• Open Access

Heavy quark diffusion coefficients in magnetized quark-gluon plasma

Aritra Bandyopadhyay
Phys. Rev. D 109, 034013 – Published 15 February 2024

Abstract

We evaluate the heavy quark momentum diffusion coefficients in a hot magnetized medium for the most general scenario of any arbitrary values of the external magnetic field. We choose to work with the systematic way of incorporating the effect of the magnetic field, by using the effective gluon and quark propagators, generalized for a hot and magnetized medium. To get gauge independent analytic form factors valid through all Landau levels, we apply the hard thermal loop technique for the resummed effective gluon propagator. The derived effective hard thermal loop gluon propagator and the generalized version of Schwinger quark propagator subsequently allow us to analytically evaluate the longitudinal and transverse momentum diffusion coefficients for charm and bottom quarks beyond the static limit. Within the static limit we also explore another way of incorporating the effect of the magnetic field, i.e. through the magnetized medium modified Debye mass and compare the results to justify the need for structural changes.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 July 2023
  • Revised 15 December 2023
  • Accepted 29 January 2024

DOI:https://doi.org/10.1103/PhysRevD.109.034013

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Aritra Bandyopadhyay

  • Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 3 — 1 February 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×