Download citation
Download citation
link to html
In the title cocrystal, C9H9N5·C6H8O2, the asymmetric unit contains one 2,4-diamino-6-phenyl-1,3,5-triazine mol­ecule and a sorbic acid mol­ecule. The triazine mol­ecules are base-paired [with a graph set of R22(8)] on either side via N—H...N hydrogen bonds, forming a supra­molecular ribbon along the c axis. Each triazine mol­ecule inter­acts with the carboxyl group of a sorbic acid mol­ecule via N—H...O and O—H...N hydrogen bonds, generating R22(8) motifs. The supra­molecular ribbons are inter­linked by N—H...O hydrogen bonds involving the 2-amino group of the triazine mol­ecules and the carboxyl O atom of the sorbic acid mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052543/bt2556sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052543/bt2556Isup2.hkl
Contains datablock I

CCDC reference: 667454

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.059
  • wR factor = 0.150
  • Data-to-parameter ratio = 17.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.77 Ratio PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.23 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C9 H9 N5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Hydrogen bonding plays a key role in molecular recognition, crystal engineering and supramolecular chemistry (Desiraju, 1989). Heterocycles play an important role in the study of pharmaceuticals and agrochemicals. Many derivatives of nitrogen heterocyclic rings such as triazine have been synthesized in recent years (Chen et al., 2001). Triazine derivatives show antitumor activity as well as broad range of biological activities like anti-angiogenesis and antimicrobial effects (Bork et al., 2003). The organic and inorganic complexes of triazine form well defined non-covalent supramolecular architectures via multiple hydrogen bonds constituting arrays of hydrogen-bonding sites (MacDonald & Whitesides, 1994). The adducts of carboxylic acids with 2-aminoheterocylic ring system forms a graph-set motif of R22(8) (Lynch & Jones, 2004). The crystal structure of 2,4-diamino-6-phenyl-1,3,5-triazine (Diaz-Ortiz et al., 2004), Melaminium maleate monohydrate (Janczak et al., 2004), 2,4-diamino-6-methyl-1,3,5-triazin-1-ium trifluoroacetate (Perpétuo & Janczak, 2007), 4-(dimethylamino)-benzaldehyde and 6-phenyl-1,3,5-triazine- 2,4-diamine (Habibi et al., 2007) and 2,6-diamino-4-phenyltriazinium chloride monohydrate (Sheshmani et al., 2006) have also been reported in the literature. The crystal structure of sorbic acid (Cox, 1994) is known. Sorbic acid is an antibacterial agent and widely used as a preservative (Martindale, 1996). The sorbic acid moiety lies in the EE configuration. The extended conformation of the sorbic acid can be inferred from the four torsion angles (C13—C14—C15—C16) 179.26 (16)°, (C14—C15—C16—C17) 178.28 (18)°, (C15—C16—C17—C18) -179.48 (18)° and (O1—C13—C14—C15) 177.82 (17)°. This conformation is similar to the trimethoprim sorbate dihydrate (Raj et al., 2003). In the present study, the hydrogen-bonding patterns in the 2,4-diamino-6- phenyl-1,3,5-triazine sorbic acid (1/1) cocrystal, (I), are investigated.

The asymmetric unit (Fig. 1) contains one 2,4-diamino-6-phenyl-1,3,5- triazine molecule and one sorbic acid molecule. The triazine molecules are base paired [with a graph-set of R22(8)] on either sides via N—H···N hydrogen bonds forming a supramolecular ribbon along the c axis (Fig. 2). Each triazine molecule interacts with the carboxyl group of a sorbic acid molecule via N—H···O and O—H···N hydrogen bonds, generating R22(8) motifs (Etter, 1990; Bernstein et al., 1995). The supramolecular ribbons are interlinked by N—H···O hydrogen bonds involving 2-amino group of the triazine molecules and carboxyl oxygen of the sorbic acid molecules.

