.05-5.79$ GPa. Pressure medium was methanol-ethanol (4:1). (b) $6.28-40.3 \mathrm{GPa}$. Pressure medium was nitrogen. Peaks that have a contribution from δ - N_{2} (below 18.7 GPa) and $\epsilon-\mathrm{N}_{2}$ (18.7 GPa and higer pressures) are indicated with triangles.

Fig. 5. High-pressure diffraction patterns of $\mathrm{ZrP}_{2} \mathrm{O}_{7}$. (a) $0.14-8.34 \mathrm{GPa}$. Pressure medium was methanol-ethanol (4:1), and for clarity only every second collected pattern is shown. (b) $4.17-20.5 \mathrm{GPa}$. Peaks that have a contribution from $\delta-\mathrm{N}_{2}$ and $\epsilon-\mathrm{N}_{2}(20.5 \mathrm{GPa})$ are indicated with triangles. Stars represent peaks due to the stainless steel gasket.

Fig. 6. Powder diffraction patterns for $\mathrm{ZrV}_{2} \mathrm{O}_{7}$. The diagram should be viewed from bottom to top. The pressure induced transition, $\alpha-\beta \mathrm{ZrV}_{2} \mathrm{O}_{7}$ is shown to be fully reversible.

Fig. 7. Powder diffraction profile fits of $\mathrm{TiP}_{2} \mathrm{O}_{7}$. (a) At 0.05 GPa with methanolethanol (4:1) as pressure medium. (b) At 18.7 GPa with nitrogen as pressure medium.

Fig. 8. Powder diffraction profile fits of $\mathrm{ZrP}_{2} \mathrm{O}_{7}$. (a) At 1.69 GPa with methanolethanol (4:1) as pressure medium. (b) At 11.0 GPa with nitrogen as pressure medium.

Fig. 9. Powder diffraction profile fits of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$. Pressure medium was methanolethanol (4:1). (a) $\alpha-\mathrm{ZrV}_{2} \mathrm{O}_{7}$ at 0.15 GPa . (b) $\beta-\mathrm{ZrV}_{2} \mathrm{O}_{7}$ at 2.97 GPa , fitted using the small tetragonal unit-cell. (c) $\beta-\mathrm{ZrV}_{2} \mathrm{O}_{7}$ at 2.97 GPa , fitted using the large orthorhombic supercell.

SUPPLEMENTARY INFORMATION

High-pressure properties of $\mathrm{TiP}_{2} \mathrm{O}_{7}, \mathrm{ZrP}_{2} \mathrm{O}_{7}$ and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$.
Stefan Carlson and Anne Marie Krogh Andersen
Figure 4.

4b

SUPPLEMENTARY INFORMATION

High-pressure properties of $\mathrm{TiP}_{2} \mathrm{O}_{7}, \mathrm{ZrP}_{2} \mathrm{O}_{7}$ and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$.
Stefan Carlson and Anne Marie Krogh Andersen

Figure 5

5a

$$
2 \theta^{\circ}(\lambda=0.3738 \AA)
$$

5b

SUPPLEMENTARY INFORMATION

High-pressure properties of $\mathrm{TiP}_{2} \mathrm{O}_{7}, \mathrm{ZrP}_{2} \mathrm{O}_{7}$ and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$.
Stefan Carlson and Anne Marie Krogh Andersen
Figure 6

SUPPLEMENTARY INFORMATION

High-pressure properties of $\mathrm{TiP}_{2} \mathrm{O}_{7}, \mathrm{ZrP}_{2} \mathrm{O}_{7}$ and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$.
Stefan Carlson and Anne Marie Krogh Andersen
Figure 7

(a)

(b)

SUPPLEMENTARY INFORMATION

High-pressure properties of $\mathrm{TiP}_{2} \mathrm{O}_{7}, \mathrm{ZrP}_{2} \mathrm{O}_{7}$ and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$.
Stefan Carlson and Anne Marie Krogh Andersen
Figure 8

(a)

(b)

SUPPLEMENTARY INFORMATION

High-pressure properties of $\mathrm{TiP}_{2} \mathrm{O}_{7}, \mathrm{ZrP}_{2} \mathrm{O}_{7}$ and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$.
Stefan Carlson and Anne Marie Krogh Andersen
Figure 9

(a)

(b)

(c)

