Cellular polarization: Interaction between extrinsic bounded noises and the wave-pinning mechanism

Sebastiano de Franciscis and Alberto d’Onofrio
Phys. Rev. E 88, 032709 – Published 11 September 2013

Abstract

Cell polarization (cued or uncued) is a fundamental mechanism in cell biology. As an alternative to the classical Turing bifurcation, it has been proposed that the onset of cell polarity might arise by means of the well-known phenomenon of wave-pinning [Gamba et al., Proc. Natl. Acad. Sci. USA 102, 16927 (2005)]. A particularly simple and elegant deterministic model of cell polarization based on the wave-pinning mechanism has been proposed by Edelstein-Keshet and coworkers [Biophys. J. 94, 3684 (2008)]. This model consists of a small biomolecular network where an active membrane-bound factor interconverts into its inactive form that freely diffuses in the cell cytosol. However, biomolecular networks do communicate with other networks as well as with the external world. Thus, their dynamics must be considered as perturbed by extrinsic noises. These noises may have both a spatial and a temporal correlation, and in any case they must be bounded to preserve the biological meaningfulness of the perturbed parameters. Here we numerically show that the inclusion of external spatiotemporal bounded parametric perturbations in the above wave-pinning-based model of cellular polarization may sometimes destroy the polarized state. The polarization loss depends on both the extent of temporal and spatial correlations and on the kind of noise employed. For example, an increase of the spatial correlation of the noise induces an increase of the probability of cell polarization. However, if the noise is spatially homogeneous then the polarization is lost in the majority of cases. These phenomena are independent of the type of noise. Conversely, an increase of the temporal autocorrelation of the noise induces an effect that depends on the model of noise.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 19 December 2012

DOI:https://doi.org/10.1103/PhysRevE.88.032709

©2013 American Physical Society

Authors & Affiliations

Sebastiano de Franciscis and Alberto d’Onofrio*

  • European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, I20141 Milano, Italy

  • *alberto.donofrio@ieo.eu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 3 — September 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×