Related literature top

For related literature, see: Bernstein et al. (1995); Bork et al. (2003); Chen et al. (2001); Cox (1994); Desiraju (1989); Diaz-Ortiz, Elguero, Foces-Foces, de la Hoz, Moreno, del Carmen Mateo, Sanchez-Migallon & Valiente (2004); Etter (1990); Habibi et al. (2007); Janczak & Perpétuo (2004); Lynch & Jones (2004); MacDonald & Whitesides (1994); Martindale (1996); Raj et al. (2003); Sheshmani et al. (2006); Perpétuo & Janczak (2007).

Experimental top

A hot methanol solution (20 ml) of 2,4-diamino-6-phenyl-1,3,5-triazine (31 mg A ldrich) and sorbic acid (28 mg Loba) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate-like crystals were obtained.

Refinement top

All the H atoms were positioned geometrically and were refined using a riding model. The N—H, O—H and C—H bond lengths are 0.86, 0.82 and 0.93–0.96 Å, repectively [Uiso(H)= 1.2 Ueq(parent atom)].

Structure description top

Hydrogen bonding plays a key role in molecular recognition, crystal engineering and supramolecular chemistry (Desiraju, 1989). Heterocycles play an important role in the study of pharmaceuticals and agrochemicals. Many derivatives of nitrogen heterocyclic rings such as triazine have been synthesized in recent years (Chen et al., 2001). Triazine derivatives show antitumor activity as well as broad range of biological activities like anti-angiogenesis and antimicrobial effects (Bork et al., 2003). The organic and inorganic complexes of triazine form well defined non-covalent supramolecular architectures via multiple hydrogen bonds constituting arrays of hydrogen-bonding sites (MacDonald & Whitesides, 1994). The adducts of carboxylic acids with 2-aminoheterocylic ring system forms a graph-set motif of R22(8) (Lynch & Jones, 2004). The crystal structure of 2,4-diamino-6-phenyl-1,3,5-triazine (Diaz-Ortiz et al., 2004), Melaminium maleate monohydrate (Janczak et al., 2004), 2,4-diamino-6-methyl-1,3,5-triazin-1-ium trifluoroacetate (Perpétuo & Janczak, 2007), 4-(dimethylamino)-benzaldehyde and 6-phenyl-1,3,5-triazine- 2,4-diamine (Habibi et al., 2007) and 2,6-diamino-4-phenyltriazinium chloride monohydrate (Sheshmani et al., 2006) have also been reported in the literature. The crystal structure of sorbic acid (Cox, 1994) is known. Sorbic acid is an antibacterial agent and widely used as a preservative (Martindale, 1996). The sorbic acid moiety lies in the EE configuration. The extended conformation of the sorbic acid can be inferred from the four torsion angles (C13—C14—C15—C16) 179.26 (16)°, (C14—C15—C16—C17) 178.28 (18)°, (C15—C16—C17—C18) -179.48 (18)° and (O1—C13—C14—C15) 177.82 (17)°. This conformation is similar to the trimethoprim sorbate dihydrate (Raj et al., 2003). In the present study, the hydrogen-bonding patterns in the 2,4-diamino-6- phenyl-1,3,5-triazine sorbic acid (1/1) cocrystal, (I), are investigated.

The asymmetric unit (Fig. 1) contains one 2,4-diamino-6-phenyl-1,3,5- triazine molecule and one sorbic acid molecule. The triazine molecules are base paired [with a graph-set of R22(8)] on either sides via N—H···N hydrogen bonds forming a supramolecular ribbon along the c axis (Fig. 2). Each triazine molecule interacts with the carboxyl group of a sorbic acid molecule via N—H···O and O—H···N hydrogen bonds, generating R22(8) motifs (Etter, 1990; Bernstein et al., 1995). The supramolecular ribbons are interlinked by N—H···O hydrogen bonds involving 2-amino group of the triazine molecules and carboxyl oxygen of the sorbic acid molecules.

For related literature, see: Bernstein et al. (1995); Bork et al. (2003); Chen et al. (2001); Cox (1994); Desiraju (1989); Diaz-Ortiz, Elguero, Foces-Foces, de la Hoz, Moreno, del Carmen Mateo, Sanchez-Migallon & Valiente (2004); Etter (1990); Habibi et al. (2007); Janczak & Perpétuo (2004); Lynch & Jones (2004); MacDonald & Whitesides (1994); Martindale (1996); Raj et al. (2003); Sheshmani et al. (2006); Perpétuo & Janczak (2007).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal structure of (III). Dashed lines indicate hydrogen bonds [symmetry code: (i) x, -y + 1, z - 1/2; (ii) x, -y, z - 1/2; (iii) x, -y, z + 1/2]
2,4-diamino-6-phenyl-1,3,5-triazine–sorbic acid (1/1) top
Crystal data top
C9H9N5·C6H8O2F(000) = 1264
Mr = 299.34Dx = 1.299 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 33.867 (2) Åθ = 3.3–27.5°
b = 7.4289 (3) ŵ = 0.09 mm1
c = 12.2015 (8) ÅT = 120 K
β = 94.241 (2)°Plate, colourless
V = 3061.4 (3) Å30.44 × 0.34 × 0.22 mm
Z = 8
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
2409 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.056
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 9.091 pixels mm-1h = 4244
φ and ω scansk = 79
15418 measured reflectionsl = 1515
3490 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0729P)2 + 1.012P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3490 reflectionsΔρmax = 0.46 e Å3
202 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0114 (10)
Crystal data top
C9H9N5·C6H8O2V = 3061.4 (3) Å3
Mr = 299.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.867 (2) ŵ = 0.09 mm1
b = 7.4289 (3) ÅT = 120 K
c = 12.2015 (8) Å0.44 × 0.34 × 0.22 mm
β = 94.241 (2)°
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
2409 reflections with I > 2σ(I)
15418 measured reflectionsRint = 0.056
3490 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.10Δρmax = 0.46 e Å3
3490 reflectionsΔρmin = 0.47 e Å3
202 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33830 (4)0.02806 (18)0.59344 (11)0.0218 (4)
N20.36560 (5)0.21597 (18)0.51237 (11)0.0272 (5)
N30.36902 (4)0.20752 (17)0.70125 (11)0.0215 (4)
N40.36933 (5)0.19093 (19)0.88889 (11)0.0278 (5)
N50.34027 (4)0.04358 (18)0.78884 (11)0.0217 (4)
C20.35752 (5)0.1316 (2)0.60467 (13)0.0211 (5)
C40.35938 (5)0.1172 (2)0.79131 (13)0.0213 (5)
C60.33086 (5)0.1085 (2)0.68777 (13)0.0196 (5)
C70.30998 (5)0.2847 (2)0.67783 (13)0.0218 (5)
C80.30691 (5)0.3975 (2)0.76805 (14)0.0265 (5)
C90.28704 (6)0.5603 (2)0.75629 (16)0.0316 (6)
C100.26997 (6)0.6115 (3)0.65530 (17)0.0412 (7)
C110.27256 (8)0.5011 (3)0.56587 (18)0.0543 (8)
C120.29259 (6)0.3383 (3)0.57683 (15)0.0404 (7)
O10.40728 (4)0.53754 (16)0.87083 (10)0.0306 (4)
O20.40583 (4)0.51815 (16)0.68782 (10)0.0334 (4)
C130.41368 (5)0.6024 (2)0.78110 (14)0.0247 (5)
C140.43088 (5)0.7830 (2)0.77198 (15)0.0279 (6)
C150.43979 (5)0.8600 (2)0.67794 (15)0.0259 (5)
C160.45628 (5)1.0387 (2)0.67058 (16)0.0289 (6)
C170.46605 (6)1.1137 (2)0.57754 (16)0.0333 (6)
C180.48345 (7)1.2975 (3)0.56732 (19)0.0429 (7)
H2A0.378000.317100.515700.0330*
H2B0.358400.169200.449600.0330*
H4A0.381500.292600.892800.0330*
H4B0.363600.136800.948000.0330*
H80.318300.363400.836600.0320*
H90.285200.635000.816900.0380*
H100.256700.720800.647600.0490*
H110.260900.535600.497700.0650*
H120.294300.264500.515800.0480*
H20.395300.421400.699300.0500*
H140.435900.848500.836400.0330*
H150.435100.794600.613300.0310*
H160.460301.105200.735000.0350*
H170.461701.046400.513500.0400*
H18A0.485801.354300.638200.0640*
H18B0.466501.368400.517600.0640*
H18C0.509201.287700.539600.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0282 (8)0.0219 (7)0.0154 (7)0.0008 (6)0.0032 (6)0.0006 (5)
N20.0455 (10)0.0219 (8)0.0142 (7)0.0042 (6)0.0027 (7)0.0004 (5)
N30.0313 (8)0.0214 (7)0.0121 (7)0.0007 (6)0.0031 (6)0.0007 (5)
N40.0466 (10)0.0237 (8)0.0133 (7)0.0073 (6)0.0031 (6)0.0003 (6)
N50.0280 (8)0.0231 (8)0.0142 (7)0.0007 (6)0.0022 (6)0.0014 (5)
C20.0268 (9)0.0195 (8)0.0172 (8)0.0038 (6)0.0023 (7)0.0007 (6)
C40.0257 (9)0.0225 (9)0.0160 (8)0.0021 (7)0.0029 (7)0.0007 (6)
C60.0210 (8)0.0226 (9)0.0153 (8)0.0037 (6)0.0027 (7)0.0002 (6)
C70.0228 (9)0.0245 (9)0.0188 (8)0.0000 (7)0.0053 (7)0.0028 (7)
C80.0301 (10)0.0273 (9)0.0222 (9)0.0009 (7)0.0019 (8)0.0006 (7)
C90.0360 (11)0.0267 (10)0.0331 (11)0.0024 (8)0.0096 (8)0.0014 (8)
C100.0521 (14)0.0370 (11)0.0366 (12)0.0214 (9)0.0178 (10)0.0122 (9)
C110.0776 (17)0.0617 (15)0.0241 (11)0.0389 (13)0.0079 (11)0.0139 (10)
C120.0558 (14)0.0462 (12)0.0196 (10)0.0238 (10)0.0059 (9)0.0027 (8)
O10.0455 (8)0.0263 (7)0.0203 (7)0.0054 (5)0.0054 (6)0.0022 (5)
O20.0508 (9)0.0287 (7)0.0217 (7)0.0119 (6)0.0088 (6)0.0052 (5)
C130.0291 (10)0.0250 (9)0.0203 (9)0.0011 (7)0.0033 (7)0.0024 (7)
C140.0322 (10)0.0269 (9)0.0245 (10)0.0028 (7)0.0013 (8)0.0045 (7)
C150.0240 (9)0.0286 (9)0.0249 (9)0.0006 (7)0.0003 (7)0.0009 (7)
C160.0262 (10)0.0307 (10)0.0295 (10)0.0018 (7)0.0004 (8)0.0004 (8)
C170.0346 (11)0.0332 (10)0.0321 (11)0.0003 (8)0.0018 (8)0.0072 (8)
C180.0452 (13)0.0351 (12)0.0489 (13)0.0036 (9)0.0073 (10)0.0109 (10)
Geometric parameters (Å, º) top
O1—C131.230 (2)C10—C111.373 (3)
O2—C131.309 (2)C11—C121.388 (3)
O2—H20.8190C8—H80.9300
N1—C61.337 (2)C9—H90.9304
N1—C21.355 (2)C10—H100.9294
N2—C21.335 (2)C11—H110.9300
N3—C41.348 (2)C12—H120.9300
N3—C21.338 (2)C13—C141.470 (2)
N4—C41.331 (2)C14—C151.336 (2)
