Download citation
Download citation
link to html
In the title compound, C11H5Br3O3, the coumarin group is planar [maximum deviation from the mean plane is 0.032 (3) Å] and makes a dihedral angle of 19.9 (3)° with the dibromo­acetyl group. The crystal structure is stabilized by C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060886/bi2256sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060886/bi2256Isup2.hkl
Contains datablock I

CCDC reference: 673063

Key indicators

  • Single-crystal X-ray study
  • T = 290 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.068
  • wR factor = 0.173
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 1 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 12
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Coumarins are an important class of organic compounds having vast structural diversity and useful applications in several areas of synthetic chemistry, medicinal chemistry and photochemistry (Vishnumurthy et al., 1996, 1997, 1999). The formation of [2 + 2] cycloaddition products upon irradiation (Vishnumurthy et al., 2001) of coumarin and its derivatives has demonstrated the importance of preorganization of molecules in the crystalline solid state.

In the title compound (Fig. 1), the coumarin group is planar with a maximum deviation of -0.032 (3) Å from the weighted least squares plane for atom C8. C—H···O hydrogen bonds involving H1, H7 and O3, are observed between molecules, forming bifurcated R22(14) and R22(10) dimeric units. Furthermore, H11, O1 and O2 are involved in formation of a trimeric motif R21(4), forming chains along the b axis (Fig. 2, Table. 1).

Related literature top

For related literature concerning coumarin derivatives, see: Vishnumurthy et al. (1996, 1997, 1999, 2001). For synthesis details, see: Venugopala et al. (2004).

Experimental top

The title compound was synthesized in accordance with the procedure reported in the literature (Venugopala et al., 2004). Single crystals were grown from a solution in glacial acetic acid.

