Copositive criteria and boundedness of the scalar potential

Joydeep Chakrabortty, Partha Konar, and Tanmoy Mondal
Phys. Rev. D 89, 095008 – Published 9 May 2014

Abstract

To understand physics beyond the standard model it is important to have the precise knowledge of Higgs boson and top quark masses as well as strong coupling. A recently discovered new boson which is likely to be the standard model Higgs with mass 123–127 GeV has a submissive impact on the stability of the new physics beyond standard model. The beyond standard model scenarios that include many scalar fields posses scalar potential with many quartic couplings. Due to the complicated structures of such scalar potentials it is indeed difficult to adjudge the stability of the vacuum. Thus one needs to formulate a proper prescription for computing the vacuum stability criteria. In this paper we have used the idea of copositive matrices to deduce the conditions that guarantee the boundedness of the scalar potential. We have discussed the basic idea behind the copositivity and then used that to determine the vacuum stability criteria for the left-right symmetric models with doublet and triplet scalars and Type-II seesaw. As this idea is based on the strong mathematical arguments, it helps to compute simple and unique stability criteria embracing the maximum allowed parameter space.

  • Figure
  • Received 3 February 2014

DOI:https://doi.org/10.1103/PhysRevD.89.095008

© 2014 American Physical Society

Authors & Affiliations

Joydeep Chakrabortty1,*, Partha Konar2,†, and Tanmoy Mondal2,‡

  • 1Department of Physics, Indian Institute of Technology, Kanpur-208016, India
  • 2Physical Research Laboratory, Ahmedabad-380009, India

  • *joydeep@iitk.ac.in
  • konar@prl.res.in
  • tanmoym@prl.res.in

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 9 — 1 May 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×