Topological Surface States in Three-Dimensional Magnetic Insulators

Joel E. Moore, Ying Ran, and Xiao-Gang Wen
Phys. Rev. Lett. 101, 186805 – Published 31 October 2008

Abstract

An electron moving in a magnetically ordered background feels an effective magnetic field that can be both stronger and more rapidly varying than typical externally applied fields. One consequence is that insulating magnetic materials in three dimensions can have topologically nontrivial properties of the effective band structure. For the simplest case of two bands, these “Hopf insulators” are characterized by a topological invariant as in quantum Hall states and Z2 topological insulators, but instead of a Chern number or parity, the underlying invariant is the Hopf invariant that classifies maps from the three-sphere to the two-sphere. This Letter gives an efficient algorithm to compute whether a given magnetic band structure has nontrivial Hopf invariant, a double-exchange-like tight-binding model that realizes the nontrivial case, and a numerical study of the surface states of this model.

  • Figure
  • Figure
  • Received 9 May 2008

DOI:https://doi.org/10.1103/PhysRevLett.101.186805

©2008 American Physical Society

Authors & Affiliations

Joel E. Moore1,2, Ying Ran1, and Xiao-Gang Wen3

  • 1Department of Physics, University of California, Berkeley, California 94720, USA
  • 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
  • 3Department of Physics, University of California, Berkeley, California 94720, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 101, Iss. 18 — 31 October 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×