Refinement top

The methine H atom was located in a difference Fourier map and refined isotropically, while the remaining H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Ueq(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound drawn with displacement ellipsoids at 50% probability for non-H atoms.
[Figure 2] Fig. 2. Packing diagram highlighting C—H···O hydrogen bonds.
6-Bromo-3-(dibromoacetyl)-2H-chromen-2-one top
Crystal data top
C11H5Br3O3F(000) = 800
Mr = 424.85Dx = 2.326 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 765 reflections
a = 7.999 (6) Åθ = 1.4–25.8°
b = 6.794 (5) ŵ = 9.96 mm1
c = 22.442 (17) ÅT = 290 K
β = 95.819 (12)°Needle, yellow
V = 1213.4 (16) Å30.23 × 0.04 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2443 independent reflections
Radiation source: fine-focus sealed tube1585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.595, Tmax = 0.742k = 88
8820 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0977P)2]
where P = (Fo2 + 2Fc2)/3
2443 reflections(Δ/σ)max < 0.000
158 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
C11H5Br3O3V = 1213.4 (16) Å3
Mr = 424.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.999 (6) ŵ = 9.96 mm1
b = 6.794 (5) ÅT = 290 K
c = 22.442 (17) Å0.23 × 0.04 × 0.03 mm
β = 95.819 (12)°
Data collection top
Bruker SMART CCD
diffractometer
2443 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1585 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.742Rint = 0.066
8820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.20 e Å3
2443 reflectionsΔρmin = 1.26 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09220 (13)1.46570 (14)0.16134 (5)0.0483 (3)
Br20.32441 (12)0.18266 (14)0.04363 (5)0.0513 (4)
Br30.16865 (16)1.03307 (18)0.20405 (5)0.0654 (4)
O10.3421 (8)0.7006 (9)0.1727 (3)0.0430 (15)
O20.2656 (11)0.9552 (11)0.2223 (3)0.075 (3)
O30.0060 (8)1.1803 (9)0.0700 (2)0.0438 (16)
C10.2423 (10)0.5207 (12)0.0200 (4)0.0328 (19)
C20.3320 (11)0.3498 (12)0.0239 (4)0.037 (2)
C30.4266 (11)0.2942 (14)0.0771 (4)0.046 (2)
C40.4265 (11)0.4105 (13)0.1262 (4)0.045 (2)
C50.3374 (11)0.5832 (12)0.1224 (4)0.037 (2)
C60.2424 (10)0.6429 (11)0.0695 (4)0.0293 (18)
C70.1510 (10)0.8219 (12)0.0713 (3)0.0295 (18)
C80.1489 (10)0.9319 (12)0.1208 (4)0.0304 (18)
C90.2510 (13)0.8716 (13)0.1758 (4)0.042 (2)
C100.0453 (10)1.1136 (12)0.1172 (4)0.0308 (18)
C110.0027 (11)1.2063 (13)0.1754 (4)0.037 (2)
H10.18110.55540.01590.039*
H30.48890.17850.07880.055*
H70.08960.86490.03630.035*
H110.075 (12)1.188 (13)0.213 (4)0.05 (3)*
H40.48650.37350.16210.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0425 (6)0.0451 (6)0.0587 (6)0.0118 (4)0.0125 (5)0.0063 (4)
Br20.0372 (6)0.0460 (6)0.0712 (7)0.0105 (4)0.0073 (5)0.0152 (5)
Br30.0631 (8)0.0721 (8)0.0660 (7)0.0104 (6)0.0312 (6)0.0105 (5)
O10.034 (4)0.052 (4)0.041 (3)0.015 (3)0.007 (3)0.003 (3)
O20.096 (7)0.077 (5)0.045 (4)0.042 (5)0.030 (4)0.017 (4)
O30.055 (4)0.047 (4)0.030 (3)0.015 (3)0.005 (3)0.001 (3)
C10.018 (4)0.039 (5)0.040 (5)0.004 (3)0.001 (4)0.001 (4)
C20.022 (5)0.039 (5)0.050 (5)0.003 (4)0.008 (4)0.005 (4)
C30.028 (5)0.043 (6)0.065 (6)0.010 (4)0.001 (5)0.004 (5)
C40.027 (5)0.047 (5)0.057 (6)0.012 (4)0.009 (4)0.008 (5)
C50.030 (5)0.032 (5)0.048 (5)0.003 (4)0.003 (4)0.004 (4)
C60.018 (4)0.032 (5)0.039 (5)0.001 (3)0.005 (4)0.003 (3)
C70.019 (4)0.040 (5)0.028 (4)0.005 (3)0.000 (3)0.004 (3)
C80.022 (5)0.035 (5)0.033 (4)0.002 (3)0.001 (4)0.005 (3)
C90.043 (6)0.044 (6)0.038 (5)0.007 (4)0.005 (4)0.003 (4)
C100.024 (5)0.035 (4)0.033 (5)0.004 (3)0.003 (4)0.002 (4)
C110.030 (5)0.040 (5)0.041 (5)0.006 (4)0.005 (4)0.003 (4)
Geometric parameters (Å, º) top
Br1—C111.917 (9)C7—C81.341 (11)
Br2—C21.890 (9)C7—H70.930
Br3—C111.932 (9)C3—C41.355 (13)
O3—C101.187 (10)C3—C21.399 (13)
O1—C91.377 (10)C3—H30.930
O1—C51.378 (10)C8—C91.467 (12)
C6—C11.387 (11)C8—C101.484 (11)
C6—C51.403 (12)O2—C91.183 (10)
C6—C71.422 (11)C10—C111.534 (11)
C1—C21.363 (11)C11—H111.00 (9)
C1—H10.930C4—H40.930
C5—C41.371 (12)
C9—O1—C5124.0 (7)O2—C9—O1116.4 (8)
C1—C6—C5117.5 (7)O2—C9—C8127.1 (9)
C1—C6—C7125.2 (8)O1—C9—C8116.4 (7)
C5—C6—C7117.4 (7)O3—C10—C8120.4 (7)
C2—C1—C6120.1 (8)O3—C10—C11120.7 (8)
C2—C1—H1120.0C8—C10—C11118.8 (7)
C6—C1—H1120.0C1—C2—C3121.3 (8)
C4—C5—O1118.3 (8)C1—C2—Br2119.1 (7)
C4—C5—C6122.2 (8)C3—C2—Br2119.6 (6)
O1—C5—C6119.5 (7)C10—C11—Br1111.0 (6)
C8—C7—C6123.4 (7)C10—C11—Br3105.8 (6)
C8—C7—H7118.3Br1—C11—Br3110.9 (4)
C6—C7—H7118.3C10—C11—H11118 (5)
C4—C3—C2119.4 (8)Br1—C11—H11116 (5)
C4—C3—H3120.3Br3—C11—H1192 (5)
C2—C3—H3120.3C3—C4—C5119.5 (9)
C7—C8—C9119.2 (7)C3—C4—H4120.2
C7—C8—C10118.2 (7)C5—C4—H4120.2
C9—C8—C10122.6 (7)
C5—C6—C1—C20.1 (12)C10—C8—C9—O1179.4 (8)
C7—C6—C1—C2178.5 (8)C7—C8—C10—O315.0 (12)
C9—O1—C5—C4176.2 (8)C9—C8—C10—O3163.7 (8)
C9—O1—C5—C63.8 (13)C7—C8—C10—C11161.5 (8)
C1—C6—C5—C40.5 (13)C9—C8—C10—C1119.8 (12)
C7—C6—C5—C4178.2 (8)C6—C1—C2—C30.5 (13)
C1—C6—C5—O1179.5 (7)C6—C1—C2—Br2178.2 (6)
C7—C6—C5—O11.7 (12)C4—C3—C2—C11.3 (14)
C1—C6—C7—C8177.2 (8)C4—C3—C2—Br2177.4 (7)
C5—C6—C7—C81.5 (12)O3—C10—C11—Br116.2 (10)
C6—C7—C8—C92.7 (13)C8—C10—C11—Br1167.3 (6)
C6—C7—C8—C10178.6 (7)O3—C10—C11—Br3104.3 (8)
C5—O1—C9—O2178.7 (9)C8—C10—C11—Br372.2 (8)
C5—O1—C9—C82.5 (13)C2—C3—C4—C51.7 (15)
C7—C8—C9—O2177.9 (11)O1—C5—C4—C3178.7 (8)
C10—C8—C9—O20.7 (16)C6—C5—C4—C31.3 (15)
C7—C8—C9—O10.8 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.433.264 (9)149
C1—H1···O3i0.932.513.317 (10)145
C11—H11···O1ii1.00 (9)2.59 (9)3.519 (11)154 (1)
C11—H11···O2ii1.00 (9)2.58 (9)3.293 (12)128 (1)
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H5Br3O3
Mr424.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)7.999 (6), 6.794 (5), 22.442 (17)
β (°) 95.819 (12)
V3)1213.4 (16)
Z4
Radiation typeMo Kα
µ (mm1)9.96
Crystal size (mm)0.23 × 0.04 × 0.03
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.595, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
8820, 2443, 1585
Rint0.066
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.173, 1.05
No. of reflections2443
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.20, 1.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.433.264 (9)149
C1—H1···O3i0.932.513.317 (10)145
C11—H11···O1ii1.00 (9)2.59 (9)3.519 (11)154 (1)
C11—H11···O2ii1.00 (9)2.58 (9)3.293 (12)128 (1)
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds