• Open Access

Identifying spin properties of evaporating black holes through asymmetric neutrino and photon emission

Yuber F. Perez-Gonzalez
Phys. Rev. D 108, 083014 – Published 12 October 2023

Abstract

Kerr black holes radiate neutrinos in an asymmetric pattern, preferentially in the lower hemisphere relative to the black hole’s rotation axis, while antineutrinos are predominantly produced in the upper hemisphere. Leveraging this asymmetric emission, we explore the potential of high energy, Eν1TeV, neutrino, and antineutrino detection to reveal crucial characteristics of an evaporating primordial black hole at the time of its burst when observed near Earth. We improve upon previous calculations by carefully accounting for the nonisotropic particle emission, as Earth occupies a privileged angle relative to the black hole’s rotation axis. Additionally, we investigate the angular dependence of primary and secondary photon spectra and assess the evaporating black hole’s time evolution during the final explosive stages of its lifetime. Since photon events outnumber neutrinos by about three orders of magnitude, we find that a neutrino measurement can aid in identifying the initial angular momentum and the black hole hemisphere facing Earth only for evaporating black holes within our solar system, at distances 104pc, and observed during the final 100 s of their lifetime.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 11 August 2023
  • Accepted 20 September 2023

DOI:https://doi.org/10.1103/PhysRevD.108.083014

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsParticles & Fields

Authors & Affiliations

Yuber F. Perez-Gonzalez*

  • Institute for Particle Physics Phenomenology, Durham University, South Road DH1 3LE, Durham, United Kingdom

  • *yuber.f.perez-gonzalez@durham.ac.uk

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 108, Iss. 8 — 15 October 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×