Electron-electron interaction in a Maxwell-Chern-Simons model with a purely spacelike Lorentz-violating background

M. M. Ferreira, Jr.
Phys. Rev. D 71, 045003 – Published 7 February 2005

Abstract

One considers a planar Maxwell-Chern-Simons electrodynamics in the presence of a purely spacelike Lorentz-violating background. Once the Dirac sector is properly introduced and coupled to the scalar and the gauge fields, the electron-electron interaction is evaluated as the Fourier transform of the Möller scattering amplitude (derived in the nonrelativistic limit). The associated Fourier integrations can not be exactly carried out, but the interaction potential is obtained as a first order solution in v2/s2. It is then observed that the scalar potential presents a logarithmic attractive (repulsive) behavior near (far from) the origin. Concerning the gauge potential, it is composed of the pure MCS interaction corrected by background contributions, also responsible for its anisotropic character. It is also verified that such corrections may turn the gauge potential attractive for some parameter values. Such attractiveness remains even in the presence of the centrifugal barrier and gauge invariant A·A term, which constitutes a necessary condition for yielding electron-electron pairing.

  • Figure
  • Figure
  • Figure
  • Received 4 October 2004

DOI:https://doi.org/10.1103/PhysRevD.71.045003

©2005 American Physical Society

Authors & Affiliations

M. M. Ferreira, Jr.

  • Universidade Federal do Maranhão (UFMA), Departamento de Física, Campus Universitário do Bacanga, São Luiz - MA, 65085-580 - Brasil

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 71, Iss. 4 — 15 February 2005

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×