N5—C41.358 (2)C15—C161.446 (2)
N5—C61.340 (2)C16—C171.328 (3)
N2—H2A0.8602C17—C181.496 (3)
N2—H2B0.8597C14—H140.9294
N4—H4A0.8601C15—H150.9299
N4—H4B0.8604C16—H160.9298
C6—C71.488 (2)C17—H170.9302
C7—C81.393 (2)C18—H18A0.9603
C7—C121.384 (2)C18—H18B0.9610
C8—C91.386 (2)C18—H18C0.9612
C9—C101.375 (3)
O1···N2i2.9477 (19)C4···H22.8371
O1···N42.8935 (19)C4···H2Bvii2.8753
O2···N32.6337 (18)C8···H10viii2.7841
O1···H4A2.0445C13···H4A2.9260
O1···H18Bii2.6808C16···H16xi3.0119
O1···H2Ai2.3523C17···H17xii3.0063
O2···H2A2.6901C17···H14xiii3.0552
O2···H152.4820H2···N22.8642
N1···N4iii3.031 (2)H2···N31.8222
N2···O1iv2.9477 (19)H2···C42.8371
N2···N5iii3.0771 (19)H2···H2A2.4017
N3···C133.409 (2)H2···C22.7179
N3···C16v3.257 (2)H2A···O1iv2.3523
N3···C9vi3.378 (2)H2A···H22.4017
N3···O22.6337 (18)H2A···O22.6901
N4···O12.8935 (19)H2B···N4iii2.8078
N4···N1vii3.031 (2)H2B···N5iii2.2175
N5···C14v3.348 (2)H2B···C4iii2.8753
N5···N2vii3.0771 (19)H2B···H4Biii2.2803
N1···H4Biii2.1819H2B···H8iii2.3558
N1···H122.4484H4A···C132.9260
N2···H22.8642H4A···O12.0445
N2···H4Biii2.7353H4B···N1vii2.1819
N2···H8iii2.8031H4B···H2Bvii2.2802
N3···H21.8222H4B···N2vii2.7353
N4···H2Bvii2.8078H4B···C2vii2.7804
N5···H82.5695H8···H2Bvii2.3558
N5···H2Bvii2.2175H8···N52.5695
C2···C16v3.451 (2)H8···N2vii2.8031
C2···C15v3.502 (2)H9···H12xiv2.5360
C4···C14v3.488 (2)H10···H11xv2.5724
C4···C9vi3.431 (2)H10···C8ix2.7841
C6···C14v3.559 (2)H11···H10xv2.5724
C8···C10viii3.540 (3)H12···N12.4484
C9···N3v3.378 (2)H12···H9xvi2.5360
C9···C4v3.431 (2)H14···H162.4498
C10···C8ix3.540 (3)H14···C17ii3.0552
C12···C12x3.572 (3)H14···H17ii2.4007
C13···N33.409 (2)H15···O22.4820
C14···C4vi3.488 (2)H15···H172.4404
C14···N5vi3.348 (2)H16···H142.4498
C14···C6vi3.559 (2)H16···H18A2.3909
C15···C2vi3.502 (2)H16···C16xi3.0119
C16···C16xi3.417 (3)H17···H152.4404
C16···N3vi3.257 (2)H17···C17xii3.0063
C16···C2vi3.451 (2)H17···H14xiii2.4007
C17···C17xii3.517 (3)H18A···H162.3909
C2···H4Biii2.7804H18B···O1xiii2.6808
C2···H22.7179
C13—O2—H2109.51C10—C9—H9119.92
C2—N1—C6115.08 (13)C8—C9—H9119.91
C2—N3—C4115.84 (13)C11—C10—H10120.02
C4—N5—C6114.67 (13)C9—C10—H10120.01
C2—N2—H2B119.97C10—C11—H11119.89
H2A—N2—H2B120.02C12—C11—H11119.89
C2—N2—H2A120.01C7—C12—H12119.71
C4—N4—H4A119.97C11—C12—H12119.69
H4A—N4—H4B120.05O1—C13—C14121.45 (15)
C4—N4—H4B119.97O2—C13—C14115.26 (15)
N1—C2—N3124.36 (14)O1—C13—O2123.29 (14)
N1—C2—N2116.91 (14)C13—C14—C15124.85 (16)
N2—C2—N3118.73 (14)C14—C15—C16124.00 (16)
N3—C4—N4117.63 (14)C15—C16—C17124.06 (17)
N3—C4—N5124.30 (14)C16—C17—C18125.36 (17)
N4—C4—N5118.07 (14)C13—C14—H14117.55
N5—C6—C7118.07 (14)C15—C14—H14117.60
N1—C6—N5125.73 (14)C14—C15—H15117.99
N1—C6—C7116.20 (14)C16—C15—H15118.01
C6—C7—C8121.82 (14)C15—C16—H16117.94
C6—C7—C12119.59 (15)C17—C16—H16118.00
C8—C7—C12118.59 (16)C16—C17—H17117.29
C7—C8—C9120.46 (16)C18—C17—H17117.35
C8—C9—C10120.17 (17)C17—C18—H18A109.45
C9—C10—C11120.0 (2)C17—C18—H18B109.41
C10—C11—C12120.2 (2)C17—C18—H18C109.48
C7—C12—C11120.59 (18)H18A—C18—H18B109.48
C7—C8—H8119.77H18A—C18—H18C109.47
C9—C8—H8119.78H18B—C18—H18C109.54
C2—N1—C6—N50.9 (2)N5—C6—C7—C812.5 (2)
C2—N1—C6—C7179.65 (14)C6—C7—C12—C11179.24 (19)
C6—N1—C2—N2179.82 (15)C12—C7—C8—C90.4 (3)
C6—N1—C2—N30.5 (2)C6—C7—C8—C9179.57 (16)
C2—N3—C4—N4178.16 (15)C8—C7—C12—C110.0 (3)
C4—N3—C2—N11.8 (2)C7—C8—C9—C100.3 (3)
C4—N3—C2—N2178.90 (15)C8—C9—C10—C110.1 (3)
C2—N3—C4—N51.9 (2)C9—C10—C11—C120.4 (3)
C4—N5—C6—N10.8 (2)C10—C11—C12—C70.4 (3)
C4—N5—C6—C7179.76 (14)O2—C13—C14—C152.3 (3)
C6—N5—C4—N4179.35 (15)O1—C13—C14—C15177.82 (17)
C6—N5—C4—N30.7 (2)C13—C14—C15—C16179.26 (16)
N1—C6—C7—C1212.8 (2)C14—C15—C16—C17178.28 (18)
N1—C6—C7—C8167.99 (15)C15—C16—C17—C18179.48 (18)
N5—C6—C7—C12166.65 (16)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+1/2; (iii) x, y, z1/2; (iv) x, y+1, z1/2; (v) x, y1, z; (vi) x, y+1, z; (vii) x, y, z+1/2; (viii) x+1/2, y+1/2, z+3/2; (ix) x+1/2, y1/2, z+3/2; (x) x+1/2, y1/2, z+1; (xi) x+1, y, z+3/2; (xii) x+1, y+2, z+1; (xiii) x, y+2, z1/2; (xiv) x, y1, z+1/2; (xv) x+1/2, y3/2, z+1; (xvi) x, y1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N30.821.822.6337 (18)171
N2—H2A···O1iv0.862.352.9477 (19)127
N2—H2B···N5iii0.862.223.0771 (19)179
N4—H4A···O10.862.042.8935 (19)169
N4—H4B···N1vii0.862.183.031 (2)169
C12—H12···N10.932.452.775 (3)101
Symmetry codes: (iii) x, y, z1/2; (iv) x, y+1, z1/2; (vii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9N5·C6H8O2
Mr299.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)33.867 (2), 7.4289 (3), 12.2015 (8)
β (°) 94.241 (2)
V3)3061.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.34 × 0.22
Data collection
DiffractometerBruker–Nonius 95mm CCD camera on κ-goniostat
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15418, 3490, 2409
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.151, 1.10
No. of reflections3490
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.47

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N30.82001.82002.6337 (18)171.00
N2—H2A···O1i0.86002.35002.9477 (19)127.00
N2—H2B···N5ii0.86002.22003.0771 (19)179.00
N4—H4A···O10.86002.04002.8935 (19)169.00
N4—H4B···N1iii0.86002.18003.031 (2)169.00
C12—H12···N10.93002.45002.775 (3)101.00
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1/2; (iii) x, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds